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Abstract. Natural and forced convection in cylindrical and D-shaped tanks are numerically studied. In many 

applications cylindrical tanks, with aspect ratio L/D>>1, are used. In cases where the largest diameter allowed is 

limited in project and L/D>2.75, replacing the conventional cylindrical tank for a D-shaped one was found to have 

economical advantages, reducing the ratio surface area/volume. Numerical simulation was used to investigate the 

consequences of this replacement on the temperature and velocity fields in tanks applied to solar energy systems. The 

numerical results obtained in this work show that, in cases where the ratio aspect of the cylindrical tank is high, the D-

shaped tanks have more advantageous characteristics than the usual cylindrical shape, which encourage its use. 

Keywords: natural and forced convection, thermal tanks, water heating systems 

 

1. INTRODUCTION  

 

One of the issues of interest in natural convection is the optimization of thermal energy storage equipment. An 

illustrative case is solar water heating systems, in which a good performance of the storage tank represents a 

considerable increase in the global efficiency. In such systems, one of the most desirable characteristics is an effective 

thermal stratification. The thermal stratification inside the tank depends on the velocity of the inlet jet as well as on the 

difference between the inlet and outlet temperatures of the collectors. There is a significant number of studies on the 

problem of natural convection inside vertical cylindrical cavities, but few works consider horizontal cylindrical cavities. 

Among the three-dimensional studies, Schneider and Straub (1992) investigated numerically the laminar natural 

convection in inclined cylindrical cavities, in which the top surface temperature was higher than the bottom surface 

temperature and the side wall was adiabatic. 

Eames and Norton (1998) studied the influence of the inlet jet on thermal stratification of horizontal cylindrical 

tanks. They verified that, in the cases in which the hot water jet temperature was time-dependent, a better thermal 

stratification could be obtained by placing the inlets at different height positions. The use of devices to reduce the 

velocity of the inlet jet was also suggested. The use of devices such as baffle plates, diffuser tubes or perforated tubes 

can also be found in studies by other researchers. Alizadeh (1999) studied experimentally the charge and discharge 

processes as well as the influence of different types of diffusers (straight and conic) on the thermal stratification in 

horizontal tanks. The author found that it can be increased with the use of a divergent conical tube. Zachar et al. (2003) 

studied numerically the impact of a baffle plate facing the inlet jet on thermal stratification in vertical tanks. According 

to their study, the use of large baffle plates allows the preservation of the thermal stratification, even for high flow rates. 

Savicki et al. (2011) conducted a numerical-experimental investigation in horizontal cylindrical tanks, and obtained a 

satisfactory agreement between the numerical and the experimental results, proposing a correlation for the heat transfer 

coefficient and for degree of thermal stratification. Shah and Furbo (2003) performed a numerical study about the 

influence of inlet jets on the temperature stratification in vertical tanks, using a commercial CFD code. It was verified 

that for high flow rates above 10 l/min a better thermal stratification was obtained using a baffle plate in front of the 

inlet jet. Consul et al. (2004) used parallel computation and a multiblocks technique, with structured meshes, to 

simulate the charge and discharge process (hot water intake) and to investigate the flow influence on the thermal 

stratification. In this work natural and forced convection in cylindrical and D-shaped tanks are numerically studied, 

using numerical simulation. 

 

2. PHYSICAL AND MATHEMATICAL MODEL 

 

2.1. Some mathematical relationships between the tanks under study 

 

In solar water heating systems, cylindrical tanks commonly have a much greater length than the diameter (Astrosol, 

2011). The aspect ratio (r=L/D) of such tanks ranges from 2 to 5. In solar systems powered by thermosyphon, horizontal 

cylindrical tanks, with diameters exceeding 0.7 m, are used because the available space for accommodation below the 

roof is very limited, where a horizontal cylindrical tank is used for hot water storage, as shown in Figure 1. Therefore, 

in order to store a sufficient volume of water, these tanks may be longer than 3 m and have aspect ratio of about 5. 
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Figure 1. Thermosyphon Solar Water Heating System 

 
Figure 2. Cross section for cylindrical and D-shaped tanks 

 
An alternative to avoiding too long tanks which has been little explored so far is the replacement of cylindrical 

geometry for another such as a D-shaped one, as shown in Figure 2. D-shaped tanks have some attractive 

characteristics, such as: 

 

1- They allow storing the same volume as the conventional cylindrical tank, but using half-length (same height); 

2- In cases where the conventional cylindrical tank shows high aspect ratio (above 2.75), they allow reducing heat 

losses, due to the reduction of the heat exchange area; 

3- They are easy to be installed due to the flat bottom. 

 

As a generic example, a cylindrical tank of r and z dimensions and a D-shaped tank of R=2r and Z dimensions are 

taken into account. For D-shaped tank to have the same external area as the cylindrical tank, its length should be 

 
2

z r
Z






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Moreover, in order to have the same volume as the cylindrical tank, D-shaped tank must have length of 

2

z
Z 

  (2) 

Equating (6) and (7) and evidencing the variable z, the following is obtained: 
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Finally, calculating the aspect ratio / 2ar z r , the maximum aspect ratio to make the tank cylindrical with a 

smaller surface area compared to D-shaped tank is found to be 

2.752
2

ar



 

   (4) 

Thus, for example, for a cylindrical tank with radius 0.35 m and length 3.6 m ( 5.1ar  ), a corresponding D-shaped 

tank with R=0.7m and Z=1.8m would store the same volume, but with external area reduced about 8%. Thus, in a 

simplistic way, it is estimated that D-shaped tanks would have 8% reduction in heat loss. In fact, considering the 

influence of thermal stratification, such decrease may be more substantial, as discussed later. 

 

2.2. Physical aspects of the tanks under study 

 

For the numerical simulation two tanks were used, with the same internal volume and the same insulation thickness. 

The cylindrical tank has internal radius and length of r=0.25 m and z=1.5 m, respectively. As thermal insulation, 0.02 m 

of expanded polystyrene is used. The D-shaped tank has internal radius and length of R=0.5 m and Z = 0.75 m, 

respectively. With these dimensions, the external area of the D-shaped tank is approximately 1% less than the 

cylindrical one. 

Moreover, it is assumed that both tanks are found at a room temperature of 20°C and the heat transfer coefficient is 

8 2/W m C . The water temperature in the tanks at the beginning of the process is 60°C. In the simulation of hot water 

consumption, the replacement water temperature was considered at 20°C. 

Figure 3 and Figure4 give a view of the computational domain of both tanks, indicating the position of the jet inlet 

and outlet. 
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Figure 3. Domain calculation for cylindrical tank 

 

 

Figure 4. Domain calculation for D-shaped tank 

 

 

For simulations of the cooling process, the calculation domain was just 1/4 of the physical body, assuming two 

symmetry planes. Furthermore, for simulations with charge and discharge, the calculation domain was just 1/2 of the 

physical body, considering the symmetry in the plane through the vertical diameter. The inlet and outlet duct diameters 

are 0.0254m.  

For the determination of the temperature and velocity fields inside the cylindrical horizontal tank, it was necessary 

to solve the energy and momentum equations in three directions: radial, angular, and axial. In cylindrical coordinates (r,

 , z) and using the Boussinesq approach, for a Newtonian fluid, the problem was described by the following system of 

equations: 

Continuity equation  

     
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where   is the water density calculated at intT
. 

Momentum equation for the radial velocity component  

       

 
2

1

1 1
r

rr r r z r

r Vr r

V VV V V V V

t r r z

rVV Vp
S

r r r r z zr

  




 

 

    
   

   

        
                   

 (6) 
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 is the source term,   is the viscosity and   is the thermal 

expansion coefficient.

 Momentum equation for the angular velocity component 
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where the source term is  
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Momentum equation for the axial velocity component  

 

       
2

1 1 1zz r z z z z z z
V VV V V V V V V Vp

r
t r r z z r r r z zr

  
  

  

               
            

                 (8) 

With regard to the problem involving charge and discharge, the initial condition for the momentum was zero 

velocity in the entire domain. The boundary conditions were zero velocity in the external faces and symmetry 

conditions on the plane rz, described as 0 ; 0 and 0r zV V
V

r r


 
  

 
. Along the line r = 0, the boundary conditions 
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. The solid domain was kept at zero velocity by the imposition of “infinite” 

viscosity for this volume. For the case without charge and discharge, there was an additional symmetry plane r  in the 

calculation domain, where symmetry conditions described as 0 ; 0 and 0r
z

VV
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 were also applied. 

Energy Equation 
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where the term 
TS  is the source term, also used to incorporate boundary conditions. k  and pc  are the thermal 

conductivity and specific heat at constant pressure of the water, respectively. More details can be found in Savicki et al. 

(2011). 

The source term incorporates the overall thermal resistance, including insulation layer and external natural 

convection, and works as a heat sink in the border volumes. 

For the energy equation, the initial condition was the temperature profile prescribed on the fluid region (inside the 

tank), and a linear variation between the values iniT  (on the internal face) and extT  (on the external face) in thermally 

insulated region. As boundary condition, symmetry was applied on the plane rz and along the line r = 0, 0
T







 and 

0
T

r





, respectively. On the outer faces of the tank exth  and extT  were prescribed.  

For the inlet and outlet jets, velocity and temperature were imposed. The boundary conditions for the momentum 

and energy equations, at the inlet jet, were 0 ; 0 ;r z inV V V V     and 20T C  . At the outlet jet, boundary 

conditions were 0 ; 0 ;r z outV V V V     and 0
T

z





. The inlet and outlet velocity are calculated so that the 

continuity equation is satisfied. Therefore, /in inV Q A  and /out outV Q A , where Q is the volumetric flow rate  3 /m s . 

Due to mesh configuration, the ein outA A are only approximately 2 / 4D .  

The momentum and energy equations are solved using the Finite Volume Method in cylindrical structured mesh. To 

solve the algebraic linear equations resulting from the discretization of the governing equations, the TDMA algorithm, 

with block correction, was employed. In previous studies, the numerical solutions are validated by comparison with 

experimental data. For interpolation the Power Law scheme was used. 

The physical properties of the water ( , , , pk c  ) are uniform in space and updated in time, based on the 

polynomial fitting as a function of water mean temperature. The variation in the density in space was considered 

relevant only in the buoyancy term of the momentum equations, and calculated using one polynomial adjusted as a 

function of temperature at each mesh point. The radiation heat transfer was incorporated in the external convection heat 

transfer coefficient. 

The solution of the transient problem was carried out in a completely implicit form. For each time step, the iterative 

process was applied until reaching the convergence criterion. 

 

3. NUMERICAL RESULTS 

 

3.1. Simulation of hot water consumption 

 

This study included the two tanks mentioned previously subject to water inlet and outlet in order to measure the hot 

water consumption by the top and replacing this volume with cold water through the base. The cold water jet enters the 

bottom of the tank while hot water is extracted (consumption) by the top at a rate of 8 liters per minute. At the initial 

instant, the water inside the tank is considered to be evenly distributed at 60°C.  

The tests of mesh independence and time step were carried out as shown in Tables 1 and 2. The physical time was 

simulated as 10 minutes. 

 

Table 1. Meshes for cylindrical tank 

  

Cylinder Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

Points in  , ,r z  (25,79,75) (35,105,100) (40,126,119) (45,140,134) (49,153,145) 

Time step 0.5  0.1 0.05 0.05 0.05 

Total points 148125 367500 599760 844200 1087065 
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Table 2. Meshes for D-shaped tank  

 

D-shaped tank Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

Points in  , ,r z  (50,79,38) (67,105,50) (81,126,62) (91,142,69) (98,153,75) 

Time step 0.5  0.1 0.05 0.05 0.05 

Total points 150100 351750 632772 891618 1124550 

 

For mesh 3, Figures 5 and 6 show slices of the distribution of temperature and velocity fields for both tanks. 

 

 
 

Figure 8. Slices in temperature field for D-shaped tank 

 

 
 

Figure 6. Slices in temperature field for cylindrical tank 

 

There was a strong thermal stratification in both reservoirs. However, there are important differences to be noticed. 

First, the D-shaped tank showed a more scattered inlet jet, because its bottom is wide and flat. This feature may be 

particularly important in applications where it is desired to reduce the speed of the inlet jet and thereby reduce 

turbulence. Second, the D-shaped tank has a larger wetted area bathed with cold water. It means that at the bottom of 

the D-shaped tank the heat transfer is lesser than that of the corresponding area in the cylindrical tank. In other words, 

there is a reduced heat loss. If the cooling time is long, this effect can be significant. 
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Figure 7 gives the temperature profiles for the cylindrical tank obtained after the outlet (consumption) of 80 liters of 

hot water for the 5 meshes listed in Table 1. 

 

 
 

Figure 7. Temperature profiles for the cylindrical tank after 80 liters of hot water consumption 

 

For the D-shaped tank, Figure 8 gives the corresponding temperature profiles obtained after the outlet (consumption) 

of 80 liters of hot water for the 5 meshes listed in Table 2. 

 

 
 

Figure 8. Temperature profiles for the D-shaped after 80 liters of hot water consumption 

 

In Figures 7 and 8, some markers were included in the curves on the points of greatest disagreement. For both tanks, 

the maximum relative error between the meshes 3 and 4 was less than 0.07, which was considered satisfactory for this 

study. Therefore, mesh 3 was adopted for the analysis of numerical solutions. 
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Figure 9 shows the mean temperature in tank obtained at the end of consumption of 80 liters of hot water and inlet 

of 80 liters of cold water for the 5 meshes tested. 

 

 
 

Figure 9. Mesh independency test applied to mean temperature 

 

In the results for mesh 1 there was a significant difference. However, from mesh 2 on the value obtained for the 

mean temperature agreed satisfactorily. 

 

3.2. Simulation of natural convection 

 

In order to study the behavior of the two tanks subject only to heat loss by natural convection, mesh 3 for both tanks 

respectively was conducted to numerical simulation for a 10 hour cooling. A case with 2cm of thermal insulation 

thickness was simulated. Figures 10 and 11 show the temperature field inside the tanks at 10h cooling 

 

  
 

Figure 10. Temperature field in a cross section 

in the middle of cylindrical tank 

 
Figure 11. Temperature field in a cross section in the middle of D-

shaped tank 
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As shown in Figures 10 and 11, there were similar vertical profiles of thermal stratification. However, in D-shaped 

tank, the coldest water at the bottom of the tank is deposited on the widest layer because of the geometry of the tank. 

Figures 12 and 13 show the evolution of temperature profiles in time steps of 1 h, for cylindrical and D-shaped tanks 

respectively.  

 

 
Figure 12. Temperature profiles for cylindrical tank. 

 

 

 
Figure 13. Temperature profiles for D-shaped tank. 

 

The evolution of stratification process was similar in both tanks. After an initial time step, the temperature field 

becomes stratified and subsequently there is basically a vertical displacement of the temperature profile.  

Figure 14 shows a comparison of temperature profiles after 10 h of cooling. 
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Figure 14. Comparison of temperature profiles at 10 hours for cylindrical and D-shaped tanks. 

 

Although there were similar profiles of thermal stratification, in D-shaped tanks temperatures are slightly higher 

than in cylindrical ones. 

Figure 15 shows the pattern of mean temperature throughout 10 h of simulation. As observed previously, this figure 

shows that in D-shaped tanks heat loss was slightly lower than in cylindrical ones. 

 

 
Figure 15. Comparison between mean temperature for cylindrical and D-shaped tanks. 

 

The fact that the mean temperature is slightly higher in D-shaped than in cylindrical tanks may be explained because 

of the geometry of tanks. That is, the flat bottom of the D-shaped tank provides a larger area bathed by cold water, 

which reduces the rate of heat transfer. In others words, the mean surface temperature was lower in D-shaped tanks. 

Furthermore, the cylindrical tank considered with ratio3 has a surface area superior to the D-shaped one, with aspect 

ratio of 1.5. Thus, the latter has higher heat transfer. As demonstrated in this study, such pattern is expected in cases 

when the cylindrical tank has high aspect ratio (>2.75), so that it is possible to store in a D-shaped tank the same 

volume with equal or less surface area. 

 

4. CONCLUSIONS 

 

This study carried out a numerical study of thermal and hydrodynamics behavior of cylindrical and D-shaped tanks 

was carried out. Two cases were considered, one of hot water consumption and another of natural convection cooling. 
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The results for simulation of hot water consumption showed that D-shaped tanks reduce the inlet jet speed and thereby 

reduce turbulence and mixture. Also, D-shaped tanks have a larger wetted area bathed with cold water at the bottom, so 

that the heat transfer is lower than in cylindrical tanks. That is, there is a reduced heat loss. 

For the problem of natural convection cooling, the results showed that the profile of thermal stratification in D-

shapes tanks is similar to the cylindrical ones, and that D-shaped tanks cool a bit more slowly than cylindrical ones. 

However, the conclusions herein presented are dependent on the aspect ratio of the tanks. Therefore, further studies are 

made necessary with other aspect ratios of tanks. In addition, it is important to study the cooling process for both tanks 

after hot water consumption and replacement of this volume with cold water. 
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