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Abstract. The objective of this work is to present a viscoplastic model and to propose and implement an implicit 

algorithm, using the Galerkin Finite Element Method, for the analysis of the ductile behavior of rock salt. The ductile 

behavior of rock salt is observed under deepwater oil field developments, in which the rock salt is subjected to large 

confining pressures. The model considered in this work takes into account a work hardening phenomenon, a dynamic 

and static recovery mechanism, and the additive decomposition of the stress tensor into an active and an inactive part. 

The inactive part of the stress tensor is given as the sum of a short term and a long term effect making the model 

adequate for modeling the behavior of rock salt under arbitrary loading. A continuous consistent tangent operator is 

derived by a proper linearization of the weak form of the equilibrium equation. For simplicity, one considers only 

plane strain and axisymmetric problems and employs a Tri6 finite element in order to avoid volumetric locking 

phenomena. In order to attest the adequacy of the proposed algorithm and to verify the robustness of the developed 
software one considers the solution of a triaxial compression test, a creep test, a relaxation test and a type of indirect 

traction test, employed for the indirect determination of the tension strength of rock salt. 

 

Keywords: viscoplasticity, rock salt, finite elements 

 

1. INTRODUCTION 

 

Initially, the objective is to give a general view of the behavior of rock salt. Natural rock salt is polycrystalline and 

exhibits a deformation behavior that is similar to the deformation behavior of rocks in the brittle regime and of metals in 

the ductile regime. It creeps under any deviatory stress. For mean (hydrostatic) stresses typically less than 5 MPa it will 

dilate with time, upon application of a deviatory stress. However, it will flow with constant volume above a mean stress 

of approximately 5 MPa. The creep response of salt involves either two or three stages. For confining pressures 
typically less than 5 MPa, salt specimens subjected to a constant stress state will creep through three stages. In the first 

stage, named primary creep, the strain rate begins with a very high rate and decreases to a constant rate, due to work 

hardening. In the secondary creep stage, named steady creep stage, the specimen deforms at approximately a constant 

strain rate. In the third stage (tertiary creep) the strain rate increases until failure occurs as a result of the nucleation of 

micro voids and micro cracks associated with a damage process. Now, for confining pressures typically above 5 MPa, 

only the primary and secondary stages are evident from experimental tests. In the particular case of deepwater oil field 

developments, the confining mean (hydrostatic) stresses are significantly larger than 5-10 MPa and the differential 

stresses are smaller than 35 MPa. Under such conditions one observes experimentally an isochoric creep process with 

only the first and second stages evidenced. As a result, in general, rock salt models, applicable for deepwater oil field 

developments, require only the consideration of the first and second creep stages and may approximate the deformation 

process as isochoric, see Fossum and Fredrich (2002) and Fredrich et al. (2007). 
For deepwater applications, transient strain processes can be important. During drilling and oil production, stresses 

in the subsurface will change, leading to a transient creep. The strain contributions related to transient creep are in 

general significant for a time period on the order of tens of days. The relevance of the impact of the transient strains in 

the wellbore stability during drilling or long-term well integrity over the field lifetime depends upon the magnitude of 

the stress perturbations that are experienced. In addition, since the elastic yield stress for rock salt is very small, i.e., 

1Eσ < Mpa, it’s usual to model rock salt as a viscoplastic material with no yield criterion. Different models for rock 

salt have been proposed in the literature, see Aubertin et al. (1999) and Liang et al. (2007). Here, one uses the model 
presented by Yahya et al. (2000), and proposes a fully implicit algorithm using the Galerking finite element method, for 

the analysis of the behavior of rock salt under plane strain and axisymmetric conditions. 

 

2. THE VISCOPLASTIC ROCK SALT MODEL WITH NO YIELD SURFACE 

 

The model presented by Yahya et al. (2000) consider the following internal variables: the rest stresses sχ  and lχ  

describing the short and long term effects of the kinematic hardening; the yield resistance stress R  describing the 

isotropic hardening and the normalized (drag) stress K . These internal variables describe not only the strain hardening 

phenomenon but also the strain induced dynamic recovery and the thermal activated static recovery processes. Here, for 

simplicity, the problem is restricted to small displacements and deformations and the deformation process is assumed to 
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be isothermal. At this point, a total rest stress χ  is introduced and given by s lχ = χ + χ . The rock salt model proposed 

by Yahya et al. (2000) may be summarized by: 

 

(i) The additive decomposition of the total strain into an elastic part, eε , and a viscoplastic part, cε , as 

 
e cε = ε + ε  (1) 

 

(ii) The stress versus elastic strain constitutive equation 

 
eσ = Dε  (2) 

 

in which 

 

( )ijrs ir js is jr ij rsD G δ δ δ δ λδ δ= + + , (3) 

 

where 
( )2 1

EG
ν+

=  (shear modulus) and 
( )( )1 1 2

Eν
ν ν

λ
+ −

=  (Lamé’s constant) with E denoting the Young’s modulus and ν  

the Poisson’s ratio. 

 

(iii) The viscoplastic flow rule 

 

ɺɺ
cε = λN  (4) 

 

where 

 

( )3
2 q

====
D Dσ - χ

N  (5) 

 

and 

 
N

q Rc
ef K

e aλ
−

= =ɺ ɺ  (6) 

 

with p+D
σ = σ I , Dσ  denoting the deviatoric stress, ( )1

3
p tr= σ  the mean (hydrostatic) stress and 

( ) ( )3
2

.q = D D D D
σ - χ σ - χ  the effective von Mises stress measure. Here, a and N are material parameters that must 

be identified, λɺ  denotes the rate of the viscoplastic multiplier and c
efeɺ  denotes the rate of the effective strain measure. 

 

(iv) The evolution laws for the short and long term rest stresses 

 

22
1 3

c
s sef ef efs

sefsef

q
e a

s C
a

χ χ

χχ

∞

∞

− 
= − − 

 

ɺ

ɺ ɺ
D c D D
s s sχ ε χ χ  (7) 

 

and 

 

22
1 3

c
l lef ef efl

leflef

q
e a

l C
a

χ χ

χχ

∞

∞

− 
= − − 

 

ɺ

ɺ ɺ
D c D D
l l lχ ε χ χ  (8) 

 

where 
1
23

2
.

eflχ  =  
D D
l lχ χ  and 

1
23

2
.

efsχ  =  
D D
s sχ χ  in which 1sa , 2sa , 1la , 2la , q and C are material parameters. 

 

(v) The evolution laws for the yield resistance and drag stresses 
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( )3 41
p

cR R R
ef CR

R a e a
∞

∞
−= − −ɺ ɺ  (9) 

 

and 

 

( )5 61
u

cK K K
ef CK

K a e a
∞

∞
−= − −ɺ ɺ  (10) 

 

in which 3a , 4a , 5a , 6a , p, and u are material parameters. The remaining variables, { }, , , ,
ef efvm s l R Kσ χ χ∞ ∞∞ ∞ ∞ , are 

named as the saturation or activation threshold and are defined by 

 
1

1sinh
c n
ef

c
o

e

vm o e
σ σ∞ −

   =  
   

ɺ

ɺ
,   ( )vm

ef o
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s osb
σ

σ
χ

∞
∞ = ,    ( )vm

ef o

m

l olb
σ

σ
χ

∞
∞ = ,    ( )vm

o

m

oR R
σ

σ

∞
∞ =  (11) 

 
and 

 

( )
1

vm

c Ne
ef

a

R

K
σ χ∞ ∞ ∞− +

∞

 
 
 
 

=
ɺ

. (12) 

 

Here, oσ , c
oeɺ , n , m, osb , olb  and oR  are material parameters and ( )1

2
x x x= +  denote the MacCauley parenthesis. 

The above saturation or activation thresholds are responsible for controlling the thermally activation of the static 

recovery processes. 

 

3. DISCRETIZATION OF THE ROCK SALT MODEL 
 

In order to derive the fully implicit algorithm, one assumes the solution to be known in the interval 0, nt    and imposes 

the equilibrium condition at 1nt + . As a result, one derives the following weak form: Determine 1nu + ∈
�

K  so that 

 

( )1 1 1 u. . . V, .
t

n n nw d t w d b w d wρ+ + +Ω Γ Ω
Ω = Γ + Ω ∀ ∈∫ ∫ ∫σ ε

��� � � �
 (13) 

 

in which K  represents the set of admissible displacements and uV  the set of admissible variations. 

 
3.1. Operator Split Algorithm 

 

Here, in order to improve the robustness of the algorithm, one applies the operator split strategy, see Souza Neto et al. 

(2008), described by: 

 

(i) The trial elastic step problem, formulated as: Given the strain history { } 1( ) [ , ]n nt t t +∈ε , find 1
e trial
n+ε  and 1

trial
n+ω , with 

1 1 1
1 1 11( , , , , , )c trial D trial D trial

n n n

c trialtrial trial trial
n n nn ef s l

R K e
+ + +

+ + ++≡ω ε χ χ , so that e trial =ɺ ɺε ε  and 0trial =ɺω . As a result, one derives 

 

1 1

triale c
n n n+ += −ε ε ε   and 1

trial
n n+ =ω ω . (14) 

 

Once 1

triale
n+ε  is determined, one computes 

1

1
13

trial
e trial

n

e
nH

e tr
+

+
 =   
εεεε , 

1
1 1 Ie trial

n

e D trial e trial
n n H

e
++ += −ε εε εε εε ε  and the trial elastic stresses 

( ) 1
1 1 2

e trial

n

trial E
n H

p e
ν +

+ −
=  and 1 12

.
D trial e D trial
n nG+ +=σ ε . 

 

(ii) The viscoplastic return mapping step problem 
Here, by applying the fully implicit Euler method and performing some additional algebra, one derives the 

following coupled nonlinear problem, stated as: Given 1n+ε , determine ( )
1 11 1 1, , , ,D D

n n

D
n n s l nR Kϖ

+ ++ + +χ χ σ====  that satisfies: 
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( ) ( )1 1 1

1
1

1 1 3 41 0
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+ + +

∞ +
+

−
+= − − − ∆ + ∆ =ϖϖϖϖ  (15) 
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1
1

2 1 5 61 0cn n n
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+ + +
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1
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1 1 1
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in which 
1 11

D D

n n

D
n s l+ ++ = +χ χ χ , 1

D
n+χ  denoting the deviator part of the total rest stresses, 1 1

1 1

c n n

n n

N
q R

ef K
e a t+ +

+ +

−
∆ = ∆ , 

1 1
c c c
n n n+ +∆ = −ε ε ε  and 1n nt t t+∆ = − . 

Once determined the set of internal variables, (((( ))))
1 11 1 1, , , ,D D

n n

D
n n s l nR K

+ ++ ++ ++ ++ + ++ + ++ + ++ + +ϖ = χ χ σϖ = χ χ σϖ = χ χ σϖ = χ χ σ , one may compute the Cauchy 

stress as 

 

1 1 1I
D

n n np+ + ++ + ++ + ++ + +σ = σ +σ = σ +σ = σ +σ = σ +  (20) 

 

where 

 

(((( )))) 1
1 1 2

e trial

n

E
n H

p e
νννν ++++
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==== ,  (((( ))))

1

1
13

e trial

n

e trial
nH

e tr
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++++= ε= ε= ε= ε  and 11
e trial c
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The saturation or activation variables evaluated at 1nt +  are given by 

 
1

1
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efn
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with 
1 1

1 efn efn
n s lχ χ χ∞ ∞

+ +

∞
+ = + . In order to solve the coupled set of non linear equation one employs Newton’s method. 

 

3.2. Incremental weak formulation of the problem 

 

Once defined the constitutive model, one may solve the global equilibrium problem by employing an incremental 

procedure. The incremental formulation between nt  and 1nt +  considers that 

 

1n n nu u u+ = + ∆
� � �

 (24) 

 

so that, at time 1nt + , the weak formulation of the problem may be stated as: Determine 1nu + ∈
�

K , which solves 

 

( ) ( )1 1 1 1 1; . . . 0, Vtn n n nF u w w d b wd t w dA wρ+ + + +Ω Ω Γ
= Ω − Ω − = ∀ ∈∫ ∫ ∫ uσ ε

� �� � � � � �
 (25) 

 

Since the above problem is non-linear, one applies Newton’s method leading to the solution of a sequence of linearized 

problems. 

 

Consistent linearization procedure 
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Let 1
k
nu +

�
 be the estimate solution of (25) at the k-th iteration and consider that 

 

1 at 0k
n nu u k+ = =
� �

. (26) 

 

For the k-th iteration of the solution procedure, one has 

 
1
1 1 1

k k k
n n nu u u+

+ + += + ∆
� � �

. (27) 

 

The determination of the increment 1
k
nu +∆
�

 is obtained by imposing  

 

( )1 1 1; 0, Vk k
n nF u u w w+ ++ ∆ = ∀ ∈ u

� � � �
. (28) 

 

Considering ( )1F �  being Gateaux differentiable one derives the first order approximation given by 

 

(((( )))) (((( )))) (((( ))))1 1 1 1 1 1 1 1; ; ;
k k k k k
n n n n nF u u w F u w DF u w u∆ ∆∆ ∆∆ ∆∆ ∆+ + + + ++ + + + ++ + + + ++ + + + +

    + ++ ++ ++ +     
� � � � � � � �

≃ . (29) 

 

Now, replacing (29) into (28) finally yields 

 

( ) ( )1 1 1 1 1; ;
k k k
n n nDF u w u F u w+ + +

 ∆ = − 
� � � � �

 (30) 

 

where 

 

( )
( ) ( )

( )
1 1 1 1 1

1 1 1 1 1 1
0 0

; ;
; lim ;

k k k
n n nk k k k

n n n n

F u u w F u w d
DF u w u F u u w

dε ε

ε
ε

ε ε

+ + +

+ + + +
→ =

+ ∆ −
  ∆ = = + ∆   

� � � � �

� � � � � �
. (31) 

 

Since Ω  is fixed and the prescribed traction and body forces are assumed to be independent of the displacement field, 
one derives 

 

( ) ( )( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1
0

; . .k k k k k
n n n n T n kl n ij

ijkl

d
DF u w u u w d D u u w d

d ε
ε ε

ε
+ + + + + +Ω Ω

=

    ∆ = Ω = ∆ Ω      ∫ ∫σ ε ε
� � � � � � � �

 (32) 

in which ( ) ( )1 1
ij

kl

k k
T n n

ijkl
D u u

σ

ε

∂

+ +∂
  =
 

� �
 is the consistent tangent modulus. 

 

3.3. Determination of the consistent tangent modulus 
 

The consistent tangent operator is given by 

 

TD
ij ij

trial
ekl
kl

ijkl

σ σσ σσ σσ σ

εεεε εεεε

∂ ∂∂ ∂∂ ∂∂ ∂

∂∂∂∂
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= == == == =          (33) 

 

However, since D
ij ij ijpσ σ δ= + , one derives 

 

[ ]
D
ij

trial trial
e e
kl kl

p
T ijijkl

D
σ

ε ε
δ

∂ ∂
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= +  with 

( )3 1 2triale
kl

p E
klνε

δ∂

−∂
= . (34) 

 

In order to compute 
D
ij

trial
e
kl

σ

ε

∂

∂
 one notice that the solution of (15-19), given by ϖϖϖϖ  is obtained for a given value of 1n+εεεε . 

However, 1 1

triale c
n n n+ += −ε ε εε ε εε ε εε ε ε  and c

nεεεε  is a constant, at 1nt + , which allow us to conclude that ( )1

triale
n+ϖ = ϖ εϖ = ϖ εϖ = ϖ εϖ = ϖ ε , i.e., 
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(((( ))))1 1 1

triale
n n nR R εεεε+ + ++ + ++ + ++ + +====  (35) 

(((( ))))1 1 1

triale
n n nK K εεεε+ + ++ + ++ + ++ + +====  

(((( ))))1 1 1

trialD D e
n n nεεεε+ + ++ + ++ + ++ + +σ = σσ = σσ = σσ = σ  

(((( ))))1 1 1

trial
D D

n n

e
s s nεεεε

+ ++ ++ ++ + ++++χ = χχ = χχ = χχ = χ  

and 

(((( ))))1 1 1

trial
D D

n n

e
l l nεεεε

+ ++ ++ ++ + ++++χ = χχ = χχ = χχ = χ  

 

As a result, differentiating (35) with respect to 1

triale
n+εεεε  leads to a linear system of equations that may be solved for 1

D
n

trial
e
klε

+∂

∂

σσσσ
. 

 

4. NUMERICAL EXAMPLES 

 

The discretization of the problem is obtained by the application of the Galerkin Finite Element method using a Tri 

6 element. In order to verify the adequacy of the model and the proposed implicit algorithm, one solves a set of simple 

problems. The parameters used in these examples are given in “Table 1”. And the experimental data was extracted from 

the work of Yahya et al. (2000), relative to the rock salt properties of Avery Island. 

 

Table 1. Parameters employed by the model 

 

E = 31  GPa  ν = 0.38  A = 050.176 10−× 1s−  

1s
A = 20.395 GPa  1l

A = 1218 MPa  
2s

A = 02 1
0.104 10 MPas

− −×  

2l
A ==== 15 10.458 10 MPas− −×  3A ==== 95 MPa  

4A ==== 08 10.456 10 MPas− −− −− −− −××××  

5A ==== 27 MPa  
6A ==== 13 10.543 10 MPas− −− −− −− −××××  

soB ==== 1.47 MPa 

loB ==== 3.37 MPa  oR ==== 3.04 MPa  oσσσσ ==== 9.15 MPa  

oεεεε ====ɺ 10 10.135 10 s− −− −− −− −××××  N ==== 4 n ==== 3 

m ==== 1 C ==== 1.0 MPa  p ==== 2 

u ==== 2 q ==== 2 1.0oK MPa====  

 

4.1. Triaxial compression 

 

Here, in order to validate the proposed algorithm, one compares the computed numerical solution for two loading 

cases with the experimental data obtained for the rock salt in Avery Island. In the first simulation, a rock salt specimen 
is subjected to a prescribed displacement, as depicted in Figure 1. The prescribed displacement is applied by a linear 

ramp with a strain rate of 6 18.7 10 s− −− −− −− −××××  up to the value of 2.12u = −= −= −= − mm. The specimen is confined by a lateral pressure 

of 15MPa . The second simulation considers the same test but with a strain rate of 08 1
8.3 10 s

− −− −− −− −××××  and a maximum 

displacement of 2.0u = −= −= −= − mm. The problem is considered to be axisymmetric and were applied respectively 1000 and 

7000 displacement increments. 

 
Fig. 1 – Definition of the problem 
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The stress-strain curves obtained numerically and the experimental data, obtained in Yahya et al. (2000), for both 

simulations are depicted in Figure 2. The stress measure used in Figure 2 is the stress difference, defined as the 

difference between the axial and the confining lateral pressure, given by ax rad∆σ σ σ∆σ σ σ∆σ σ σ∆σ σ σ= −= −= −= − . 

 

 
Fig. 2 – Stress difference versus axial strain curve for both simulations 

 

4.2. Creeping test resulting from a triaxial compression 

 

Here, one considers a triaxial compression creep test that takes place for three different constant axial stress 

loadings. The rock salt specimen is subjected to a confining lateral stress and subjected to a constant axial stress σσσσ , as 

depicted in Figure 3. 

 

 
Fig.3 – Definition of the triaxial creeping test 

 

The problem is considered to be axisymmetric and the loading to be applied for 48 hours. The loading cases considered 

here are: (1) 10σσσσ ====  MPa with 5radσσσσ ====  MPa; (2) 20σσσσ ====  MPa with 10radσσσσ ====  MPa; and 20σσσσ ====  MPa with 5radσσσσ ====  

MPa. Figure 4 shows the evolution of the total axial strain as a function of time for the three different loading cases, 

expressed in term of their stress difference, ∆σ∆σ∆σ∆σ , level. 

 

 
Fig. 4 – Evolution of the axial strain for the three stress difference loading cases 

 

4.3. Stress relaxation test 
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Here, one considers a stress relaxation test that takes place for three different prescribed constant axial strains. The 

rock salt specimen is subjected to a confining lateral stress and subjected to a prescribed axial strain axεεεε , as depicted in 

Figure 5. 

 

 
Fig. 5 – Description of the triaxial compression stress relaxation test 

 

The problem is considered to be axisymmetric and the prescribed constant strain loading to be applied for 24 hours, as 
depicted in Figure 6. Three prescribed strain loadings were obtained by prescribing the following displacements: (1) 

case 0,4u mm= −= −= −= − ; (2) case 0,3u mm= −= −= −= − ; and (3) case 0, 2u mm= −= −= −= − . The confining pressure for all three loading cases 

is given by 5 Mpa and the total loading time considered is of 24 hours. 

 

.  
Fig. 6 – Prescribed strain loading for the stress relaxation tests 

 

Figure 7 depicts the time evolution of the stress difference for the three stress relaxation tests, for 24 hours. 

 

 
Fig. 7 – Time evolution of the stress difference for the three stress relaxation tests 

 

4.4. Diametrical compression test 
 

Here, one considers a diametrical compression test of a rock salt specimen, as depicted in Figure 8. The specimen is 

subjected to a plane strain condition and due to the symmetry conditions only one fourth of the domain is modeled. The 

specimen is subjected to a prescribed displacement applied by a linear ramp with a maximum displacement of 

0.5u mm= −= −= −= − . 
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Fig. 8 – Description of the diametrical compression test 

 

The mesh consists in 742 elements and 1603 nodes and the analysis employed 2000 displacement increments in the 

“loading process”. Figure 9 shows the distribution of the level sets representing the displacement component, xu  at the 

end of the analysis. 

 

 
Fig. 9 – Distribution of the level sets of the displacement component xu  

 

Figure 10 shows the distribution of the level sets representing the displacement component, yu  at the end of the 

analysis. 

 

 
Fig. 10 – Distribution of the level sets of the displacement component yu  

 

Figure 11 shows the distribution of the level sets representing the stress component, xxσσσσ , at the end of the analysis. 

 

 
Fig. 11 - Distribution of the level sets of the stress component xxσσσσ  
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Figure 12 shows the distribution of the level sets representing the stress component, xyσσσσ , at the end of the analysis. 

 
Fig. 12 - Distribution of the level sets of the stress component xyσσσσ  

 

5. CONCLUSIONS 

 

The proposed implicit numerical scheme made use of the fully implicit Euler method and have shown to be robust 

in solving the proposed examples. The validation of the algorithm was obtained by comparing the numerical solutions 

with the available experimental data, which has shown to be in a good agreement. 

The problem illustrated in Figure 8 is a simplified model of an experimental diametrical compression test. The 

proper modeling of such tests requires the usage of unilateral displacement constraint at the loading surface. Due to the 

simplified modeling one can see a large plastic flow of the rock salt in the neighborhood of the loading surface. The 

oscillations in the boundary of the level sets in Fig. 11 can be reduced significantly by using a more refined finite 

element mesh. 
The rock salt model considered in this paper showed to be adequate to describe a wide range of rock salt 

deformation processes and adequate for modeling rock salt behavior under complex loading conditions. 
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