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Abstract. The objective of this work is to propose a mathematical model and a numerical scheme for the ductile failure 

analysis of polymeric materials. The proposed model is based in the works of Fremond and Lemaitre, makes use of the 

method of local state variables and is derived within the scope of the consistent thermodynamics of the continuum 

medium. The polymeric material is modeled as an elastoviscoplastic material coupled with a non local damage model. 

In order to model the cold drawing process that occurs during the ductile fracture process of polymers, one 

incorporates a damage locking condition. Since the problem is formulated within the scope of non smooth mechanics, 

a regularization process is also applied. In order to identify the material constants associated with the model one 

considers a uniaxial tensile test and other complementary tests, which were done at the Fiber and Polymer Technology 

Department of the Royal Institute of Technology (KTH), in Sweden. More general problems are then solved in order to 

attest the proposed model and to validate the employed numerical scheme. 

 
Keywords: viscoplasticity, non local damage, finite element. 

 

1. INTRODUCTION 

 

Here, one proposes an elastic viscoplastic theory coupled with a non local damage model that may be applied in the 

analysis of the ductile failure analysis of plastic components. The proposed theory considers the problem to be 

subjected to small displacements and constrains and the deformation process to be isothermal. Due to the above 

simplifications, the proposed model is suitable for the local failure analysis in plastic components and takes into account 

the cold drawing phenomenon, which may occur at regions with high concentration of stresses. The theory considers 

some of the ideas presented in Lemaitre (1996) and Fremond and Nedjar (1996) and employs a gradient type of non 

local damage theory. 
Let the scalar β be defined as the cohesion variable with value 1 when the material is undamaged and value 0 when 

it is completely damaged. This variable is related with the links between material points and can be interpreted as a 

measure of the local cohesion state of the material. When β = 1, all the links are preserved. But, if β = 0, a local rupture 

is considered, since all the links between material points have been broken Fremond and Nedjar (1996). 

 

2. THEORETICAL DEVELOPMENT 

 

2.1. Principle of virtual power 

 

Here, one consider the principle of virtual power to be given by 

 

( , ) ( , ) ( , )
a i e

P v P v P vγ γ γ= +
� � �

 (1) 

 

where the power of the internal, external and inertial forces are given by 

 

( )( , )   iP v d F H dγ γ γ
Ω Ω

= − Ω − + ∇ Ω∫ ∫
� ��

ɺσ εσ εσ εσ ε⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅  (2) 

( , )       e v s

d d

P v b v d t v d A d A dγ ρ γ γ
Ω ∂ Ω Ω ∂ Ω

= Ω + ∂ Ω + Ω + ∂ Ω∫ ∫ ∫ ∫
� �� � �

⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅  (3) 

and 

( , )   aP v u v d dγ ρ ρβγ
Ω Ω

= Ω + Ω∫ ∫
�� � ɺɺɺɺ ⋅⋅⋅⋅ . (4) 
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Here, σ is the Cauchy stress tensor, F is the internal work of damage and H
�

 is the flux vector of internal work of damage.  

Moreover, ρ is the density, b
�

 represents the prescribed body force per unit mass, t
�

 is the prescribed external traction and 
v

A  and 

sA  are, respectively, the volumetric and the surface external sources of damage work. 

Now, assuming that 0
v

A =  and 0
s

A = , and considering the process to be quasi-static one derives differential 

equations: 

 

( ) ( ), , 0div x t b x tρ+ =  
�� �

σσσσ  (5) 

and 

( ) 0div H F− =
�

 (6) 

 

Subjected to the following boundary conditions 

 

( ) ( ) ( )

( ) ( )

, ,    on   ,

,    on   ,

t

u

x t n t x t x t

u x t u x t

= ∈ Γ


= ∈ Γ

�� � � �

� � �

σσσσ
 (7) 

and 

0   on  nβ∇ = ∂Ω
� �

⋅⋅⋅⋅  (8) 

 

2.2. Definition of the free energy potential vpΨ  

 

Here, one assumes the free energy potential, e( , , , )vp rΨ β β∇
�

εεεε , to be given by 

 

e e e

0

1
( , , , ) ( )

2 2

r

vp r h r drρΨ β β β β β∇ = + ∇ ∇ + ∫
� � �

⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅Dε ε εε ε εε ε εε ε ε
k

 (9) 

 

where eεεεε  is the elastic strain tensor, ( )h r  represents a function that describes the isotropic hardening curve of the 

material, k is a material parameter and D  is the fourth order elasticity tensor, given by ( )2µ λ= + ⊗I ID I , in 

which, µ  and λ  are the Lamé constants, given respectively by 
( )2 1

E
µ

ν
=

+
, 

( )( )1 1 2

Eν
λ

ν ν
=

+ −
. 

The local state equations, defining the associated dual variables, are given by  

 
vp

e

Ψ
ρ

∂
=

∂
σσσσ

εεεε
,      

vp

R
r

Ψ
ρ

∂
=

∂
,         

vp
rF

Ψ
ρ

β

∂
=

∂
      and           

vp

H
Ψ

ρ
β

∂
=

∂∇

�
�   (10) 

 

where one considers 

 
r reac iF F F F= + +  (11) 

 

in which ( )reac locF Iρ β∈ ∂
K

, denoting the local sub differential of ( )I β
K

, ( )
   0,     if    

,     if    
I

β
β

β

∈
= 

+∞ ∉
K

K

K

, with 

{ | 0 1}β β= ≤ ≤K . 

 

2.3. Definition of the yield function 

 

Different yield criteria have been proposed in the literature. Among them, one may highlight Quinson et al.(1997), 

Goldberg et al. (2003), Rottler and Robbins (2001) and Riande et al. (2000) propositions. Here, one has defined the 

following yield function: 

 

( ) ( ) ( ), ; 1
3

yof R q p R
µ

σ µ σ
 

= + − + + 
 

�  (12) 
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in which, D

H
σ= + Iσ σσ σσ σσ σ , Hp σ= ɶ , 

1
23

2

D Dq
 

= ⋅ 
 
ɶ ɶσ σσ σσ σσ σ , =

β
ɶ

σσσσ
σσσσ , µ is the variable that incorporates the effect of the 

hydrostatic stress, 
yo

σ  is the initial yield stress and R is the isotropic strain hardening variable. 

 

2.4. Plastic flow rule and hardening law 

 

In order to describe a dissipative process, one needs to introduce complementary kinetic laws. Therefore, to completely 

characterize the proposed viscoplastic with damage model, by defining the evolution laws for the internal variables, one 

assumes the existence of a pseudo-potential of dissipation, ( , , ; )iR Fϕ σ∗
� , that is a scalar continuous function, convex 

with respect to the dual/associate variables ( , , )iR Fσ . One assume ( , , ; )iR Fϕ σ∗
�  to be decomposed as 

( ) ( , ; ) ( ; )i
vp DR Fϕ ϕ ϕ∗ ∗ ∗= +� � �σσσσ . By applying the normal dissipation criterion, yields. 

 
*
vpvp

ϕ
λ

∂
=

∂
ɺɺεεεε

σσσσ
, .

vp
r

R

ϕ
λ

∗∂
= −

∂
ɺɺ  and ( ; )

i
D Fβ λ ϕ ∗∈ ∂ɺ ɺ �  (13) 

 

in which, λɺ , is given by 

 

( , , ; )
ln 1

M

f R

K

β
λ β

−

∞

  
 = − 
   

�
ɺ

σσσσ
 (14) 

 

where M and K∞  are material parameters. Moreover, one assumes that 

 

( ) ( ) ( )( , , ; ) , , ; 1
3

vp yoR f R q p R
µ

ϕ β β µ σ∗  
= = + − + + 

 
� �σ σσ σσ σσ σ  (15) 

 

in which µ  is a material parameter. Considering ef q pσ µ= +  to denote the effective stress, one derives 
vp
efe

λ

β
=
ɺ

ɺ , defining the 

effective viscoplastic strain measure. 
 

2.5. Definition of the damage potential 
 

Here one considers that 

 

( )

2

1
,  if  0

; 2

0, if 0

i
i

i
D

i

F
S F

F S

F

β
ϕ β∗

  
 ≤   =   


>

�
  

                       

 (16) 

which leads to 

 

( ) ,   if   0
  

  0                              ,  if   >0

th

i
vp vp i

ef ef

i

F
H e e F

S

F

λ
ββ

  
− ≤  

=   



ɺ
ɺ  (17) 

 

where ( )
1,   if  

0,   if  

th

th

th

vp vp

ef efvp vp

ef ef vp vp

ef ef

e e
H e e

e e

 ≥
− = 

<
. 

 

2.6. Regularization of the Free Energy Potential 

 

Here, one considers a regularized free energy potential, given by 
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( )
21

, , , , , , 1
2

e vp e a

b

r r
η

Ψ β β Ψ β β β
β η

+
( ∇ ) = ( ∇ ) + + −

� �
ε εε εε εε ε  (18) 

 

where aη  and bη  are penalty parameters and 
+
i  is denotes the Macauley bracket. 

 

Now, following the recommendation of Minak et al. (2007), it is more appropriate to use D instead of β as damage 

variable, since the definition of D is closer to the one usually adopted in the traditional works of continuum damage 

mechanics. Thus, replacing (1 )Dβ = −  in the above relations one derives the damage evolution equation, given by: 

 

( ) ( ) ,  if   0
(1 )   

                         0                           ,  if    > 0

th

i

vp vp i iD

ef ef D D

i

D

F
H e e H F F

D SD

F

λ
  

− ≤  
−=   




ɺ
ɺ  (19) 

 

in which 

 

( ) ( )i r reac

D D DF k div F Fβ= ∇ − +
�

 (20) 

 
2

2

( )

2 (1 )

vm
eq vr

D

R
F

E D

σ
=

−
 (21) 

 

2

1
( )

(1 )

reac a

D

b

F D
D

η

η

+
= − + −

−
 (22) 

 

where 
,  if  0

( )
   0,  if  0

D D
D

D

+ − ≤
− = 

>
, 

1
23

2

vm D D
eqσ

 
= ⋅ 
 

σ σσ σσ σσ σ  and ( ) ( )

2

2
1 3 1 2

3

H
v vm

eq

R
σ

ν ν
σ

 
 = + + −
 
 

. 

 

2.6. Analysis of the Cold Drawing Process 

 

When a ductile plastic material, like polypropylene or polyethylene, is submitted to a tensile load, its stress-strain 

diagram looks similar to that illustrated in Figure 1. The objective of this section is to improve the viscoplastic model in 

order to be capable of modeling the cold drawing process. 

 

 
Fig. 1 – Description of the cold drawing phenomenon 

 

In order to account for the cold drawing process one assume that  
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( ) ( ) ,  if   0
(1 ) ( )   

                         0                           ,  if    > 0

th

s

i
vp vp i iD

ef ef D Dvp

ef

i

D

F
H e e H F F

D S eD

F

η

λ
  

− ≤  
−=    




ɺ
ɺ  (23) 

 

with 

( )
2

1
( ) .

2s B

vp vp vp

ef o ef ef

s

S e S e eη
η

+ = + −
  

 (24) 

 

By summarizing the above equations, one may state the strong formulation of the problem, given by: Find ( , )Du  that 

solve: 

(i) Linear momentum equation 

 

( ) ( ), , 0div x t b x tρ+ =  
�� �

σσσσ  (25) 

 

where  

 

e(1 )D= − Dσ εσ εσ εσ ε ,      
e vp= +ε ε εε ε εε ε εε ε ε ,      

3

(1 ) 2 3

D
vp

vm

eq
D

λ µ

σ

 
= +  −  

I
ɺ ɶ

ɺ
σσσσ

εεεε ,    ( )R h r=  (26) 

 

( , , ; )
ln 1

vp
ef

f R D
e M

K∞

 
= − − 

 

�
ɺ

σσσσ
,           1

3
r

µ
λ

 
= + 
 

ɺɺ           and         (1 ) vp

ef
D eλ = −ɺ ɺ  (27) 

 

in which 

 

( ) ( ) ( ), , ; 1
3

yof R D q p R
µ

σ µ σ
 

= + − + + 
 

�  (28) 

 

with 

1
23

2

D D
q

 
= ⋅ 
 
ɶ ɶσ σσ σσ σσ σ , Hp σ= ɶ  and

(1 )D
=

−
ɶ

σσσσ
σσσσ . 

 

(ii) Damage Evolution Law 
 

( ) ( ) ,  if   0
(1 )   

                         0                             ,  if    > 0

D

s

i
vp vp i iD

ef ef D D

i

D

F
H e e H F F

D SD

F

η

λ
  

− ≤  
−=    




ɺ
ɺ  (29) 

 

in which, 

 

( ) ( )i r reac

D D DF kdiv D F F= ∇ + +
�

, 

2

2

( )

2 (1 )

vm
eq vr

D

R
F

E D

σ
=

−
 

2

1
( )

(1 )

reac a

D

b

F D
D

η

η

+
= − + −

−
, (30) 

and 

 

( )
2

1
( )

2s B

vp vp vp

ef o ef ef

s

S e S e eη
η

+ = + −
  

  (31) 

 

3. DISCRETIZATION OF THE PROBLEM 

 
3.1. Operator Split Algorithm 
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Here, in order to solve the local viscoplastic with damage constitutive equations one applies the operator split strategy, 

described by: 

 

(i) The trial elastic step problem, formulated as: Given the strain and damage histories, { ( ), ( )}t D tεεεε  ∈  
1

[ , ]
n n

t t
+

, find 

 

1

e trial

n+εεεε  and 
1

  

1 1 1( , , )
n

trial vp trial trial vp trial

n n n efr e
++ + +=ω εεεε , so that e trial =ɺ ɺε ε  and 0trial =ɺω . As a result, one derives 

 

1 1

triale c
n n n+ += −ε ε ε   and 1

trial
n n+ =ω ω . (32) 

 

Once 1

trial
e
n+ε  is determined, one computes 

1

1
13

trial
e trial

n

e
nH

e tr
+

+
 =   
εεεε , 

1
1 1 Ie trial

n

e D trial e trial
n n H

e
++ += −ε εε εε εε ε , 

( ) 1
1 1 2

e trial

n

trial E
n H

p e
ν +

+ −
=  and the 

trial elastic stresses ( )
1 1 11

trial

n

trial
H n nD pσ

+ + += −  and 11 12 (1 )
D trial e D trial

nn nG D ++ += −σ εσ εσ εσ ε , where 
11 1 n

D

n n H
σ

++ += + Iσ σσ σσ σσ σ . 

 

(ii) The viscoplastic return mapping step problem 

Here, by applying the fully implicit Euler method and performing some additional algebra, one derives the following 

coupled nonlinear problem, stated as: Given 
1 1

( , )
n n

Dε + + , determine 
1 1

( , , )
n n

p qλ + +∆ , that solves 

 

1 1 1 1

1 1 1

1

2 1 1 1 1

1

3 1 1 1 1

1

( , , , )
( , , ) ln 1 0

(1 )

( , , ) 0
3(1 2 ) (1 )

3
( , , ) 0.

(1 )

yo n n n n

n n yo

n

trial

n n n n

n

trial

n n n n

n

f p q R D
R p q M t

D K

E
R p q p p

D

G
R p q q q

D

λσ
λ σ

µ λ
λ

ν

λ
λ

+ + + +
+ +

+ ∞

+ + + +

+

+ + + +

+

∆  
∆ = + − ∆ =  

−  
 ∆

∆ = + − =
− −

 ∆
∆ = + − =

−

 (33) 

 

Once the set 1 1( , , )n np qλ + +∆  is computed, the Cauchy stress σ  may also de determined from 

 
1

 

1 1

1

3
1

(1 )

D D trial

n n

n

G

D

λ
−

+ +

+

 ∆
= + 

− 
σ σσ σσ σσ σ  and 

1 1 1(1 )
nH n nD pσ

+ + += −  (34) 

 
In addition, one can also determine 

 

1

1

1 1 1

3

(1 ) 2 (1 ) 3

D

vp vp n

n n

n n nD D q

λ µ+
+

+ + +

 ∆
= + + 

− − 
I

σσσσ
ε εε εε εε ε  (35) 

 

1 1
3

n nr r
µ

λ+

 
= + + ∆ 

 
 and 

1

1(1 )n n

vp vp

ef ef

n

e e
D

λ
+

+

∆
= +

−
. (36) 

 

in which, r is the the accumulated viscoplastic strain and vp

ef
e  is the effective viscoplastic strain. 

 

3.2. Incremental weak formulation of the problem 

 

Once defined the constitutive model, one may solve the global equilibrium problem by employing an incremental 

procedure. The incremental formulation between nt  and 1nt +  considers that 

 

1n n n
u u u

+
= + ∆

� � �
 and 

1n n n
D D D

+
= + ∆  (37) 

 

so that, at time 1nt + , the weak formulation of the problem may be stated as: Determine ( )1 1,n nu D+ + ∈
�

K , which solves 

 

1 1 1 1 1 1( , ; ) ( ) 0,   

t

n n n n n uF u D w w d b wd t wdA wε ρ+ + + + +

Ω Ω Γ

= ⋅ Ω − ⋅ Ω − ⋅ = ∀ ∈∫ ∫ ∫
� �� � � � � �

σσσσ V  (38) 

and 
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1

1 1

2 1 1 1 1 1

1

( , ; ) ( )

                        ( ) 0,   

sn

n n

n n n n n n

r reac

D D n D

F u D S D D d k D d

F F d

ηγ γ φ γ

φ γ γ

+

+ +

+ + + + +

Ω Ω

+

Ω

= − Ω + ∇ ⋅ ∇ Ω

− + Ω = ∀ ∈

∫ ∫

∫

� ��

V

 (39) 

in which 

 

1 11

1

( ) ( )
(1 ) n th n

vp vp i

n ef ef D

n

H e e H F
D

λ
φ

+ ++

+

∆
= −

−
 (40) 

 

Since the above problem is non-linear, one applies Newton’s method leading to the solution of a sequence of linearized 

problems. 

 
3.3. Linearization procedure 

 

Let 1
k
nu +

�
 and 1nD + be the estimate solution of (38-9) at the k-th iteration and consider that 

 

1 at 0k
n nu u k+ = =
� �

 and 1 at 0k
n nD D k+ = = . (41) 

 

For the k-th iteration of the solution procedure, one has 

 
1
1 1 1

k k k
n n nu u u+

+ + += + ∆
� � �

 and 1
1 1 1

k k k
n n nD D D+

+ + += + ∆ . (42) 

 

The determination of the increments ( )1 1,k k
n nu D+ +∆ ∆
�

 are obtained by imposing that 

 

1 1 1 1 1

2 1 1 1 1

( , ; ) 0,   

( , ; ) 0,   .

k k k k

n n n n u

k k k k

n n n n D

F u u D D w w

F u u D D γ γ

+ + + +

+ + + +

 + ∆ + ∆ = ∀ ∈




+ ∆ + ∆ = ∀ ∈

� � � �

� �

V

V

 (43) 

 

Considering ( )1F �  and ( )2F �  as being smooth and expanding them in a Taylor series, one derives, for a first order 

approximation, 

 

1 1 1 1 1 1 1 1 1 1

2 1 1 2 1 1 1 2 1 1

( , ; ) ( , ; ) ( , ; )

( , ; ) ( , ; ) ( , ; )

k k k k k k k

uu n n ud n n n n n

k k k k k k k

du n n dd n n n n n

F u D w F u D w u F u D w

F u D F u D D F u Dγ γ γ
+ + + + + + +

+ + + + + + +

     ∂ ∂ ∆   
= −    

∂ ∂ ∆        

� � � � � � �

� � � . (44) 

 

where 

 

( ) ( )1 1 1 1 1 1 1 1
0

, ; , ;k k k k k k
uu n n n n n n

d
F u D w u F u u D w

d ε
ε

ε
+ + + + + +

=

  ∂ ∆ = + ∆   
� � � � � �

 (45) 

( ) ( )1 1 1 1 1 1 1 1
0

, ; , ;k k k k k k
ud n n n n n n

d
F u D w D F u D D w

d ε
ε

ε
+ + + + + +

=

  ∂ ∆ = + ∆   
� � � �

 

( ) ( )2 1 1 1 2 1 1 1
0

, ; , ;k k k k k k
du n n n n n n

d
F u D u F u u D

d ε
γ ε γ

ε
+ + + + + +

=

  ∂ ∆ = + ∆   
� � � �

 

( ) ( )2 1 1 1 2 1 1 1
0

, ; , ;
k k k k k k

dd n n n n n n

d
F u D D F u D D

d ε
γ ε γ

ε
+ + + + + +

=

  ∂ ∆ = + ∆   
� �

 

 

4. NUMERICAL EXAMPLES 

 

The discretization of the problem is obtained by the application of the Galerkin Finite Element method using a Tri 6 
element. In order to verify the adequacy of the model and the proposed implicit algorithm, one solves a set of simple 

problems. The parameters used in these examples are given by: M= 12.0 s− , K∞ =31.6 MPa, aη = 51.0 10−× , 
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bη = 91.0 10−× , oS =0.15 MPa, sη = 91.0 10−× , k = 22.0 MPa mm⋅ , 
vp

efth
e =0.75, E=1.54 GPa, yo

σ =31.6MPa, ν =0.36 

and ρ = 29.02 10×  kg/m
3
. The hardening parameters are given in “Table 1”. 

 

Table 1. Hardening curve data points. 

h(r) (MPa) 0.0 1.0 2.0 2.5 

r (mm/mm) 0.0 0.2 0.4 2.0 

 
4.1. Uniaxial Tensile Test Simulation 

 

Here, one considers an uniaxial tension test, where the specimen is subjected to a prescribed displacement history, 

applied by a linear ramp function, ranging from zero to the maximum value of 60 mm
z

u = . The problem is considered 

to be axisymmetric and the specimen has a radius of 30 mm and a height of 100 mm, as depicted in Figure 2. 

 

 

Fig. 2 – Definition of the problem 

 

Figure 3 illustrates the comparison between both the experimental and numerical stress-strain diagrams for the tensile 

test. In order to reduce the processing time, one has considered the total time of the analysis equal to 60 seconds, which 

has been a sufficient time to reach the cold drawing region. In addition, one has also considered 1000 load steps and a 

global convergence tolerance of 
510−

. The hardening curve, h(r), has been obtained by interpolation, using spline 

functions and the given data in Erro! Fonte de referência não encontrada.. 

 

 

Fig. 3. - Stress-strain diagram for the tensile simulation. 

 

Providing that several material parameters have been taken from literature, one considers that the error between 

experimental data and numerical prediction, observed in the softening region of Figure 3 is encouraging.  
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4.2. Plastic pulley component 

 

Here, one considers a plastic pulley component, as depicted in Figure 4. The problem is considered to be subjected 

to aaxisymmetric condition. The component is subjected to a prescribed displacement applied by a linear ramp with a 

maximum displacement of 3.5u mm= −= −= −= − . 

 

 
Fig. 4 – Plastic pulley mesh and boundary conditions 

 

This analysis considered 10000 incremental displacement steps and global tolerance for convergenc of 
510−

. Figure 

5Erro! Fonte de referência não encontrada. illustrates the distribution of the norm of the displacement at the end of 

the analysis, in millimeters 

 

 
 

Fig. 5 - Displacement field at the end of the analysis, in millimiters 

 

Figure 6 illustrates the distribution of equivalent visco plastic strain at the end of the analysis. 

 

 
Fig. 6 – Distribution of equivalent viscoplastic strain, in mm/mm 
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The distribution of the damage variable at the end of the analysis, i.e., for a prescribed displacement of 3.5 mmu = − , is 

depicted in Figure 7. 

 

 
 

Fig. 7 - Distribution of damage 
 

One can observe that the damaged region looks much like a “X” letter, in which each of its leg is inclined about 45° 

with respect to the radial direction. This peculiarity strongly suggests the formation of shear bands, which is a 

characteristic failure mode of plastic components under compressive loads. Additionally, one also observes that the 

maximum value for the effective viscoplastic strain occurs at the intersection of the shear bands. 
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