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Abstract. Structural systems in a variety of applications including aerospace vehicles, automobiles and engineering 

structures such as tall buildings, bridges and offshore platforms, accumulate damage during their service life. In 

several situations, such damage may not be visually observable. From the standpoint of both safety and performance, it 

is desirable to monitor the occurrence, location and extent of such damage. System identification methods, which may 

be classified in a general category of non-destructive evaluation techniques, can be employed for this purpose. Using 

experimental data, such as eigenmodes and static displacements, and an analytical structural model, parameters of the 

structures can be identified. The approach used in the present work is one where the structural properties of the 

analytical model are varied to minimize the difference between the analytically predicted and empirically measured 

response. This is an inverse problem where the structural parameters are identified. For the damage assessment 

problem a finite element model of the structural system is available and the model of the damaged structure will be 
identified. Damage will be represented by a reduction in the elastic stiffness properties of the structure, introducing a 

damage variable that varies from 0 to 1. The problem described above is a nonlinear unconstrained problem that can 

be solved using classical gradient based methods such as the Levenberg-Marquardt . Depending on the number of 

design variables the resulting design space can be very nonconvex and probably will present several local minima, 

which means that damage in some members may not be detected. An alternative to solve this problem is the use of a 

global optimization method such as the Differential Evolution. This results in a very large computational cost. To 

circumvent this a combination of a global and a  local optimization methods, keeping the best features of each method 

is used in this paper. To use a gradient based method a sensitivity analysis is necessary. It also  indicates which 

members will have possible damages more difficult to detect. The methodology was applied to a simple planar truss 

structure. A reduced set of eigenmodes is used as experimental response. 
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1. INTRODUCTION  
 

In a typical load bearing structure, degradation of structural properties due to damage manifests itself as a change in 

the static and dynamic structural response. A correlation of the measured response with that obtained from an analytical 

model of the undamaged structure, allows for the possibility of determining a modified model that predicts the altered 

response. This process can be broadly categorized in the realm of system identification methods.  The output error 

method of system identification, wherein the analytical model is refined to minimize the difference between the 

predicted and measured response of the structure was used in the present work (Stavroulakis, 2001). Damage is 

represented by reduction in the elastic extensional modulus of the element introducing in the element stiffness matrix a 

factor varying from 0 to 1 designated as design variables in the resulting optimization problem (Hajela and Soeiro, 
1990a) and (Hajela and Soeiro, 1990b). Numerical evidence clearly indicates that when eigenmodes alone are used for 

identification, the location and extent o damage predicted by the optimization approach is dependent on the number of 

modes used to match the measured and the predicted response. Higher modes are difficult to determine and to measure. 

In this work incomplete sets of modes are used to simulate real measured data. The approach of defining one design 

variable per element produces a large dimensionality problem. This results in a very nonconvex design space probably 

with several local minima. The gradient-based nonlinear programming algorithms may have difficulties to find the 

global optimum. A sensitivity analysis indicates that some members will have their possible damage very difficult to 

detect. The combination of a global and a local optimization methods will be a good alternative to solve the damage 

assessment problem. 

 

2. STRUCTURAL DAMAGE ASSESSMENT 
 

In a finite element formulation, structural characteristics are defined in terms of the stiffness, damping, and mass 

matrices [K], [C] and [M], respectively. The governing equation of equilibrium for a dynamical system involves each of 

these matrices, and can be written as, 
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Where {x} is the displacement vector and P(t) is the vector of applied loads. The static load-deflection relation only 
involves the system stiffness matrix, 

 

[ ]( ) { }PxK =                (2) 

 

The analytical model describing the eigenvalue problem for an undamped system can be stated in terms of the 

system matrices defined above, the i-th eigenvalue ωi
2
, and the corresponding eigenmode Xi as follows: 
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It is clear from these equations that a change in the system matrices results in a different response, and this 
difference can be related to changes in specific elements of the system matrices. Since internal structural damage 

typically does not result in a loss of material, it will be assumed that the mass matrix is constant. The stiffness matrix 

can be expressed as a function of the thickness ‘t’, the length ‘L’, the cross-sectional area ‘A’, the Young’s modulus ‘E’ 

and the flexural and torsional stiffness EI and GJ, respectively, 

 

[ ] [ ( , , , , , )]K K t L A E EI GJ=
            (4) 

 

In the present work, changes in these quantities are lumped into a damage coefficient di, that is used to multiply the 

stiffness matrix of a particular element. The coefficients di constitute the design variables for the damage assessment 

problem and vary from 0 (undamaged element) to 1 (completely damaged element). The values of the coefficients di 

give the location and the extent of damage in the structure. 

The approach was applied to simple truss structures with different levels of damage. The stiffness matrix of the truss 

element modified to include the damage coefficient is 
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Where C = cos α and S = sin α, and the truss element is shown in Fig. 1. 

 

 
 

Figure 1. Truss element 

 

If the measured and analytically determined static displacements or vibration modes are denoted by {Ym} and {Ya}, 

respectively, the optimization problem can be formulated as determining the vector of design variables di that minimize 

the scalar objective representing the Euclidean norm of the difference between the analytical and experimental response 

and stated as follows: 
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where i represents the degree of freedom and j denotes a static loading condition or a particular vibration mode. 

One important advantage of this approach is that the complete set of modes or displacements is not needed since the 

objective function involves only the difference between components of those vectors. Some of the components may be 

neglected according to its importance in the behavior of the structure. In this paper only the first four modes and the 

respective eigenvalues (natural frequencies) were used in the objective function. 

 

3. SOLUTION OF THE INVERSE PROBLEM 
 
 In the present work a combination of a deterministic gradient based method, the Levenberg-Marquardt method, and 

a global optimization method, the Differential Evolution, is considered for the minimization of the objective function 

)(dF
r

 given by Eq. (6) (Silva Neto and Moura Neto, 2005). 

 
3.1. A Deterministic Local Optimizer – Levenberg-Marquardt (LM) 
 

In order to minimize the objective function )(dF
r

we first write the critical point equation 
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Using a Taylor’s expansion and keeping only the terms up to the first order results 
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where the Jacobian matrix elements are given by 
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Adding a damping parameter λ one obtains from Eqs. (7) and (8) the Levenberg-Marquardt formulation 
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where I is the identity matrix, n is the iteration counter, and λ is reduced along the iterative procedure according the 
original proposition made by Marquardt (1963). 

The iterative procedure starts with an initial guess 
0d

r
, and new estimates are obtained with 
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                                                                                                                                      (11) 

where the vector 
nd

r
∆  is obtained from Eq.10. 

The iterative procedure of sequentially calculating 
nd

r
∆ and 

1+nd
r

 from Eqs. 10 and 11, respectively, is continued 

until a convergence criteria such as ε<∆ n

j

n

j dd ,  is satisfied, where ε is a small number. 

 The method described above requires the calculation of derivatives (Eq. 9). This is called sensitivity analysis and  it 

seeks to determine the effect of the variation of a given variable on the objective function. The sensitivity analysis can 

also be a useful tool in different areas of engineering to determine the significance of one variable against another. The 

parameter estimates and an examination of the sensitivity coefficients of a function can provide significant information 
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about a problem, to identify the variables that will have greater success in their determination. It is obvious that any 

object of study is always a factor of uncertainty and sensitivity analysis is sought to minimize these influences. 

The sensitivity coefficients represent the first derivative of the objective function with respect to each design 

variable. Such information may be relevant to any project. As in any optimization problem it is best to perform a 

sensitivity analysis before applying the methodology of identification of damage in structures (Kleiber et al., 1997). In 

case of detection of damage in structures the sensitivity coefficients are defined as: 

 

                                                                                                                                                         (12) 

 

 

where F is the value of the objective function described in Eq. 6 and di are the damage variable corresponding to each 
structure bar. To determine the sensitivity coefficients, the damage of each element will be changed by 1%, while other 

elements will remain unchanged without damage. This information can be shown in a graph (sensitivity factor versus 

each element) indicating which damaged member will significantly influence the objective function. 

 

3.2. Stochastic Global Optimizer - Differential Evolution 

 

The Differential Evolution (DE) was proposed by Storn and Price (1997) as an algorithm to solve global 

optimization problems of continuous variables. The main idea behind DE is how possible solutions taken from the 

population of individuals are set, recombined and chosen to evolve the population to the next generation.  

In a population of individuals, a fixed number of vectors are randomly initialized, and then evolved over the 

optimization task to explore the design space and hopefully to locate the optimum of the objective function. At each 
iteration, new vectors are generated by the combination of vectors randomly chosen from the current population. This 

operation is called “mutation” and a mutant population is created.   The outcoming vectors are then mixed with a 

predetermined target vector. This operation is called “crossover” or “recombination” and produces a “trial vector”. 

Finally, the “trial vector” is accepted for the next generation if it yields a reduction in the value of the objective 

function. This last operation is referred to as “selection.” As can be seen, the basic algorithm preserves some common 

aspects of the traditional simple Genetic Algorithm (GA), specially the nomenclature of selection, crossover and 

mutation. A population of individuals can be expressed as a matrix: 
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where i is the number of individuals of the population and j is the number of design variables. 

As described before, the “mutation” operator adds the weighted difference between two individuals to a third 

individual (base vector). There are several ways to mutate a variable and the equation below shows a possible mutation 

scheme, among others. 

 

     
( )321 rrri xxFxv −+=

                                                                               (14) 

 

where νi is the mutant vector, xr1, xr2 and xr3 are random integer indexes and mutually different, F  is a real constant 

factor [0,2] which controls the amplification of the differential variation and xbest  is the best individual of the current 

population.  

The next operation is “crossover”. Each mutant vector is combined with a target vector xi. This operation is 

performed by swapping the contents of the mutant vector with the correspondent component of the target vector based 

on a crossover probability CR. The resulting vector is denominated “trial vector”. At the sequence of the DE algorithm, 

the selection operator decides whether or not the new vector xtrial should become a member of the next generation. This 

is decided by the objective function value of all new individuals f(xtrial) which are compared with the one of the target 

vector f(xtarget). If there is an improvement, xtrial  is selected to be part of the next generation, otherwise, xtarget is kept. 

According to Storn and Price (2009) it is recommended that the population has a size of 10 times the number of 

design variables, the crossover probability, CR, usually is chosen in the range [0,1] and the weight factor F is usually 

chosen in the interval [0,2]. In this paper, the CR was set as 0.8 and F was set as 0.9. 

 

3.3. Combination of a Gradient Based Local Optimizer (LM) and a Stochastic Global Optimizer (DE) 
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 Due to the complexity of design space, if convergence is achieved with a gradient based method it may in fact lead 

to local minima. Therefore, global optimization methods are required in order to reach the global minimum. The main 

disadvantage of these methods is that the number of function evaluations is high, becoming sometimes prohibitive from 

the computational point of view. 

Trying to keep the best features of each method, LM and DE methods were combined (Silva Neto and Soeiro, 2000, 

2001). The stochastic method is allowed to run for a while, say for 10 or 20 iterations, obtaining an initial guess for the 

LM. If this initial guess is in the region of convergence to the global optimum the LM will reach this point in a small 

number of iterations. This procedure can be repeated. If the same solution is obtained, then this is probably the global 

optimum and the correct solution of the damage assessment problem.    

 

4. DISCUSSION OF RESULTS 
 

The procedure for damage assessment described in preceding sections was implemented using the MATLAB 

Optimization Toolbox (MATLAB, 2008). The function lsqnonlin which uses a local, gradient-based optimization 

method developed for nonlinear least squares problems based on the LM method was employed as the main subroutine 

in the problem solution. The Differential Evolution method used in the hybrid methodology was also developed in 

MATLAB language. The method was applied to a simple truss structure with 15 bars (Fig. 2). The first four measured 

and analytically predicted eigenmodes were used to detect the extent and location of damage. The experimental data 

were synthetic obtained from the finite element model (ANSYS, 2005) with the introduction of damage in some 

members.  

 

 
 

 
 

Figure 2. Fifteen bar trus 

 

 

 Prior to solve the damage assessment problem a sensitivity analysis was performed to verify which members would 

have a possible damage easier or more difficult to detect. The sensitivity analysis is shown in Fig. 3. One can see that 

member 3 has the highest sensitivity coefficient which indicates that damage in this member would be more easily 
detected. On the other hand, damage in member 13 will be the most difficult to be detected since the corresponding 

sensitivity coefficient is very small. The influence of the sensitivity coefficient can be seen in Figs. 4 and 5. First a 

damage of 50% was introduced in member 3. Figure 4 shows that the location and extent of damage was correctly 

detected. The initial point used by the optimizer was the undamaged structure where all the damage variables are made 

equal to zero. In a few iterations the correct solution was obtained. If damage is introduced in member 13, with very 

small sensitivity coefficient, one can see that the optimizer converges to the wrong solution. The design space becomes 

very nonconvex and probably presents several local optima. The results are shown in Fig. 5. The extent of damage in 

member 13 was not correctly detected and another member also presents some damage.   
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Figure 3. Sensitivity Analysis 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. Damage of 50% in member 3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Damage of 50% in member 13 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

 

To circumvent this problem a hybrid method can be used. It combines the good features of a local and a global 

method. The global method converges to the global optimum with a large computational cost whereas the local method 

is faster e more accurate than the global one. The global method is left running only for a few iterations which usually is 

enough to bring the solution to a point in the region of convergence to the global optimum. Then, starting from that 

point, the local method is used to get a more accurate solution. Figure 6 shows the final solution for the same problem 

of 50% damage in member 13. The DE was set to run for 30 iterations obtaining a solution that was used as the starting 

point for the LM (function lsqnonlin of MATLAB). The right solution was obtained as can be seen in Fig. 6.  

 

 
 

 

 
 
 

 
 
 
 
 
 
 

 

 

Figure 6. Damage of 50% in member 13 using a hybrid method (DE-LM) 

 

 

 

Another representative test was the detection of damage in two members. Again the two members used previously 

were used with a small damage of 10% in each one. Again only damage in the member with higher sensitivity 

coefficient was correctly detected as shown in Fig. 7. The hybrid method (DE-LM) was able to detect damage in both 

members correctly. The results are shown in Fig. 8. 
 

 

 

 
Figure 7. Damage of 10% in members 3 and 13 
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Figure 8. Damage of 10% in members 3 and 13 using a hybrid method (DE-LM) 

 

 
 
5. CONCLUSIONS 
 

This paper presents an approach to damage detection in structures based in iterative methods of optimization. 

Eigenmodes are used in the inverse problem as experimental data. Gradient based methods are faster and more accurate. 
Before using these methods is recommended that a sensitivity analysis is performed.  The aim is to verify if some of the 

design variables have low sensitivity. In this case a hybrid method can be a good alternative. The exploration of the 

study of the sensitivity analysis in the solution of the damage assessment problem and the application of this approach 

to larger structures is the continuation of this research.    
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