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Abstract. The treatment of coupled problems considering the fluid-structure interaction, as can be seen in vibro-
acoustic systems, has been a constant target of research. The development of numerical analysis in vibro-acoustic 
models, a topic of this work, under defined boundary conditions, is important not only for understanding the physical 
phenomenon, but also to acquire sensitivity relative to factors that influence the vibro-acoustic modal analysis. Among 
the research objectives are considered: the appreciation of a simple formulation for the modal analysis of vibro-
acoustic systems, the programming of this formulation for comparison with results from commercial software, and the 
modal sensitivity analysis on the structural change. This work uses a finite element discretization of the system, setting 
the modal analysis by means of a non symmetrical matrix formulation u-p, with the structural displacement u and the 
pressure p of the fluid. Then, we evaluate the influence of thickness in the evaluation of coupled natural frequencies. 
The set of results serves to the modal control of the vibro-acoustic system. 
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1. INTRODUCTION 
 

In a fluid-structure coupled system under dynamic enforcement, the presence of the fluid domain influences the 
behavior of the structure and vice-versa, the vibration of the structure is influenced by the variation of the fluid pressure 
and the acoustic waves are sensitive to the variation of the structural displacement. In the context of free vibration, the 
natural frequencies and modes of the coupled system are different from the decoupled ones. See for example Moussou 
(2005), Marburg (2002) and Sigrist and Garreau (2007), among others.  

The energy in a coupled mode is divided between the structure and the fluid. Usually the largest amount of energy 
stays either in the structure or in the fluid, which serves to classify the coupled mode as dominated by the fluid or by the 
structure, for example De Mello (2003). 

Usually, a mode dominated by the structure is originated by an uncoupled structural mode that induces an acoustic 
mode in the fluid. Equally, a mode dominated by the fluid is an acoustic mode that induces a mode in the structure. The 
medium through which the fluid influences the movement of the structure is the pressure in the surface interface, as 
well as the movement of the interface surface modifies the acoustic domain. 

The effect of the fluid pressure in the interface surface can be approximated with the term 
IsΓf , that is part of the 

excitation in the structural dynamic equation, constituted by vectors of surface and volume structural forces 
)( sBs l

ff +Γ , according to Eqs. (1) e (2): 
 

sBsssss I
ffuMuK  +Γ=+ &&  (1)

∫=
L

ss dxq
I 0

  nf Γ  (2)

 
where ns is the vector of shape functions in the structure. Forces in the interface surface of the structure are originated 
by the action of the fluid, being associated with the normal component of the surface force q to the pressure distribution 
on the interface. 

Considering the method of the finite elements, see Dettemer and Perié (2006); it is possible to substitute q by the 
expression of nodal polynomial approach for each fluid element p~ =nf

Tp, where p~  is the approaching of the scalar 
field of local pressures, nf  is the vector of shape functions of the fluid, and p is the vector of elementary nodal 
pressures, resulting Eq. (3): 

 

pnnf ∫=
L T

fss dx
I 0

 Γ  (3)
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that represents the equilibrium condition in the interface. Substituting Eq. (3) in Eq. (1) furnishes Eqs. (4) and (5). 
 

ssfssss fpK+uMuK  =+ &&  (4)

∫−=
L T

fssf dx
0

 nnK  (5)

 
The coupling of the structural domain with the fluid domain is imposed in the normal direction n̂ of the interface 

surface, through an identity that guarantees the kinematical compatibility: 
 

nn uv ˆˆ &&& =  (6)

 
that represents a slipping condition in the tangential direction to the interface. 

Relative to the fluid domain, the fluid-structure coupling is described in terms of the pressure variations in the 
neighborhood of the structural domain according to the boundary condition given by Eq. (7), after usage of Eq. (6): 

 

In̂f u
n̂
p

Γρ
∂
∂  em    ,&&−=  (7)

 
where ρf  is the fluid density. After substitution of the component in the normal direction  nv ˆ

&  by nu ˆ&& , and considering 

the expression un &&&& T
su~ =  to approximate the value of n̂u&&  by n̂u~&& , or in discretized form by un &&T

s , we have Eq. (8): 
 

ffsffff f=uM+pK+pM &&&&  (8)

 
being the matrix with the interface terms expressed by Eq. (9): 

 

∫
I

I
T
sffs d

Γ
Γnn=M  (9)

  
that allows to write the coupled system in semi-discretized form. Rewriting Eqs. (4) and (8) in united form: 

 
ssfssss fpK+uMuK  =+ &&  (10)

fsfffff f=uM+pK+pM &&&&  (11)

 
that placed in a compact matricial form, it generates the coupled formulation u-p in displacement of the structure and 
pressure of the fluid: 
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For the case of free vibrations, the second term of Eq. (12) is zero. The non symmetrical presentation of this 

formulation is its most important disadvantage, because it is not possible to use several efficient algorithms developed 
for symmetrical matrices. The major advantage of that formulation is its reduced number of degrees of freedom to 
model the fluid domain. This study intends to discover the influence of the structural thickness in the coupling of the 
fluid-structure system through the determination of the natural frequencies. 
 
2. VIBRO-ACOUSTIC SYSTEM: ACOUSTIC CAVITY OVER PLATE 

 
The programming for modal analysis of the coupled fluid-structure systems was accomplished in the program 

MATLAB©, because of the numerical and graphical available tools, enlarging the possibilities of the program 
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MEFLAB. The program of finite elements for academic research MEFLAB was developed into the MATLAB© 
environment, being in permanent development. For the study of simulations of the coupled systems and for matching 
the results after programming, the program Ansys® is used. 

This section shows a fluid-structure system constituted by an acoustic cubic cavity on a plate; discussing the 
numerical tests of the employed formulations to calculate the natural frequencies and vibration modes by programming 
and simulation. 

That system is analyzed with the objective of showing the weak coupling of the coupled modes, when the values of 
the frequencies of the uncoupled systems don't result close for the interval of frequencies considered. 

 
2.1. Square plate 
 

We study a square thin plate in bending of side 0,3048 m and thickness 3.2766 mm supported in the four vertexes. 
The used material shows the following properties:  modulus of elasticity E=73,084x109 N/m2, coefficient of Poisson 
ν=0,3 and density ρ=2821 kg/m3. 

The plate is represented through a mesh (8x8), counting 64 two-dimensional elements (denominated SHELL63 in 
Ansys®) of 4 nodes each one and totaling 81 nodes. Additionally, it is considered that the displacements of the vertexes 
are equal to zero. This way the boundary conditions are u=v=rz=0 entirely in the plate and still in the vertexes z=0, Fig. 
1. 

 

 
 

Figure 1. Mesh of the square plate with indication of the boundary conditions. 
 

The natural frequencies obtained by programming are compared, in the Table 1, with analytical, experimental and 
simulated solutions. The average of the results variation obtained by programming relative to the analytical ones for the 
first three frequencies is equal to 0.23%, value considered appropriated if considered that the variation of similar results 
obtained by simulation is equal to 0,78%. 

 
Table 1. Frequencies predicted in Hz of a square plate supported in the vertexes. 

 
Mode Analytical 

(Blevins. 
1995) 

Experimental 
(Reid. 1965) 

MEF 
(Petyt and 

Mirza. 1972) 

MEF 
Simulation 

Variation (%) 
Simulation / 
Analytical 

MEF 
Programming 

Variation (%) 
Programming / 

Analytical 
1 61.56 62 62.09 62.19 1.02 61.90 0.55 
2 136.61 134 138.5 137.51 0.66 136.70 0.07 
3 136.61 134 138.5 137.51 0.66 136.70 0.07 
4  169 169.7 169.58  169.61  
5  330 340.0 339.44  335.43  
6  383 396.0 383.78  381.17  
7    442.42  439.77  
8    442.42  439.77  
9    606.53  600.50  

10    695.57  688.99  
 

It is observed in Figure 2 that there are two modes, the second and the third, with different modal patterns but with 
identical frequencies because of the symmetry. 
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a) Mode 1   b) Mode 2   c) Mode 3 

 

   
d) Mode 4  e) Mode 5   f) Mode 6 

 
Figure 2. Patterns of modes of the square plate supported in the vertexes. 

 
2.2. Acoustic cubic cavity 

 
In global matrix notation, after assembly of the elements, the purely acoustic cubic cavity is governed by one 

differential equation as given by Eq. (13), after canceling the structural elements and related ones of Eq. (12):  
 

fffff f=pK+pM &&  (13)

 
The matrix of inertia or compressibility of the fluid Mff, the volumetric matrix of the kinetic energy of the fluid Kff 

and the vector with the external excitations ff, are defined by:  
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where cs is the sound velocity in the fluid domain, PB involves the body forces and, 
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We study an acoustic cavity of side 0,3048 m. The internal fluid is air to 20ºC with density ρf=1.204 kg/m3 and 

sound speed cs=343.3 m/s.  
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The cavity is represented through a mesh (8x8x8) of hexaedrical solid elements (denominated as FLUID30 in 
Ansys®) of 8 nodes each one, totaling 512 elements and 729 nodes. It is considered that the boundary conditions of the 
cavity are rigid walls, Figure 3. 

 

 
Figure 3. Acoustic cavity with boundary conditions of rigid wall in the faces. 

 
The natural frequencies obtained by programming are compared, in Table 2, with analytical and simulated solutions. 

The analytical natural frequencies of the acoustic cavity are obtained through Eq. (13), (Blevins, 1995); where the walls 
of the cavity are considered as rigid with infinite impedance. 

The average of the results variation obtained by programming and simulation relative to the analytical values is 
1.56%, meaning the agreement of the programmed and simulated results. 
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where, 

 
f : natural frequency in Hz; 
cs : sound speed in air, equal to 343,3 m/s; 
Lx, Ly, L z : length, wide and height of the cavity, in this case all equal to 0.3048 m.. 

 
Table 2. Predicted frequencies of the acoustic cavity in Hz. 

 
Mode Notation 

(i,j,k) 
Analytical 
(Blevins, 

1995) 

MEF 
Simulation 

Variation (%)  
Simulation / 
Analytical 

MEF 
Programming 

Variation (%)  
Programming / 

Analytical 
1 (0,0,0) 0.0 0.0 0.00 0.0 0.00 
2 (0,0,1) 563.2 566.78 0.64 566.80 0.64 
3 (0,1,0) 563.2 566.78 0.64 566.80 0.64 
4 (1,0,0) 563.2 566.78 0.64 566.80 0.64 
5 (0,1,1) 796.4 801.55 0.65 801.50 0.64 
6 (1,0,1) 796.4 801.55 0.65 801.50 0.64 
7 (1,1,0) 796.4 801.55 0.65 801.50 0.64 
8 (1,1,1) 975.4 981.69 0.64 981.70 0.65 
9 (0,0,2) 1126.3 1155.40 2.58 1155.40 2.58 

10 (0,2,0) 1126.3 1155.40 2.58 1155.40 2.58 
11 (2,0,0) 1126.3 1155.40 2.58 1155.40 2.58 
12 (0,1,2) 1259.3 1287.00 2.20 1287.00 2.20 
13 (0,2,1) 1259.3 1287.00 2.20 1287.00 2.20 
14 (1,0,2) 1259.3 1287.00 2.20 1287.00 2.20 
15 (1,2,0) 1259.3 1287.00 2.20 1287.00 2.20 
16 (2,0,1) 1259.3 1287.00 2.20 1287.00 2.20 
17 (2,1,0) 1259.3 1287.00 2.20 1287.00 2.20 
18 (1,1,2) 1379.4 1406.20 1.94 1406.20 1.94 
19 (1,2,1) 1379.4 1406.20 1.94 1406.20 1.94 
20 (2,1,1) 1379.4 1406.20 1.94 1406.20 1.94 
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It is observed in Figure 4 the patterns of three modes with different natural frequencies.  
 

        
a) Mode 2           b) Mode 3              c) Mode 8                 d) Mode 9 

 
Figure 4. Patterns of modes of an acoustic cubic cavity with different natural frequencies. 

 
2.3. Acoustic cubic cavity over square plate 
 

We study an acoustic cubic cavity over a square plate, modeled as a fluid-structure coupled system. The plate is 
modeled through two-dimensional elements, with dimensions and material specified in the section 2.1. The cavity is 
modeled with hexaedrical solid elements, with the dimensions of the cavity and fluid properties specified in the section 
2.2. 

It is considered that the displacements of the vertexes of the plate are equal to zero. This way, the boundary 
conditions are u=v=rz=0 entirely in the plate and still z=0 in its vertexes. Also, the cavity is outlined by rigid walls. 

The adopted simplification results in a mesh of 64 two-dimensional elements of four nodes each one and 512 
hexaedrical solid elements of 8 nodes each one, totaling 576 elements and 810 nodes. 
 

Table 3. Predicted frequencies I by programming of the cubic cavity over a square plate in Hz. 
 

Plate 
 

Cavity 
 

Decoupled 
mode 

Coupled 
mode  

Coupled Variation (%) 
coupled/decoupled 

Variation Hz  
coupled/decoupled 

 0.00 F1 1 0 0.00 0 
61.90  S1 2 64.20 3.71 2.30 
136.69  S2 3 136.50 -0.14 -0.19 
136.69  S3 4 136.50 -0.14 -0.19 
169.61  S4 5 169.50 -0.06 -0.11 
335.43  S5 6 335.10 -0.10 -0.33 
381.17  S6 7 380.90 -0.07 -0.27 
439.77  S7 8 439.40 -0.08 -0.37 
439.77  S8 9 439.40 -0.08 -0.37 

 566.80 F2 10 569.90 0.55 3.10 
 566.80 F3 11 569.90 0.55 3.10 
 566.80 F4 12 570.20 0.60 3.40 

600.50  S9 13 600.20 -0.05 -0.30 
688.99  S10 14 688.60 -0.06 -0.39 
688.99  S11 15 688.60 -0.06 -0.39 

 801.50 F5 16 805.70 0.52 4.20 
 801.50 F6 17 806.00 0.56 4.50 
 801.50 F7 18 806.00 0.56 4.50 

809.82  S12 19 809.30 -0.06 -0.52 
 981.70 F8 20 986.80 0.52 5.10 

1013.64  S13 21 1013.20 -0.04 -0.44 
1013.64  S14 22 1013.20 -0.04 -0.44 
1020.68  S15 23 1020.30 -0.04 -0.38 
1039.04  S16 24 1038.70 -0.03 -0.34 

 1155.40 F9 25 1161.30 0.51 5.90 
 1155.40 F10 26 1161.30 0.51 5.90 
 1155.40 F11 27 1161.40 0.52 6.00 

1180.42  S17 28 1180.00 -0.04 -0.42 
 1287.00 F12 29 1293.50 0.51 6.50 
 1287.00 F13 30 1293.50 0.51 6.50 
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We can see in Table 3 the average variation of the first 30 coupled frequencies obtained by programming relative to 
the uncoupled systems; for frequencies predominantly structural Si (i = 1,2,...) results 0.15%, for frequencies 
predominantly fluid Fj (j = 1,2,...) results 0.49% and for all frequencies 0.3%. The maximum value of variation is 6.50 
Hz. These results highlight that there is a weak coupling. 

It is observed in Table 4 the average variation of the first 30 coupled frequencies obtained by simulation relative to 
the decoupled values, for the predominantly structural frequencies is 1.02%, for the predominantly fluid frequencies is 
0.12% and for all frequencies is 0.63%. The maximum variation is 8.3 Hz. 

 
Table 4. Predicted frequencies II by simulation of the cubical cavity over a square plate in Hz. 

 
Plate 

 
Cavity 

 
Decoupled 

mode 
Coupled 

mode  
Coupled Variation (%) 

coupled/decoupled 
Variation Hz  

coupled/decoupled 
 0 F1 1 0 0 0 

62.187  S1 2 70.479 13.34 8.3 
137.51  S2 3 136.74 0.56 -0.77 
137.51  S3 4 136.74 0.56 -0.77 
169.58  S4 5 169.09 0.3 -0.49 
339.44  S5 6 338.05 0.41 -1.39 
383.78  S6 7 382.73 0.27 -1.05 
442.42  S7 8 441.22 0.27 -1.2 
442.42  S8 9 441.22 0.27 -1.2 

 566.78 F2 10 567.89 0.2 1.11 
 566.78 F3 11 567.89 0.2 1.11 
 566.78 F4 12 569.07 0.4 2.29 

606.53  S9 13 605.54 0.16 -0.99 
695.57  S10 14 694.16 0.2 -1.41 
695.57  S11 15 694.16 0.2 -1.41 

 801.55 F5 16 802.27 0.09 0.72 
 801.55 F6 17 803.27 0.21 1.72 
 801.55 F7 18 803.27 0.21 1.72 

821.05  S12 19 819.4 0.2 -1.65 
 981.69 F8 20 982.5 0.08 0.81 

1017.9  S13 21 1016.7 0.12 -1.2 
1029.1  S14 22 1027.7 0.14 -1.4 
1029.1  S15 23 1027.7 0.14 -1.4 
1058.8  S16 24 1057.7 0.1 -1.1 

 1155.4 F9 25 1155.9 0.04 0.5 
 1155.4 F10 26 1156 0.05 0.6 
 1155.4 F11 27 1156.4 0.08 1 

1188.6  S17 28 1187.6 0.08 -1 
 1287 F12 29 1287.4 0.03 0.4 
 1287 F13 30 1287.4 0.03 0.4 

 
2.4. Square plate of minor thickness 
 

This is the square plate of section 2.1, but with a smaller thickness, 2.62128 mm (80% of the thickness of section 
2.1).  

The natural frequencies obtained by programming are compared in Table 5, with analytical and simulated solutions. 
The average of the results variation obtained by programming relative to the analytical ones for the first three 
frequencies is equal to 0.22%, considered adequate if we consider that the variation of similar results using the 
simulation is equal to 0.78%. 

By analyzing the natural frequencies for the square plate of minor thickness compared to the frequencies of the 
square plate of the section 2.1, we can verify that the frequencies change in direct proportion to changes made in the 
plate thickness, i.e. if the thickness decreases 20%, all natural frequencies also decrease around 20%, that can be proven 
by Eq. (19), which originates from the elementary structural stiffness and mass expressions. 

 

[ ]
[ ] [ ]L
L

L
h

bah
hE

f e
ss

e
ss ===

ρ

3

m
k

 (19)

 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 

A similar finding also occurs with the fluid medium, as can be seen in Eq. (20), where the natural frequencies 
change in direct proportion to the relative change of the speed of sound in the medium. 

 

[ ]

[ ]
[ ]L

L

L

s

f

f
e
ff

e
ff c

cba

cba

f ===

ρ

ρ
1m

k
 (20)

 
Table 5. Predicted frequencies in Hz of a square plate with minor thickness 

 
Mode Analytical 

(Blevins, 1995) 
MEF 

Simulation 
Variation (%)  

Simulation / Analytical 
MEF 

Programming 
Variation (%)  

Programming / Analytical 
1 49.25 49.75 1.02 49.52 0.55 
2 109.29 110.01 0.66 109.35 0.05 
3 109.29 110.01 0.66 109.35 0.05 
4  135.66  135.68  
5  271.55  268.34  
6  307.02  304.93  
7  353.94  351.82  
8  353.94  351.82  
9  485.22  480.4  

10  556.46  551.19  
 

2.5. Acoustic cubical cavity over a square plate of minor thickness 
 
It is presented in this section the acoustic cubical cavity over a square plate of minor thickness, modeled as a fluid-

structure coupled system. The plate is modeled by two-dimensional elements, with dimensions and material specified in 
section 2.1. The cavity is modeled with hexahedrical solid elements with dimensions of the cavity and fluid properties 
specified in section 2.2.  

All the considerations and simplifications as defined in section 2.3 are applied for the coupled system. 
We can see in Table 6 the average variation of the first 30 coupled frequencies obtained by programming relative to 

the uncoupled values; for the predominantly structural frequencies Si (i = 1,2,...) is 0.30%, for the predominantly fluid  
frequencies Fj (j = 1,2,...) is 0.04% and for all frequencies is 0.20%. The maximum variation is 3.51 Hz. 

 
Table 6. Predicted frequencies I by programming of the cubical cavity over a plate of minor thickness in Hz. 

 
Plate 

 
Cavity 

 
Decoupled 

mode 
Coupled 

mode  
Coupled Variation (%) 

coupled/decoupled 
Variation Hz  

coupled/decoupled 
 0 F1 1 0 0 0 

49.52  S1 2 53.03 7.09 3.51 
109.35  S2 3 109.16 -0.17 -0.19 
109.35  S3 4 109.16 -0.17 -0.19 
135.68  S4 5 135.56 -0.09 -0.12 
268.34  S5 6 267.98 -0.13 -0.36 
304.93  S6 7 304.67 -0.09 -0.26 
351.82  S7 8 351.5 -0.09 -0.32 
351.82  S8 9 351.5 -0.09 -0.32 
480.4  S9 10 480.13 -0.06 -0.27 
551.19  S10 11 550.69 -0.09 -0.50 
551.19  S11 12 550.69 -0.09 -0.50 

 566.80 F2 13 567.26 0.08 0.46 
 566.80 F3 14 567.26 0.08 0.46 
 566.80 F4 15 567.45 0.11 0.65 

647.86  S12 16 647.43 -0.07 -0.43 
 801.50 F5 17 801.66 0.02 0.16 
 801.50 F6 18 801.91 0.05 0.41 
 801.50 F7 19 801.91 0.05 0.41 

810.91  S13 20 810.66 -0.03 -0.25 
810.91  S14 21 810.66 -0.03 -0.25 
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816.54  S15 22 816.17 -0.05 -0.37 
831.23  S16 23 830.86 -0.04 -0.37 
944.33  S17 24 943.91 -0.04 -0.42 

 981.70 F8 25 982.13 0.04 0.43 
1102.58  S18 26 1102.16 -0.04 -0.42 

 1155.40 F9 27 1155.62 0.02 0.22 
 1155.40 F10 28 1155.62 0.02 0.22 
 1155.40 F11 29 1155.82 0.04 0.42 

1157.47  S19 30 1156.89 -0.05 -0.58 
 

We can see in Table 7 the average variation of the first 30 coupled frequencies obtained by simulation relative to the 
uncoupled values; for the predominantly structural frequencies is 1,60%, for the predominantly fluid frequencies is 
0,21% and for all frequencies is 1,09 %. The maximum variation is 12,43 Hz.  
 

Table 7. Predicted frequencies II by simulation of the cubical cavity over a plate of minor thickness in Hz 
 

Plate 
 

Cavity 
 

Decoupled 
mode 

Coupled 
mode  

Coupled Variation (%) 
coupled/decoupled 

Variation Hz  
coupled/decoupled 

  0 F1 1 0 0 0 
49.75   S1 2 62.184 12.43 25 

110.01   S2 3 109.25 -0.76 0.7 
110.01   S3 4 109.25 -0.76 0.7 
135.66   S4 5 135.18 0.48 0.35 
271.55   S5 6 270.21 1.34 0.49 
307.02   S6 7 306.07 0.95 0.31 
353.94   S7 8 352.83 1.11 0.31 
353.94   S8 9 352.83 1.11 0.31 
485.22   S9 10 484.25 0.97 0.2 
556.46   S10 11 554.28 2.18 0.4 
556.46   S11 12 554.28 2.18 0.4 

  566.78 F2 13 568.97 2.19 0.4 
  566.78 F3 14 568.97 2.19 0.4 
  566.78 F4 15 569.51 2.73 0.5 

656.84   S12 16 655.39 1.45 0.22 
  801.55 F5 17 802.02 0.47 0.05 
  801.55 F6 18 803.45 1.9 0.24 
  801.55 F7 19 803.45 1.9 0.24 

814.3   S13 20 813.17 1.13 0.14 
823.26   S14 21 822.01 1.25 0.15 
823.26   S15 22 822.01 1.25 0.15 
847.06   S16 23 845.77 1.29 0.15 
950.91   S17 24 949.58 1.33 0.14 

  981.69 F8 25 983.42 1.73 0.17 
1130.6   S18 26 1129.3 1.3 0.11 

  1155.4 F9 27 1156.1 0.7 0.06 
  1155.4 F10 28 1156.1 0.7 0.06 
  1155.4 F11 29 1157 1.6 0.14 

1175.6   S19 30 1173.9 1.7 0.14 
 

For plates of thicknesses 0.00262128, 0.0032766 and 0.00393192 were obtained, from simulation results, the 
following values of RMS Variation Hz coupled/decoupled: 2.67, 1.9 and 1.58, respectively. With these results we 
construct the Figure 5, which indicates the non linear variation between the plate thickness and the RMS Variation Hz 
coupled/decoupled. As the plate thickness diminishes, the RMS value grows up. 
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Figure 5. RMS Variation Hz coupled/decoupled as function of plate thickness. 

 
3. CONCLUSIONS 

 
Using both programming (Table 6) and simulation (Table 7) in structurally modified vibro-acoustic systems, as 

compared to the coupled system which adopts the structure of a square plate with the original thickness (section 2.3), 
we perceive changes in the coupled frequencies values, with greater variation of the predominantly structural 
frequencies, and minor variation of the predominantly fluid frequencies, as caused by a 20% reduction in the thickness 
of the square plate described in section 2.4. 
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