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Abstract. Nowadays, due to the growing needs of market, the simultaneous optimization of various responses is 

configured as a necessary strategy in real process. Traditionally, the treatment of this problem is done through the 

application of the Desirability Function, that consists in transforming the original multi-response problem in a similar 

with one objective. In spite of various applications involving this methodology, the quality of the solution obtained is 

dependent on the choice of the inferior and superior limits and on goals for each one of the responses. To overcome 

this disadvantage, the present work proposes a methodology to solve the original multi-objective problem by using the 

Differential Evolution Algorithm (DE). This algorithm consists in the extension of the DE to problems with multiple 

objectives, through the incorporation of two operators into the original algorithm: i) the rank ordering, and ii) the 

neighborhood exploration of potential candidates. The proposed algorithm is applied to the machinability of stainless 

steel ABNT420 using a model that considers the tool life  and cutting forces responses in terms of cutting speed, feed 

per tooth and depth of cut, in slot milling process. The effects of these variables in the responses were investigated 

crossing information contained in response surfaces of material removal rate and cutting forces.  The results obtained 

showed that the methodology used represents an interesting approach to the treatment of the optimization problem 

formulated. 

 

Keywords: Multi-objective Optimization, Differential Evolution Algorithm, Multi-response, Machinability of stainless 

steel. 

 

1. INTRODUCTION 
 

Naturally, real-world problems involve the simultaneous optimization of two or more (often conflicting) objectives, 

called multi-objective optimization problem (MOOP). The solution of such problems is different from that of a single-

objective optimization problem. The main difference is that multi-objective optimization problems normally have not 

one but a set of solutions which are all equally good (Stadler, 1984).  

Traditionally, the treatment of such problems is done transforming the original MOOP into one-objective problem. 

However, the development of specific methodologies allows the formulation of the optimization problem in a way that 

various objectives can be taken into account simultaneously. In addition, as a number of points, that constitutes the 

optimal solution, are found, it is possible to explore these solutions according to the practical application studied (Deb, 

2001). In the literature, several methods for solving MOOP can be found (Deb, 2001). These methods follow a 

preference-based approach, in which a relative preference vector is used to scalarize multiple objectives. Since classical 

searching and optimization methods use a point-by-point approach, at which the solution is successively modified, the 

outcome of this classical optimization method is a single optimized solution. However, Evolutionary Algorithms (EA) 

can find multiple optimal solutions in one single simulation run due to their population-based search approach. Thus, 

EA are ideally suited for multi-objective optimization problems. A detailed account of multi-objective optimization 

using EA and some of the applications using genetic algorithms can be widely found in the literature (Deb, 2001; 

Lobato, 2008; ). 

In many engineering applications, it is necessary to find the conditions under which a certain process attains the 

optimal results.  That is, they want to determine the levels of the design parameters at which the response reaches its 

optimum. The optimum could be either a maximum or a minimum of a function of the design parameters. One of 

methodologies for obtaining the optimum is Response Surface technique (RS). This approach is a collection of 

statistical and mathematical methods that are useful for the modeling and analyzing engineering problems. The main 

objective is to optimize the response surface that is influenced by various process parameters.  

Response Surface also quantifies the relationship between the controllable input parameters and the obtained 

response surfaces. The design procedure of response surface methodology is as follows (Myers and Montgomery, 

1995): i) Designing of a series of experiments for adequate and reliable measurement of the response of interest; ii) 

Developing a mathematical model of the second order response surface with the best fittings; iii) Finding the optimal 

set of experimental parameters that produce a maximum or minimum value of response. 
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Associate with the MOOP, the multi-response surface technique is configured as good strategy to treatment of real-

world problems. In this sense, the desirability function approach, originally developed by Harrington (1965) and later 

modified by Derringer and Suich (1980), to multi-response optimization is a useful technique for the analysis of 

experiments in which several responses have to be optimized simultaneously. The basic idea of the desirability function 

approach is to transform a multi-response problem into a single response problem by means of mathematical 

transformations. 

Machinability must be understood as a system of properties which depend on complex interactions among 

workpiece, tool material, cutting fluid and cut conditions. Trent (1989) suggests that machinability is not only a 

property, but the “way” material behaves during machining. Therefore, machinability is much more than a test function, 

and it’s improvement is characterized by, at least, one of the following factors: - increase of tool life, - higher rate of 

material removal, - improvement of surface finishing, - better control of the chip, - reduction of cutting forces and 

power consumption, reduction on the cutting temperature, etc. According to its duration, the tests of machinability are 

classified in to short and long duration. And the best example of long lasting test is the tool life test and their results, 

generally presented using Taylor’s equation.  

Stainless steel is one of the main materials employed in critical parts for installation of power plants and modern 

chemical industries due to combination of appropriate mechanical properties and high corrosion resistance. However, 

the composition required allowing such properties results in poor machinability of this steel, right below to that for the 

carbon steel. High rate of strain hardening, high toughness and low thermal conductivity are the main factors that 

cooperate for this. As a consequence, the machinability of stainless steel tends to present short tool life, especially in 

intermittent cut operations like milling, where thermal and mechanical shocks are observed (Bhattacharya et al., 1988). 

In this work, the machinability of stainless steel ABNT420 in slot milling operation is analyzed using a model that 

foresees the responses of tool life and cutting forces in terms of cutting speed, feed per tooth and depth of cut. The 

effects of these variables in responses were investigated crossing information contained in bound surfaces of material 

removal. 

In this context, the main contribution of this paper is to introduce a systematic methodology for the solution of 

multi-objective optimization problems by using the Differential Evolution Algorithm.  

 

2. DESIRABILITY FUNCTION  
 

The desirability function approach is one of the most widely used methods in industry for the optimization of 

multiple response processes. It is based on the idea that the “quality” of a product or process that has multiple quality 

characteristics, with one of them outside of some “desired” limits, is completely unacceptable. The method finds the 

operating conditions x that provide the “most desirable” response values.  

For each response Yi(x), a individual desirability function di(Yi) assigns numbers between 0 and 1 to the possible 

values of Yi(x), with di(Yi)=0 representing a completely undesirable value of Yi(x) and di(Yi)=1 representing a completely 

desirable or ideal response value. The individual desirabilities are then combined using the geometric mean, which 

gives the overall desirability D: 

 
1

1 1 2 2( ( ) ( ) ... ( )) k
k kD d Y d Y d Y= × × ×  (1) 

 

with k denoting the number of responses. 

Depending on whether a particular response Yi(x) is to be maximized, minimized, or assigned a target value, 

different desirability functions di(Yi) can be used. For example, if a response is of the "target is best" kind, then its 

individual desirability function is 
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If a response should be maximized, the individual desirability function is defined as: 
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If a response should be minimized, the individual desirability function is defined as: 
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where Li, Ui and Ti be the lower, upper, and target values, respectively, that are desired for response Yi(x), with Li≤Ti≤ 

Ui. The exponents s and t determining how important it is to hit the target value. For s = t = 1, the desirability function 

increases linearly towards Ti; for s < 1, t < 1, the function is convex, and for s > 1, t > 1, the function is concave. 

It should be considered that, in spite of quite spread, this approach present some difficulties (Derringer and Suich, 

1980): i) dependence of choice of individual desirability functions; ii) the increase of the non-linearity of D and of 

number of responses can lead to location of optimal; iii) the quality of solution obtained is affected drastically by 

definition of Li, Ti and Ui.   

 

3. MULTI-OBJECTIVE OPTIMIZATION  
 

When dealing with MOOP, the notion of optimality needs to be extended. The most common one in the current 

literature is that originally proposed by Edgeworth (Edgeworth, 1881) and later generalized by Pareto (Pareto, 1896). 

This notion is called Edgeworth-Pareto optimality, or simply Pareto optimality, and refers to finding good tradeoffs 

among all the objectives. This definition leads us to find a set of solutions that is called the Pareto optimal set, whose 

corresponding elements are called non-dominated or non-inferior. The concept of optimality in single objective is not 

directly applicable in MOOPs. For this reason a classification of the solutions is introduced in terms of Pareto 

optimality, according to the following definitions (Deb, 2001): 

 

• Definition 1 - The Multi-objective Optimization Problem (MOOP) can be defined as: 

 

( ) ( ) ( ) ( )( )     1  1 2 mf x f x , f x , ..., f x , m , ...,M= =  (5) 

 

subject to 

 

( ) ( ) ( ) ( )( )     1  1 2 ih x h x , h x , ..., h x , i , ...,H= =  (6) 

( ) ( ) ( ) ( )( )     1  1 2 jg x g x , g x , ..., g x , j , ...,J= =  (7) 

( )     1   1 2 nx x , x , ..., x , n , ...,N , x X= = ∈  (8) 

 

where x is the vector of design (or decision) variables, f is the vector of objective functions and X is denoted as the 

design (or decision) space. The constraints h and g (≥ 0) determine the feasible region.  

 

• Definition 2 - Pareto Dominance: For any two decision vectors u and v, u is said to dominate v, if u is not 

worse than v in all objectives and u is strictly better than v in at least one objective.  

 

• Definition 3 - Pareto Optimality: When the set P is the entire search space, or P = S, the resulting non-

dominated set P’ is called the Pareto-optimal set. Like global and local optimal solutions in the case of single-

objective optimization, there could be global and local Pareto-optimal sets in multi-objective optimization. 

 

• Definition 4 - Non-dominated Set: Among a set of solutions P, the non-dominated set of solutions P’ are those 

that are not dominated by any member of the set P. 
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In the multi-objective context, various Multiple-Objective Evolutionary Algorithms (MOEAs) can be found. This 

group of algorithms conjugates the basic concepts of dominance described in the later section with the general 

characteristics of evolutionary algorithms. MOEAS are able to deal with non-continuous, non-convex and/or non-linear 

spaces, as well as problems whose objective functions are not explicitly known (Deb, 2001). Basically, the main 

features of these MOEAs are: 

 

• Mechanism of adaptation assignment in terms of dominance: between one non-dominated solution and another 

dominated, the algorithm will favor the non-dominated one. Moreover, when both solutions are equivalent in 

dominance, the one located in a less crowded area will be favored. Finally, the extreme points, (i.e. the 

solutions that have the best value in one particular objective) of the non-dominated population are preserved 

and their adaptation is better than any other non-dominated point, to allow maximum front expansion. 

• Incorporation of elitism: the elitism is commonly implemented using a secondary population of non-dominated 

solutions previously stored. When performing recombination (selection-crossover-mutation), parents are taken 

from this archive in order to produce the offspring. 

 

3.1. Differential Evolution Algorithm 
 

Differential Evolution (DE) (Price and Storn, 1997) is an improved version of the Goldberg’s Genetic Algorithm 

(GA) (Goldberg, 1989) for faster optimization and presents the following advantages: simple structure, easiness of use, 

speed and robustness (Babu and Anbarasu, 2005; Price et al., 2005). The crucial idea behind DE is a scheme for 

generating trial parameter vectors. Basically, DE adds the weighted difference between two population vectors to a third 

vector. The key parameters of control in DE are: N the population size, CR the crossover probability, and F the weight 

applied to random differential (scaling factor). Price and Storn (1997) have given some simple rules for choosing the 

key parameters of DE for any given application. Normally, N should be about 5 to 10 times the dimension (number of 

parameters in a vector) of the problem. As for F, it lies in the range 0.4 to 1.0. Initially F = 0.5 can be tried then F 

and/or N is increased if the population converges prematurely. 

DE has been successfully applied to various fields such as digital filter design (Storn, 1995), estimation of heat 

transfer parameters in a bed reactor (Babu and Sastry, 1999), synthesis and optimization of heat integrated distillation 

system (Babu and Singh, 2000), parameter estimation in fed-batch fermentation process (Wang et al., 2001), 

optimization of thermal cracker operation (Babu and Angira, 2001), engineering system design (Lobato and Steffen, 

2007), apparent thermal diffusivity estimation during the drying of fruits (Mariani et al., 2008), estimation of the 

parameters of Page’s equation and heat loss coefficient by using experimental data from a realistic rotary dryer (Lobato 

et al., 2008), estimation of space-dependent single scattering albedo in radiative transfer problems (Lobato et al., 2010), 

and other applications (Storn et al., 2005). 

 

3.2. Multi-Objective Optimization Differential Evolution 
 

Due to success obtained by DE in different applications in science and engineering, several attempts to extend the 

DE to solve multi-objective problems can be found in the literature. In this work the MODE (Multi-objective 

Optimization Differential Evolution) algorithm proposed by Lobato (2008) is used. This approach is based on DE 

algorithm and has the following structure: an initial population of size N is randomly generated. All dominated solutions 

are removed from the population through the operator Fast Non-Dominated Sorting. In this way, the population is 

sorted into non-dominated fronts Fj (sets of vectors that are non-dominated with respect to each other). This procedure 

is repeated until each vector is member of a front. Three parents are selected at random in the population. A child is 

generated from the three parents (this process continues until N children are generated). Starting from population P1 of 

size 2N, neighbors are generated for each one of the individuals of the population, in the following way (Hu et al, 

2005): 

 

( ) ( ) ( )2  2k kx x D g , x D gχ = − +    (9) 

 

where 

 

( ) [ ]k
kD g U L

R
= −                                                                                                                                                                      (10) 

 

Dk(g) is a vector in R
n
 and a function of the generation counter g. R is the number of pseudo fronts defined by the user 

and the initial maximum neighborhood size in a population is Dk(0)=[U - L], where L and U represent the lower and 

upper bounds of the variables. The pre-defined number of individuals in each pseudo front is given by (Hu et al, 2005): 

 

1
 2   

k k
n rn , k , ..., R−= =                                                                                                                                                              (11) 
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where nk is the number of individuals in the k-th front and r (<1) is the reduction rate. For a given population with N 

individuals, nk can be calculated as 

 

11

1

k

k R

r
n N r

r

−−
=

−
                                                                                                                                                                        (12) 

 

According to Hu et al. (2005), if r < 1, the number of individuals in the first pseudo front is the highest and each 

pseudo front has an exponentially reducing number of solutions, this emphasizing a local search. On the contrary, a 

greater r results in more solutions in the last pseudo front and hence emphasizes the global search. 

This way, the neighbors generated are classified according to the dominance criterion and only the neighbors non-

dominated (P2) will be put together with P1 to form P3. The population P3 is then classified according to the 

dominance criterion. If the number of individuals of the population P3 is larger than a number defined by the user, it is 

truncated according to the criterion named the Crowding Distance (Deb, 2001). The Crowding Distance describes the 

density of solutions surrounding a vector. To compute the Crowding Distance for a set of population members the 

vectors are sorted according to their objective function value for each Objective Function. To the vectors with the 

smallest or largest values an infinite Crowding Distance (or an arbitrarily large number for practical purposes) is 

assigned. For all other vectors the Crowding Distance is calculated according to: 
 

1
1 1

i

m
j,i j ,i

x

j 0 j ,max j ,min

f f
dist

f f

−
+ −

=

−
=

−
∑                                                                                                                                                              (13) 

 

where fj corresponds to the j-th objective function and m equals the number of objective functions. 

 

4. METHODOLGY 
 

The methodology proposed in this work consists of following steps:  

 

i. Defining the problem: to identify the responses to be analyzed and the variables relevant in the process; 

ii. Assemble the table of experimental design; 

iii. Obtain the corresponding response surfaces: usually is adopted a polynomial approximation: 
1

2

1 1 1 1

k k k k

o i i ii i ij i j

i i i j

Y x x x xβ β β β ε
−

= = = ≥

= + + + +∑ ∑ ∑∑                                                                                                    (14) 

where βo
, 

1β , ..., βk
and βij

 are unknown parameters and ε  represent the systematic errors. 

iv. The next step consists in using an optimization technique to obtain the best configuration. In this case two 

approaches will be used: mono and multi-objective optimization using the Differential Evolution algorithm. 

 

In order to use the methodology proposed above data from a previous work developed by Ramos et.al, (2003) 

were used. The scheme shown in figure 1, illustrates the system analyzed in that work with the purpose of process 

optimization. The cutting speed, feed per tooth and depth of cut were the input data that had their values varied. The 

analyzed responses were: tool life and cutting forces indirectly obtained by measuring the relation between the 

electric current of the chain electrical motor and the cutting speed used by Ramos et. al (2003). 

 

 
 

Figure 1 – Relation between the input factors and the observed output response 

 

Using the 2
nd

 

order mathematical model of responses (Central Compounded Planning – PCC) for experiment 

planning, equations related to cutting force and tool life were obtained as a function of cutting speed, feed per tooth, 

and depth of cut. The functional relation between the responses of this operation and the independent variables 

investigated can be represented by equations: 

 
k 1 m

T = K.v f ac z p                          (15) 
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I k l m
= M.v f ac z pvc

                         (16) 

 

where T, is the tool life given by feed length (cm), the I/v
c 
term (electric current of the electrical motor by cutting speed) 

or cut effort (Ampers/m/min) and v
c
, f

z 
e a

p 
mean cutting speed (m/min), feed per tooth (mm/tooth) and depth of cut 

(mm) respectively.  x is the level value (code) for each factor corresponding to its value x
n
, that is: x

n1 
is the value of the 

level +1 and x
n0 

corresponds to the zero level value. Numeric input factors were obtained (cut conditions) encoded by 

levels (±2, 0, ±1), as shown in Table 1: 

 

Table 1- Levels of the independent variables and identification by code (Ramos et. al, 2003) 

 

Independent variables Levels in code form 

 -2 (Too Low) -1(low) 0 (central) +1 (high) +2 (Too high) 

v
c
, m/min (x

1
) 87.07 94.46 115 0.12 151.88 

fz, mm/tooth (x
2
) 0.077 0.083 0.10 1.5 0.129 

a
p 
, mm (x

3
) 0.56 0.67 1 140 1.77 

 

          To obtain these conditions, it was first chosen the values for zero “central” and +1 “high” levels, from pre-tests 

considering cut limitations (milling machine capability, inserts manufacturer recommendations, etc). Then, values 

related to other levels were calculated, according to the equations below: 

 

( ) ( )
( ) ( )

ln v ln 115c
x1

ln 140 ln 115

−
=

−
          (17) 

 

( ) ( )
( ) ( )

ln f ln 115z
x2

ln 140 ln 115

−
=

−
           (18) 

 

( ) ( )

( ) ( )3

ln a ln 115p
x

ln 115 ln 115

−
=

−
          (19) 

 

    Therefore, x
1 
is the encoded value of cutting speed for v

c
, x

2 
is the encoded value for the corresponding value f

z
, and x

3 

for the a
p 
value. 

 

FI c

v uc η
=                          (20) 

 

      Where, F
c 

is the main cutting force, η is the machine-tool efficiency and u is the electric tension in the main 

electrical motor terminals. But, during cut procedure, it can be considered that tension remains constant for a given 

rotation of the electrical motor, varying the current only. Considering also, that the machine efficiency remains constant 

with cutting conditions variation, it can be said that cutting force is directly proportional to the relation I/v
c
. 

      The process used for the tests was the slot milling (channels), with dry cut in a ROMI INTERACT IV CNC, milling 

machine with 15 cv of power. The machinability tests were carried out over a rectangular bar of stainless steel ABNT 

420, in agreement with the ISO/R 683-3, made by Villares Metals S/A. 

      It was used a toroidal tool with 32 mm of diameter, with three interchangeable inserts and screw fixation (Sandvik 

(1999)]. Inserts for the milling operation with corner facing of 90
o
 entering into the workpiece with a ramp angle 

α=3,6
o
.The inserts have Vickers hardness of HV3=1500HV and the following chemical composition: 10.5 wt-% Co 

(cobalt) and the remaining of WC (tungsten carbide). This carbide is coated with a TiAlN and TiN layer of 2 - 6 

micrometer of thickness by physical vapor deposition technique (PVD) (Sandvik, 1999).  

    The electric current sensoring of the three-phase motor was done by a Hall effect current sensor, manufactured by 

Newtronic, with board ampere band of 0 to 50 A, and output signal from 0 to 5 VDC. The signal is sent to an 

analogical-digital acquisition board managed by a computer using the LabView 5.1 software, from National 

Instruments. The acquisition of the signal was done with a sample rate of 5 kHz during 20s of each pass. Each value of 

current, having a relation of 0.0968V/A, that is, the real value of current consumed by the motor found multiplying the 
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output signal by this conversion factor. The end of tool life criterion is recommended by ISO8688-1 standard, 1989, for 

tools life test in end milling.  Therefore, the uniform flank wear of the tool (v
B
=0,35 mm) was taken as the end of tool 

life criterion. 

 
5. RESULTS AND DISCUSSIONS 
 

     Table 2 shows the cutting conditions obtained by experimental planning and the results obtained for tool life and  

cutting force. 

 

Table 2 - Cutting conditions obtained by experimental planning (Ramos et. all, 2003) 

 

Experiment Cutting Speed (x1)   Feed per Tooth (x2) Depth of Cut (x3) Tool Life (Y1) [cm] 

Cutting Force 

expressed by I/v
c
 

(Y2) [A/m/min] x10
-2

 

1 -1 -1 -1 2562.3 4.013 

2 1 -1 -1 403.7 2.658 

3 -1 1 -1 2562.3 4.088 

4 1 1 -1 298.4 3.024 

5 -1 -1 1 1316.3 5.188 

6 1 -1 1 280.8 3.804 

7 -1 1 1 965.3 6.252 

8 1 1 1 140.4 4.32 

9 0 0 0 368.6 3.751 

10 0 0 0 351 3.745 

11 0 0 0 386.1 4.051 

12 0 0 0 386.1 3.958 

13 -1.41 0 0 1895.4 4.629 

14 1.41 0 0 140.4 3.021 

15 0 -1.41 0 403.7 3.815 

16 0 1.41 0 245.7 4.103 

17 0 0 -1.41 1614.6 2.934 

18 0 0 1.41 228.2 5.537 

 

 

Table 3 shows the Coefficients estimated for each response Yi. 
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Table 3- Coefficients estimated for each response Yi (p is the confidence level and R
2
 is the correlation coefficient) 

 

 Y1 p Y2 p 

βo
 346.75 0.000483 3.85489 0.000000 

1β  -1462.48 0.000000 -1.33636 0.000006 

11β  727.28 0.000050 0.01241 0.939445 

2β  -136.85 0.107030 0.40532 0.013728 

22β  29.93 0.754874 0.14722 0.379810 

3β  -848.14 0.000004 1.57834 0.000002 

33β  630.20 0.000137 0.42537 0.027677 

12β  26.33 0.782596 -0.06425 0.694474 

13β  640.53 0.000119 -0.22425 0.192944 

23β  -96.53 0.325948 0.28475 0.108706 

R
2 0.9881 - 0.9722 - 

 

For evaluating the methodology proposed in this work, some practical points regarding the application of this 

procedure should be emphasized:  
 

� The objectives are: to maximize the tool life and to minimize the cutting force.  

� The parameters used by DE algorithm (mono-objective optimization): 20 individuals, 100 generations, 

perturbation rate and crossover probability equal to 0.8 and DE/rand/1/bin strategy for the generation of potential 

candidates. For the considered parameters, the number of objective function evaluations is 2020. 

� The parameters used by MODE algorithm (multi-objective optimization): 50 individuals, 50 generations, 

perturbation rate and crossover probability equal to 0.8 and DE/rand/1/bin strategy for the generation of potential 

candidates, reduction rate and number of pseudo-curves equals to 0.9 and 10, respectively. For the considered 

parameters, the number of objective function evaluations is 5050. 

� Stopping criterion: a given number of generations is defined to interrupt the procedure. 

 

In order to evaluate the methodology proposed in this work, three test cases are presented. 

  

5.1. Test Case 1: Target Values (Ti) constants (Mono-objective) 
 

In this first case, lower, upper, and target values for each response surface are considered (see Table 4). It should be 

emphasized that these values are chosen through experiment planning presented in Table 4. In this table it also is 

showed the average values obtained by the DE algorithm in 20 runs.  

 

Table 4. Average results obtained using the DE algorithm (in parenthesis is presented the standard deviation in 

each run). 

 Li Ti Ui xi D Y1 Y2 

(1) 

{140 3} 

{1000 4} 

{2600 6} 

{-0.54 -0.94 -0.11} 0.996 (0.02)  999.99 4.00 

(2) {1500 4.5} {-1.02 -1.23 0.168} 0.999 (2e-4) 1500.03 4.49 

(3) {2000 4.8} {-1.37 -0.29 0.08} 0.999 (2e-4) 1998.25 4.79 

(4) 

{140 3.2} 

{1000 4} 

{2200 5} 

{-0.54 -1.34 -0.03} 0.981 (0.02) 1000.00 4.03 

(5) {1500 4.5} {-1.01 0.09 -0.06} 0.999 (1e-4) 1499.91 4.49 

(6) {2000 4.8} {-1.34 0.19 -0.01} 0.997 (1e-3) 1994.27 4.79 

(7) 

{500 3.5} 

{1000 4} 

{2600 5} 

{-0.55 -1.41 0.08} 0.901 (0.03) 961.82 4.11 

(8) {1500 4.5} {-0.96 0.65 -0.19} 0.999 (1e-4) 1500.88 4.49 

(9) {2000 4.8} {-1.24 1.19 -0.27} 0.998 (1e-2) 2001.26  4.79 

 

In this table it is possible to observe that the results obtained by the DE algorithm are dependent of Li, Ui, and Ti, and 

consequently in objective function value D.    

 

5.2. Test Case 2: Target Values (Ti) calculated by DE algorithm (Mono-objective)  
 

As observed in test case 1, the objective function value is dependent of Li, Ui, and Ti. In this test case, the values of 

Li and Ui are fixed and target values (Ti) are calculated by DE algorithm. The target values are defined according to the 

following interval for each response: [140 3] ≤ Ti≤ [2600 6]. 
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Table 5 presents the results obtained using the DE algorithm. 

 

Table 5. Results obtained considering Ti as design variable. 

 

x1 x2 x3 T1 T2 D Y1 Y2 

0.87 -1.08 -0.37 140.00 3.00 0.999 (0.01) 141.35 3 

 

In this table it is important to observe that in this case Ti values were obtained in a way that D assume its maximum, 

that is, equal to 1. Besides, it is noticed that the values of code variables tend to assume their maximum values. 

 

5.3. Test Case 3: Pareto’s Curve (Multi-objective) 
 

In this case, the target values are defined according to the following equation for each response i: Table 6 presents 

the best point, in terms of to maximize tool life (point B, see Figure 2) and minimize cutting force (point A, see Figure 

2), respectively. 
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Figure 2. Pareto’s Curve (Force versus Life). 

 

 

Table 6. Points belong to Pareto’s Curve. 

 

 x1 x2 x3 Y1 Y2 

A 1.40 0.24 -1.37 602.65 2.45 

B -1.40 -1.39 -1.40 4002.60 3.97 

 

6. CONCLUSIONS 
 

In this work it was studied the treatment of multi-response surface using the desirability function approach and 

multi-objective optimization associated with the Differential Evolution algorithm.  

The proposed algorithm is applied to machinability of stainless steel ABNT420 using a model that foresees the 

responses of tool life  and cutting forces in terms of cutting speed, feed per tooth and depth of cut. The effects of these 

variables in responses were investigated crossing information contained in bound surfaces of material removal rate and 

cutting force.   

The results obtained show that the methodology used represents an interesting approach to the treatment of the 

optimization problem formulated.  

Finally, it is important to observe that the methodology proposed in this work eliminates the necessity of 

transforming an original multi-response problem into a similar with single-response, i.e., it solves the original multi-

objective problem. 
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