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Abstract. The transport of solid particles entrained by a fluid flow is frequently found in nature and in industrial
environments. If the shear stresses exerted by the fluid on the granular bed are bounded to some limits, a mobile
granular layer takes place in which the grains stay in contact with the fixed bed, known as bed-load. When the fluid is
a liquid, the thickness of this mobile layer is a few grain diameters. Under these conditions, an initially flat granular
bed may be unstable, giving rise to ripples and dunes. These forms can be observed in nature, as for instance the sand
dunes seen in deserts, but also in industrial applications, such as the dunes appearing in petroleum pipelines
conveying sand. This communication presents a mathematical model for the transport of grains as bed-load by a
turbulent boundary-layer, when the fluid is a liquid. The model is simple, but able to capture the pertinent physics
involved, such as the growing of instabilities on the bed surface. Some simulations are presented and confronted to the
linear stability analysis of granular beds under turbulent boundary-layers.
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1. INTRODUCTION

The transport of solid particles entrained by adflilow is frequently found in nature and in induystlt is present,
for example, in the erosion of river banks, in thigplacement of desert dunes and in hydrocarboglipgs conveying
sand. When shear stresses exerted by the fluiddtothe granular bed are able to move some grairisgre relatively
small compared to their weight, the flow is noteatul transport grains as a suspension. Insteadbderayer of grains
known as bed-load takes place in which the graiengia contact with the fixed part of the granuted. The thickness
of this mobile layer is a few grain diameters (Balgn1941; Raudkivi, 1976).

An initially flat granular bed may become unstahiel give rise to bedforms when submitted to a fflad. These
forms, initially two-dimensional, may grow and gesie patterns such as ripples or dunes. In nasomae examples
affecting human activities are the aeolian andattpeatic dunes. The aquatic ripples and dunes odden the bed of
some rivers create a supplementary friction betwherbed and the water, affecting the water depthteeing related
to flood problems. In cases where their size isganable to the water depth, water flows can expamintiocal depth
variations, seriously affecting navigation (Engeluand Fredsoe, 1982). In industry, examples arelynosated to
closed-conduit flows conveying grains, such as bgdrbon pipelines conveying sand. In such casesp#uforms
generate supplementary pressure loss, but alssyseeand flow rate transients (Kuru et al., 199anklin, 2008).

The stability of a granular bed is given by thealnake between the local erosion and depositionahgr If there is
erosion at the crests of the granular bed, the iadpl of initial bed undulations decreases andotbe is stable. On the
contrary, the bed is unstable. If there is neitvesion nor deposition at the crests, there israksiability. The regions
of erosion and deposition can be found from thesncamservation of grains. The mass conservatiotigsphat there
is erosion in regions where the gradient of thevftate of grains is positive and deposition wheiie hegative, so that
the phase lag between the flow rate of grains hadéedform is a stability criterion. If the maximwhthe flow rate of
grains is upstream a crest, there must be depositithe crest and the bed is unstable, othenhisdeéd is stable. To
answer the stability question, the mechanisms ioigat phase lag between the flow rate of grainsthadshape of the
granular bed need to be known.

In order to understand the problem, many worksherstability of granular beds sheared by a fluideneade in the
last decades (Kennedy, 1963; Reynolds, 1964; Endelli970; Richards, 1980; Elbelrhiti et al., 20@audin and
Andreotti, 2006; for instance). A remarkable dgstiwn of this approach can be found in Engelund Rredisoe (1982).

In a recent article (Franklin, 2010), the mechasigrhthis instability were explained and a linetbdity analysis
was presented, in the specific case of granulas bhdared by turbulent boundary-layers of liguwdthout free surface
effects. It was seen that the basic mechanismshage: the fluid flow perturbation by the shapettad bed, which is
known to be the unstable mechanism (Jackson €t95; Hunt et al., 1988; Weng et al., 1991), #laxation effects
related to the transport of grains and the graeftgcts, which are the stable mechanisms (ValandeLanglois (2005)
and Charru (2006) in the case of viscous flowsnKia (2010) in the case of turbulent flows). Theehr stability
analysis of Franklin (2010) showed that the lerggthle of the initial bedforms varies with both grains diameter and
the fluid flow conditions.

Franklin (2011) presented a nonlinear stabilitylgsia in the same scope of Franklin (2010). Theraggh used
was the weakly nonlinear analysis (Landau and litif¢cl1 994; Schmid and Henningson, 2001; Drazin Redtl, 2004;
Charru, 2007), useful whenever a dominant modebeaproved to exist. This means that the modes atisgnwith



Proceedings of COBEM 2011 21* Brazilian Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

this dominant one will grow much faster than thbeos, which can be neglected. The analysis is thade on a
bounded number of modes. Franklin (2011) showetatfter the initial exponential growth (linear pbasthe granular
bed instabilities saturate, i.e., they attenuaté growth rate and maintain the same wavelength.

In both articles, Franklin (2010) and Franklin (2p1the results of the analyses were compared toeso
experimental data concerning ripples in closed-odniows (which is a case where the free surfexa@absent). In
particular, the dependence of the bedform waveleongtthe fluid flow conditions and the saturatidntiee bedform
amplitude were confirmed by experimental results.

Bed-load numerical simulations are another appraadhe effort to understand the instabilities oarmlar beds.
The main problem is then the modeling of the granuaiedia: it is a discrete media for which a lagian description
is not practical given the large number of discedaments. To solve this problem, it is usual t@ley semi-empirical
relations for the bed-load flow rate, such as tfi@agnold (1941) and that of Meyer-Peter and Marg1948).

Amongst the numerical models for the case of t@hiuboundary-layers, there are Kroy et al. (200R&)y et al.
(2002b) and Hersen (2004). These models were alteieed for turbulent gas flows (aeolian case), ambased on
four basic equations: (i) the shear stress caugabebfluid flow on the bed surface; (ii) a semisarncal equation for
the bed-load; (iii) an equation accounting for thaxation between the fluid flow and the grandlaw; and (iv) the
mass conservation of the grains.

In their model, because the relations for bed-lasgbased on the shear stress on the bed, Krdy(@0a82a) and
Kroy et al. (2002b) proposed the direct use of guaion for the shear stress on the bed, insteadraputing the fluid
flow in the entire domain. The shear stress caumedhe fluid flow on the bed can be obtained bytiéations
Methods, such as, for example, Jackson et al. (18t et al. (1988) and Weng et al. (1991) fa tlase of turbulent
boundary-layers. Kroy et al. (2002a) and Kroy et(2002b) simplified the results of Jackson ef{(#75), Hunt et al.
(1988) and Weng et al. (1991) and obtained an sspe containing only the dominant physical effeotsthe
perturbation. Concerning the bed-load flow rateytBmployed an equation derived from the aeoliahlbad model of
Sauermann et al. (2001), whose constants weretadjér®m experimental data (so that the model isi-gmpirical).
The employed equation accounting for the relaxabetween granular and fluid flow rates was alsonfi®auermann et
al. (2001). The model was then implemented in aarigal code and some simulations were performeanHiifferent
initial conditions, the model was able to show thlution from the initial bump to dunes, includitige three-
dimensional crescent-shape dunes (barchan dunt#® oase of three-dimensional simulations.

The model presented in Hersen (2004) is basedeosaime equations of Kroy et al. (2002a) and Kral.€2002b).
The main difference in Hersen (2004) is that theufoof the performed simulations is the understapdif the
formation of barchan dunes.

This communication presents a mathematical modethie bed-load transport of grains by a turbulemirlary-
layer when the fluid is a liquid. The model is kegstsimple as possible, but it is able to captueepertinent physics
involved, such as the growing of instabilities be bed surface. Different from Kroy et al. (2002&)y et al. (2002b)
and Hersen (2004), that were interested in theutiool of bed-forms towards a stationary solutionns), the present
model focus on the very early stages of the bet@ligies. Another difference is that the modehgplied to liquids,
for which some bed-load characteristics are diffefeom the aeolian case. Its implementation iruenerical code is
discussed and some simulations are presented afrded to the linear stability analysis of FrankR010).

The next section discusses the involved physicspaadents the equations composing the model. Tikeviag
sections describe the numerical implementatiorhefrnodel in a computational code, and the mainltsefwm the
numerical simulations. They are followed by thealasion section.

2. MATHEMATICAL MODELING OF THE BED-LOAD TRANSPORT

The present model follows the lines of Kroy et(2D02a), Kroy et al. (2002b) and Hersen (2004), iaradso based
on the following four equations: (i) the shear s¢reaused by the fluid flow on the bed surfacg;a(isemi-empirical
equation for the bed-load transport; (iii) an egurataccounting for the relaxation between the flflmv and the
granular flow; and (iv) the mass conservation & ¢ghanular matter. However, those equations ar&emdodifferently
here, mainly with respect to relaxation effectsd d@a the inclusion of gravity effects. Differenton Kroy et al.
(2002a), Kroy et al. (2002b) and Hersen (2004) pilessent model is applicable to turbulent liqumafs, and is focused
in the early stages of the bed instabilities.

As the interest here is in the first stages oftibe instabilities, the model is two-dimensionalisTik justified by the
Squire’s Theorem, which states that the most uletaindes in parallel flows are two-dimensional (®&h and
Henningson, 2001; Drazin and Reid, 2004; Charr®620The physical concepts and the equations eraglday the
model are presented next.

2.1. Shear stresson the bed

The perturbation of a turbulent boundary-layer byilawith small aspect ratio was analytically faluby Jackson
and Hunt (1975) and by Hunt et al. (1988). Thesutes were later applied to forms with higher aspato by Weng et
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al. (1991). Jackson and Hunt (1975), Hunt et #88) and Weng et al. (1991) found that the perdidieear stress is
shifted upstream the dune crest. Kroy et al. (2D@2d Kroy et al. (2002b) simplified the resultsvdéng et al. (1991)
and obtained an expression containing only the dantiphysical effects of this perturbation, makitear the reasons
for this upstream shift. For a two-dimensional hilth a heighth(x), a surface rugosity, and a lengtl2L between the
half-heights (total length 4L), they showed that the perturbation of the lordjital shear stress, in dimensionless form
and in the Fourier space, is

7, = AF{h}(K| +iBk) (1)

wherek = 271 is the wave-number (is the wavelength), is the imaginary number, the subsciigs related to the
Fourier space, F is the Fourier transform operatot,is the longitudinal direction and and B are considered as
constants, as they vary with the logarithmi_éf,. Equation (1) was obtained fél/L < 0.05, but Carruthers and Hunt
(1990) showed that reasonable results are obtaiedh Eq. (1) is applied for slopes upH4. = 0.3. The fluid flow
over the bed can be written as a basic flow, unpeed, plus a flow perturbation. The shear stresthe surface of the
bed can then be written, in the real space, as

r=r,(1+F 7} (2)

wherer, is the shear stress caused by the basic flowftan laed (basic state) ari' is the inverse Fourier operator.

The shear stress caused by the fluid flow on tliesheface can be obtained directly from Eqgs. (1) @). The great
advantage of this method is that there is no needinpute the fluid flow in regions far from thefage, as it would be
necessary with, for example, a RANS (Reynolds Agerdavier-Stokes) method.

2.2. Flow rate of grainsin the basic state

In a steady state regime, and without spatial tiarig, the fluid flow and the flow rate of graingedn equilibrium
(basic state). The equilibrium flow rate of graissknown as “saturated flow rate of grains”. Howewgiven the
discrete nature of granular matter, there are ndlififgrent formulations (and a lack of consensus)tfe flow rate of
grains. The existing formulas are semi-empiricat] the one employed here is that of Meyer-PeteNueller (1948)

el X
S-1)gd?

wheregy; is the volumetric flow rate of grains by unit ofdth, Sis the ratio between the grains specific mgsand
the fluid specific masg, g is the acceleration of gravitgl,is the mean grain diametéris the Shields parameter

d (4)

8=
(pp - p)ad
andé, is the threshold Shields parameter (Buffington Etwhtgomery, 1997).

2.3. Relaxation between the flow rate of grainsand thefluid flow rate

In the case of a fluid flow over an undulated ktbd, shear stress caused by the fluid on the badusction of the
position. The flow rate of grains will lag sometdisce (or time) with respect to the fluid flow, bgithen a stable
mechanism. This distance is a characteristic lengthally called “saturation lengthlg. A simplified expression
taking into account this relaxation effect can beamed from the erosion-deposition model of Chatral. (2004)

O« —Q (5)

0.0=
«4 L

sat

Kroy et al. (2002a), Kroy et al. (2002b) and Her¢2604) considered that the saturation length mamertial
origin, and is proportional to the traveling distanof individual grains, given byq.=d pp/p. According to this
expressionl g is an inertial length-scale obtained when the g the granular material is many times largert
the density of the fluidp, >>p. It is then pertinent when the fluid is a gas. Whige fluid is a liquid, howeverp,~p
and it was argued by Charru (2006) and by Fran@dii0) that this length-scale can no longer beiagpinstead, a
relaxation length based on the deposition of aividdal grain must be usetly
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Lsa! = Csat I-d = Csatd(u% ) (6)
S

whereu, is the shear velocity of the basic flow, defingd b= puZ , Us is the grain settling velocity anQy, is an
adjustable constant. For a large range of setfilegnolds numbersRes = pU<d/u), the settling velocitys may be

evaluated as

i) ”

whereC; is the drag coefficient, that may be evaluatedheySchiller-Neuman correlation wh&as < 800 (Clift et al.,
1978).

2.4. Mass conservation of grains

The two-dimensional mass conservation appliedegtiains can be written as
dh+0,9=0 (8)
where the porosity of the granular material wasttedifor simplicity because it is constant in thisblem.

2.5. Gravity effects

As discussed in Franklin (2010), gravity weakeres tilansport of grains over positive slopes (upstréae crests)
and facilitates it over negative slopes (downstreéaencrests), being inversely proportional to ttepe of the bed. It
can then be incorporated in the constof the shear stress perturbation (Eq. 1).

2.6. Modd structure

Computations from the model are relatively fast aady. First, there is no need to compute the floid in the
entire domain because the model needs only the stress on the bed, whose analytical solutionsainétl by the
Perturbation Methods are known. Second, two offtkie basic equations have analytical solutionghsd they can be
computed directly in sequence (they are uncouplEid. other two equations are first order and untmghey may
then be numerically computed with simple schemés domputations may be done directly and thereisaed for
iterations. Given an upstream condition (the bownd@ndition, which is in fact the basic state) aam initial bed
(initial condition), the solution scheme (in twasgénsions) is a loop containing the following steps:

(i) Computation of the shear strege) on the bed employing Eqgs. (1) and (2);

(i) Computation of the flow rate of grains in the bastteq.(X) by Eq. (3);

(iii) Computation of the actual flow rate of grag(g) by Eq. (5);

(iv) Computation of the bel(x) at the new time step by Eq.(8) (this is an intégnain time);

These steps must be done until the required fimed or total number of iterations) is achieved.

3.NUMERICAL IMPLEMENTATION

The model was implemented in a numerical codep¥otig the structure given in sub-section 2.6. Theec
structure is given below. An explanation of soméhef numerical steps follows.
1. Entry:
a. Fluid and grains properties
b. Boundary conditionu()
c. Initial condition (initialh(x))
d. Numerical parameters
e. Computation oty by Eq. (6)
2. Loop (until the desired number of iterations, ar thtal time, is achieved):
a. Fourier transform ofi(x)
Computation off, by Eq. (1)

Inverse Fourier transform cﬁ‘k

Computation ot by Eq.(2)
Computation ofj(X) by Eqg. (3);

oo o o
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f.  Computation ofj(x) by the numerical solution of Eq. (5);
g. Computation of the new values ) by the numerical solution of Eq. (8)
h. Storage of the data at the desired time instants
3. Post-processing
a. Computation of the bedform growth rate
b. Computation of the bedform celerity
c. Plot of the desired curves
A brief explanation of some of the numerical stispgiven below.
* Fluid and grain properties (1.a): these concerrsgieific masses of the liquid and of the graihs,dynamic
viscosity of the liquid, the mean diameter of thaigs and the threshold velocity for the grains iiwddion.
* Boundary condition (1.b): is the condition far upaim the initial bedform, corresponding then to blasic
state because the flow in this region is unpertrb@ the code, the entry is the unperturbed shear

velocityuy,, = /TO/p .

» Initial condition (1.c): it is the initial form ahe bedh(x).

* Numerical parameters (1.d): they correspond torntimerical constants necessary to the code funaotjoni
They are: the spatial resolutialx, the time stepft, the total number of iteratiomé and the numerical scheme
to be employed in the numerical solution of Eq. (8)

e Computation of_ (1.e):Ls is evaluated by Eq. (6) employing the unperturiieear velocity.

« Computation ofi(x) (2.a to 2.d): it is divided in four steps. FiratFast Fourier Transform (FFT) operation is
made orh. Then, 7, is evaluated by Eq. (1) and an Inverse Fast Folirensform (IFFT) operation is made

on 7, . Finally, z(x) is evaluated by Eq. (2).

» Computation ofi(X) (2.e): the Shields parameter is evaluated by Hoarfdgs(X) is evaluated by Eqg. (3).

» Computation ofg(x) (2.f): q(x) is evaluated by the numerical integration of Ef). for this integration an
Upwind scheme is employed, with the boundary camaij(x=0) = gs(x=0).

» Computation oh(x) for the new time step (2.d)(x) is evaluated by the numerical solution of Eq. £8)q(x)
andqgg(X) are already known, an explicit numerical scheme lia simply employed to determihéx) in the
new time step. In the code, one can choose betfmenschemes that were implemented: LAX + FTCS,
Upwind + LAX, Upwind + First Order Euler, FTCS +r&i Order Euler. Due to the very small phase shifts
betweenqg(x) andh(x) in some cases, the First Order Euler schemes bettier than the LAX schemes, as
explained in what follows.

» Storage of the data (2.i): at the desired timesstgg) andh(x) are stored.

. Computation of the bedform growth rate and of thdform celerity (3.a and 3.b): the growth rate
and the bedform celerity are evaluated from the transversal and the lodigitl displacement velocities of
the bedform crest, respectively. Those velocitiesewvaluated by fitting the displacements as lirfeactions
of the time.

For all the simulations presented here the inttedform was a Gaussian Function

(x-p)

hx)=He 2% ©)

whereH is the initial amplitude (crest), is the mean ang, is the standard deviation. This form has the athgmof

tending to zero when the domain is large enouglaning that the basic state is expected to exisheroundaries of
the domain. Another advantage is that it can bi#yeadjusted to different sizes, positions and aspations by varying
H, sy andu. In order to be coherent with Jackson and Hun7%)19Hunt et al. (1988) and Weng et al. (1991)s it
considered here that4s, so that the total length is approximatésy.

The simulations presented here employed the schfmeénd + First Order Euler for the numerical soduiof Eq.
(8), which gave better results. Given the smallsghshifts betweeq(x) andh(x) in some caseshe schemes based on
LAX become more dependent on the spatial resolutiecause they employ a spatial average on the gingcéme
steps. This phase shift is the responsible fostakility or the instability of the bedform (Fraitk|2010). The use of an
explicit scheme for the numerical solution of E§) (neans that the Courant condition must be vekifiehis was
assured for all the simulations.

4. MAIN RESULTS
Simulations were performed employing the numerazale described in section 3, and the preliminasylts are

presented here. For these simulations, the asp#otaf the initial bedform was fixed, and the ghealocity was
varied. Gravity (slope) effects and grains diamaternot discussed in this communication. The bredfvolution was
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then computed and its growth rate and celerity veeeduated. Table 1 presents a summary of the patameters and
of the main results.

Figure 1 shows three examples of bedform developpredlicted by the numerical code. The initial fopghown in
dashed line (blue) was a Gaussian function gjth 0.1m and aspect ratibl/(4sy) = 0.1. For the simulation presented
in Fig. 1, the total number of iterations Wil with a time stepit = 10°s, corresponding then to a total timelsf The
total domain in the direction was2m and it was discretized in intervals 8k = 10°m. The saturation adjustable
constant isCy=1. Figure 1l.a corresponds teg = 0.04 nvs, Fig 1.b corresponds to, = 0.08 m/s and Fig. 1.c
corresponds to-o = 0.16 nvs.

0.08 0.08 0.08
oost (@) oosf (b)
goosf E004 g
= c =
0.02} 0.02
0 0
06 08 1 12 06 08 1 12 0% 08 1 12
X (m) x (m) x(m)

Figure 1. Evolution of an initial gaussian bedfomith s; = 0.1m and aspect ratibl/(4sy) = 0.1. The dashed line is
the initial form and the continuous lines corresphém the bedform at posterior times. The total thorethis simulation
wasl s. The saturation adjustable constanCig=1. (a) corresponds ta., = 0.04 mV/s, (b) corresponds ta.q = 0.08
m/s and (c) corresponds tey = 0.16 nvs.

From Figs. 1.b and 1.c it is clear that the sinadatases are unstable, with the bedform growinthasime
increases, while the form is displaced to the righbwing a positive celerity. The same occursiin E.a, however the
time-scale is too large (slow growth rate) to beaclin the figure. The slope of the upwind faces{tgam the crest)
decreases, while the slope of the lee face (doeesirthe crest) increases. This indicates that ritiali gaussian
bedform tends to a transverse ripple form, which dma upstream face of small slope, and a high dtapéace (in fact
an avalanche slope). This is exactly what is vedigxperimentally (Franklin, 2010; Franklin, 20149, that the model
is able to qualitatively predict the bedform evaatin the early stages of the instability (or #iaf). Also from Fig. 1,
it is clear that the growth rate and the celerftyhe bedforms increase with the shear velocitthefbasic flow.

Table 1. Bedform celeritg and growth rate for different values of the saturation const@gt and differnt shear
velocities of the basic flows,. 4x is the spatial intervals (resolutionf, is the time step\ is the total number of
iterations anc is the longitudinal length of the computation déma, = 0.1m and aspect ratibl/(4sy) = 0.1.

Ax (m) At (s) N X (m) Csat  |U*0(m/s)| C(m/s) o (1/s)

1E-03 1E-05 1E+05 2 1 0.04 0.0016 0.00068
1E-03 1E-05 1E+05 2 1 0.08 0.0130 0.00540
1E-03 1E-05 1E+05 2 1 0.16 0.1155 0.04210
1E-03 1E-05 1E+05 2 10 0.04 0.0017 0.00059
1E-03 1E-05 1E+05 2 10 0.08 0.0139 0.00450
1E-03 1E-05 1E+05 2 10 0.16 0.1134 0.02800
1E-03 1E-05 1E+05 2 25 0.04 0.0019 0.00051
1E-03 1E-05 1E+05 2 25 0.08 0.0138 0.00300
1E-03 1E-05 1E+05 2 25 0.16 0.1021 0.00880
1E-03 1E-05 1E+05 2 50 0.04 0.0019 0.00037
1E-03 1E-05 1E+05 2 50 0.08 0.0126 0.00110
1E-03 1E-05 1E+05 2 50 0.16 0.0805 -0.00840

In order to obtain more quantitative results tocbenpared to analytical stability analyses, the ghomate and the
celerity of the bedform were computed. For the @nésimulations, the growth ratewas evaluated as the transversal
displacement velocity of the crest divided by tla¢alt length, and the bedform celeritywas evaluated as the
longitudinal displacement velocity of the creste$a results are summarized in Tab. 1.

Table 1 shows the bedform celerityand the growth rate obtained in simulations where the adjustable corist
Cs: and the shear velocity of the basic flaw were varied, but an initial wavelength was imposed

From Tab.1, whelCy=1 or C,=10, variations of the shear velocity of the basiomMlo., by a factorm implies
variations in both the bedform celerityand in the growth rate by a factom®. The variation oft and ofs asu.;®
indicates that ande vary directly with the saturated flow rate of grgin the basic state (Franklin, 2010): the efédct
the saturation lengthg, is too weak to cause effects in the celerity othHa growth rate. In fact, as discussed in
Franklin (2010), the modulation of the length-scalethe celerity and of the growth rate dependttun phase shift
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between the fluid flow and the bed morphology (ahkt effect) and on the phase shift between theldeatiflow rate
and the fluid flow (stable effect). Whehy,=1 or C=10, the phase shift between the bed-load flow ratktha fluid
flow (stable effect), although it exists, is tooah{many times smaller than the phase shift betwtbe fluid flow and
the bed morphology) to affectands, so that they vary only with the saturated floveraf grains (in the basic state).

If the value ofC« is increased t&€=25 or C4=50, the phase shift between the bed-load flow ratethe fluid
flow (stable effect) is increased and both the ritgleand the growth rate show variations that aredr thanu.’,
indicating that the relaxation effects are preseat.the cas€=50 andu.o = 0.16 nVs, the growth rates are negative,
indicating strong relaxation effects and stabilfigure 2 shows the curves i) (dotted blue line)gy(x) (dashed line)
andgy(X) (continuous red line) normalized by their maxirrathis figure,q,=q. Figure 2.a corresponds te, = 0.04
nv/s and Cy=1, Fig 2.b corresponds tog = 0.04 nV/s and C=25 and Fig. 2.c corresponds te, = 0.16 m/s and
Cs=50. All the other parameters are the same as inlFig.

0st (@)

<
o

e
~

h/hmax ’ qalqs max qb/qb max

s Aol s O
< <
~ )

h/hmax qslqsmax qb/quax
o o
S [}

X (m) ) X (m) . x(m)

Figure 2. Curves di(x) (dotted blue line)gs(x) (dashed line) and,(x) (continuous red line) normalized by their
maxima. In this figureg,=q. (a) corresponds e, = 0.04 m/'sandCg=1, (b) corresponds ta., = 0.04 n/sand
Cs=25 and (c) corresponds tey = 0.16 m/s andCg="50.

From Fig.2a, it is clear that the phase shift betwp=q andqs; is neglectful whemkg = 0.04 nVsandCg=1: it is
many times smaller than the phase shift betwgge(in phase with the fluid flow) and the bed morpwl. This
explains the absence of effects related to thexatitan of the bed-load in the cases wh€gg=1. On the other hand,
Figs. 2.b shows that the phase shift betwggeandqg, is noticeable when., = 0.04 m/s andCg=25, so that the effects
of relaxation are expected to exist. Finally, FAg: shows that a strong phase shift is producesldesty, andqs; when
U = 0.16 m/s and C,=50. This phase shift is so large that the maximum,ff) occurs downstream the crest of the
bedform, and the bed tends to flatten: the grarhédris stable (Franklin, 2010).

Figure 3 shows the bedform development predictethbyhumerical code whefw,=50. The initial form, shown in
dashed line (blue) was a Gaussian function gjth 0.1m and aspect ratibl/(4sy) = 0.1. Figure 3.a corresponds tie,
= 0.04 m/s, Fig 3.b corresponds tey = 0.08 Vs, Fig. 3.c corresponds te, = 0.16 nVs and all the other parameters are
the same as in Fig. 1.

From Fig. 3b we observe that, due to the increaskedcation effect (increased phase shift betwgemdqy) the
growth rate is smaller whe®,=50 in comparison witfCy=1 (Fig. 1.b). From Fig. 3.c, the relaxation effeate even
larger, being stronger than the unstable mechaarsinbeing responsible for the stabilization of lbleel. As the phase
shift betweeng and gy varies with the shear velocity of the basic fldiq( 6), the combination., = 0.16 m/s and
C«=50 induces a shift betweeamand the bed morphology downstream to the creshebed, as shown in Fig. 2.c.
This corresponds to a stable situation. The iningasf the relaxation effect also occurs in Figa,however the time-
scale is too large (slow growth rate) to be cleahe figure.
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Figure 3. Evolution of an initial gaussian bedfomith s; = 0.1m and aspect ratibl/(4sy) = 0.1. The dashed line is
the initial form and the continuous lines corresphém the bedform at posterior times. The total thorethis simulation
was1 s. The saturation adjustable constan€ig=50. (a) corresponds ta., = 0.04 nVs, (b) corresponds to., = 0.08
m/s and (c) corresponds te, = 0.16 nvs.
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It is important to comment here about the appadéferences between the results of the presentadlations and
the stability analysis of Franklin (2010). In Fréink(2010), a stability analysis was made on a icmim spectrum of
modes, and the most unstable one (most amplifiedtyrrate) was found for a given wavelength. Prgoiis of the
variations of the growth rate and of the celeritgrevthen made for this specific wavelength. Als@nklin (2010)
showed the existence of a cut-off wavelength, beldich the bed is always stable.

In the present work, the initial bedform is impos&sl an initial condition in the simulations andynfr that, its
evolution is computed in the early stages of trstaipility (or stability). In this case, for an iait lengthL = 4 54 =
0.4m, values of the adjustable const&@t=1 or C=10 are too small for the phase shift between thelbad-flow
rate and the fluid flow to influence the growtherand the celerity. To find the growth rate anddbkerity variations
predicted by the stability analysis of Franklin 189, it is necessary to increase the valueSQf Other way to obtain
these variations would be to change the lengtheirtitial bedform. In other words, the numericadle, different from
the stability analysis, does not select the mostalile mode. Comparisons between the code andatbiditg analysis
can be made by computing numerically the evolutbthe bedform when employing the most unstable enasl the
initial bedform.

The presented numerical code is expected to gsteein accordance with Franklin (2010) if thetiadi bedform
correspond to the wavelength of the most unstaloléemAlso, by varying the length of the initial lf@an, the cut-off
wavelength shall appear in the simulations ashibliw which the growth rate is negative. Simulasiof this kind are
left for a future work.

5. CONCLUSION

This communication presented a mathematical mantehe bed-load transport by a turbulent boundayei, when
the fluid is a liquid. The model was kept as simggepossible, and is valid whenever the aspea odtihe initial form
is less tha®.3. The model was implemented in a numerical codesanae simulations were presented.

The numerical simulations showed that the modetuwrap the pertinent physics involved, such as tievigng of
instabilities on the bed surface. Given an iniiaussian bedform, of low aspect ratio, the simutetishowed its
increase, tending to a ripple form (as observeathinre and in experiments), or its decrease, tgrdia flat bed.

The numerical results were confronted to the stglihieory of Franklin (2010), in the case of véinas of the fluid
flow (shear velocity) of the basic state. The corgmns were not straight because the stabilityysmalwas done in a
continuum spectrum of modes, predicting growthgaad celerities for the most unstable mode. Inpitesented
numerical code, the evolution was computed in @mdyestages of the instability (or stability) fon amposed initial
bedform.

The presented numerical code is expected to gsdteein accordance with Franklin (2010) if thetiadi bedform
correspond to the wavelength of the most unstaloléemAlso, by varying the length of the initial lbean, the cut-off
wavelength shall appear in the simulations aslibliw which the growth rate is negative. Simulagiofi this kind are
left for a future work.
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