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Abstract. Space exploration has increasingly attracted the interest of researches from several countries. What certainly 

can be said is that a major objective in common is to lower the cost of the missions and provide more autonomy to the 

spacecrafts. Solar Sails are a promising low-cost option for space exploration for it uses for propulsion an abundant 

resource in space: solar radiation. In such a system radiation pressure from sunlight is reflected by the structure so as 

to propel the spacecraft. Whereupon, a solar sail must have a very large surface area and also be very light. When it 

concerns large surface areas and low weight it is unavoidable to think of flexible structures, or, in the present case, a 

flexible Flat Solar Sail (FSS). Any spacecraft needs an attitude control system (ACS) with good performance, 

autonomy and robustness for navigation. FSSs are not an exception, as their control is performed by tilting the surface 

in respect to the Sun direction. The objective of this paper is to present an approach for analyzing the dynamics and 

attitude control of flexible solar sails. The simplified model for the FSS consists of a central spherical hub with four  

flexible booms with tip masses attached to each one of them. The modeling was carried out by following the 

Hamiltonian approach and the investigated control methods were Linear Quadratic Regulator (LQR) and Linear 

Quadratic Gaussian (LQG),  for these control methods have their particular characteristics. This investigation aims to 

highlight the advantages of each method from computer simulation to control algorithm implementation point of view. 

All over the controller design one takes into account the FSSs flexibility influence on its performance and robustness.  
 

Keywords: flexible solar sail, flexibility influence, attitude control system. 

 

1. INTRODUCTION  
 

In the space exploration, the idea of using a solar sail as a primary propulsion device is becoming very popular 

(Chiaramonti et all., 2009). Sailing vessels on Earth navigate with wind sails, which divert a small portion of the 

massive momentum flux present in moving bodies of air. In space, a vehicle called a solar sail or light sail can achieve 

the same by diverting a small portion of the massive flux of electromagnetic energy put out by the sun as light using 

large and lightweight mirrored sails (Herbeck et all., 2002).  

Sunlight has long been known to carry momentum. To be exact, the momentum of the electromagnetic energy from 

the Sun pushes the spacecraft and from Newton´s second law momentum is transferred when the energy strikes and 

when it is reflected (Macdonald and McInnes, 2010). Sails can be made highly reflective 85-90%, so that the net force 

vector has a direction that is close to the vector normal to the sail surface. Therefore, the force acting on the sail is a 

function of the orientation of the sail normal vector with respect to the incident sunlight. Solar sail trajectories are then 

determined by the time history of the sail normal vector (Diedrich, 2001).  

 

 
Figure 1. Solar Sail 
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For many years, solar sailing has been studied as a novel propulsion system for space missions. The basic idea 

behind solar sailing is very simple so there are difficult engineering problems to solve. From the time when the NASA 

Comet Halley mission studies a large number of solar sail mission concepts have been devised and promoted by solar 

sail proponents. As such, this range of mission applications and concepts enables technology requirements derivation 

and a technology application pull roadmap to be developed based on the key features of missions which are enabled, or 

significantly enhance, through solar sail propulsion (Macdonald and McInnes, 2010). 

This technology appears as a promising form of advanced spacecraft propulsion which can enable exciting new 

space-science mission concepts such as solar system exploration and deep space observation (Simo and McInnes, 

2010). Solar sails have the capability to provide cost effective, propellantless propulsion that enables longer mission 

lifetime, increased scientific payload mass fraction, and access to previously inaccessible orbits (Wie, 2007). To access 

inaccessible orbits and permit longer missions lifetime with low cost, the solar sails in the last days have shown great 

potential for both application and research. So with the recent progress in lightweight and ultralightweight instruments 

the solar-sail missions will become a reality. 

Japanese researchers (Japan Aerospace Exploration Agency - JAXA) have sailed through space. The project name 

for the first mission is IKAROS (Interplanetary Kite-craft Accelerated by Radiation of the Sun) showed in Fig.2. This 

craft was launched on May 21, 2010 together with the Venus Climate Orbiter, AKATSUKI. This is the world's first 

solar powered sail craft employing both photon propulsion and thin film solar power generation during its interplanetary 

cruise (Ikaros, 2010). 

 

 
Figure 2. Ikaros Solar Sail  

 

The spacecraft attitude control system (ACS) performance for a solar sailing mission is strongly attached with 

propulsion efficiency and trajectory goals, so the ACS designer has the paired tasks of control over orientation of the 

sailcraft and the thrust vector. All practical spacecraft control designs are subject to the physical limits of actuators, 

sensors, spacecraft structural rigidity, and other mission constraints. A gimbaled control boom and/or sail control vanes 

(thrusters, reaction wheels, and magnetic torques) are to be employed as primary actuators for active three-axis attitude 

control of solar sail spacecraft, there exist a variety of practical issues to be resolved (Wie, 2004). 

To control attitude, the spacecraft must have the ability to: determine the current attitude, verify the error between 

the current and desired attitudes, and apply proper torques to remove the error (Murphy and Wie, 2004). A flexible 

sailcraft demands an ACS with good performance, autonomy and robustness. The ACS must take into account 

flexibility effects, or a control designed based on linear dynamic model can lead to instability or, at least, poor 

performance. The importance of structural flexibility in the attitude stability and control of spacecraft has been 

acknowledged since the earliest artificial earth satellites (Hughes, 1974). 

Junkins and Kim (1993) investigated the reason why the flexibility in vibration control should be considered in 

controller design. In the work of the Murphy and Wie (2004), several ACS approaches were analyzed in an effort to 

determine design drivers and compare and contrast performance differences to find an ACS method that is truly robust, 

and that is also low mass, low cost, low power, and low risk. Wie and Liu (1993) investigated the solar array vibration 

on telescope pointing jitter using classical and H∞ control design.  

The Linear Quadratic Regulator (LQR) controller has been studied in (Diedrich, 2001) where was utilized for the 

angular position of the sail with respect to the incident sunlight. In this work concluded what LQR control is able to 

provide effective control for the sail even when it is commanded to rotate to an angular position far from the 

equilibrium point about which the LQR controller was found.   

In most cases, the finite element method is used in modeling flexible space structures. But for that is accurate 

follows: (i) It has high order system matrix, (ii) not easy to get the physical insights due to design changes, and (iii) can 

be constructed only after all structural features have been decided (Chae and Park, 2003).  
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The Timoshenko beam theory along with the assumed modes method were used in (Karkoub et all., 1999) to derive 

reference equations of motion for the flexible manipulator. Eltimsahy and Chen (1992) developed a dynamic model of 

two coordinating robots having flexible links using Hamilton’s Approach, in this paper showed suitable for control and 

optimization studies.  

In this paper a model for a flexible Flat Solar Sail (FSS) is developed using Hamilton´s Extended Principle (HEP) 

and two different methods for its control are studied, Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian 

(LQG). 

 

 

2. SYSTEM MODEL 
 

In this paper a square FSS is considered. As an approximation, the model for the sail consists of a central spherical 

hub with four flexible booms with tip masses attached to each one of them. The scheme of the FSS is shown in Fig.3. 

HEP was used to develop the model for such a structure. 

 

 
Figure 3. Square Flat Solar Sail scheme 

 

To model the flexible solar sail, it was considered the following terms: a) Gravitational potential energy is 

negligible; b) The center of mass of the FSS is fixed; - control is performed by applying five independent torques on the 

sail: a central one acting at the hub and each of the other four at the extremes of the booms; c) The booms have the same 

length and linear density of mass; d) The tip masses are equal; e) The booms cannot be extended in symmetry axes; f) 

Transversal displacement (deformation) is small; g) The beams suffer no shear deformation or warping; h) Control is 

performed by applying five independent torques on the sail. 

 

2.1. Hamilton’s Extended Principle  
 

The law governing the motion of mechanical system is the extended Hamilton’s principle which can be written as 

follows: 
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Hamilton’s principle has two primary advantages. First, it is extremely succinct. This means, for example, that, once 

the exact Hamiltonian has been replaced by a discrete numerical analogue, then the numerical analyst is relieved of all 

further opportunities to exercise his bias: the principle of least action dictates the evolution equations for the discrete 

dependent variables. Secondly, there exists a well-known connection between the symmetry properties of the 

Hamiltonian and the conservation laws of the dynamical system (Salmon, 1983).  
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2.2. Assumed Modes Method 
 
The flexible space structures are most meticulously modeled as distributed parameter systems; their motion is 

described by a coupled system of ordinary and partial differential equations. Since coupled partial differential equation 

models are difficult to deal with both analytically and computationally, approximate finite-dimensional equations of 

motion are usually used. In the assumed method, the deflection of continuous elastic structures is modeled by a finite 

series of space-dependent functions that are multiplied by specified time-dependent amplitude functions (Junkins and 

Kim, 1993).  

To approximate the partial differential equation by ordinary differential equations, a solution of the flexible motion 

is assumed to be a linear combination of admissible functions multiplied by time dependent generalized coordinates. 

The approximation is then described by 
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where )(xiφ denotes ith assumed mode shape, )(tqi
denotes the ith generalized coordinate, and N denotes the number 

of terms in the approximation. For clamped-free appendages, an admissible base function is given by Junkins and Kim 

(1993): 
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This base function satisfies both geometric and physical boundary conditions for such booms clamped to the hub in one 

end, with the other end free. 

 

2.3. Mathematical Equations 

 
The kinetic energy T of the system is given by: 
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where 
hubJ  is moment of inertia of the central body, L is the length of each boom, m and miJ  are respectively the tip 

masses and their moments of inertia. The elastic potential energy of the system is: 
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EI is the flexural rigidity of the booms. The Lagrangean L for the system is given by 
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ρ is the linear mass distribution of the booms and yi are give details in Eq.2.  As a result, according to Hamilton’s 

Extended Principle, replacing Eq. (9) in Eq. (1): 
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After several calculations, boundary conditions, integrating the variational terms and simplifying notation. The equation 

that describes the motion of the system for one mode of vibration is: 
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3. CONTROL METHODS 

 
3.1 Linear Quadratic Regulator 

 

Linear Quadratic Regulator (LQR) is a control method in which the control law can be written as a time-varying 

function of the system states (Kirk, 1970). This method was used to keep both position and velocity of the flexible 

booms as close as possible to nominal position using reasonable values for control expenditure. Given a linear plant: 
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The control law is given by 
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where P(t) is the solution for the Riccati Equation: 
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where Q is matrix symmetric, definite and semi-positive and R matrix is symmetric, definite and positive. Q and R are 

weight matrices for states and control, respectively. 

 

3.2 Linear Quadratic Gaussian 

 
Linear Quadratic Gaussian (LQG) is a control method for plants considering uncertainties at the model (random 

disturbances) and using noisy sensors (Kwakernaak and Sivan, 1972). Let the plant be the following stochastic system: 

 

)()()()(

)()()()()()()(

tvtxtCty

twtGtutBtxtAtx

+=

++=&
          (15) 

 

where )(ty  representing the measured outuputs and w(t) and v(t) being Gaussian noises with null mean and 

covariances given by 
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As suggested in Kwakernaak and Sivan (1972) let the control law is found by treating the problem in two different 

subproblems, as if there was a Kalman Filter coupled to a LQR controller. The first sub-problem is the Kalman Filter, 

given by a state estimator of the form 
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The control law )(ˆ)()( txtKtu −= is based on the estimate state vector x̂ and the Kalman filter gain is given by 
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where PK satisfies the algebraic Riccati equation 
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Once the estimate states are obtained, the problem falls on getting an optimal control law based on the LQR method. 

 

4. NUMERICAL SIMULATIONS 

 
In this paper were considered 5 controls, providing torque to the hub for central and the forces apply in the beams: 

 

1uJT == θτ
&&rr

                         (20) 

        
1uRmF ==

&&rr
            (21) 

 
According to Wie (2004), typical values for sail structures are boom length L=30m; hub radius rH=0.3m, hub mass 

mH=19.6 Kg, boom linear density ρ=70g/m; flexural rigidity EI=2000Nm
2
; and tip masses were considered to be 

m=0.8Kg. Initial states for both controllers were chosen randomly and position of the four booms from their nominal 

positions are, respectively, 2.0m, 1.2m, -1.0m, 1.0m and their transversal velocities -1.0m/s, 0.0m/s, -5m/s, 3m/s. In this 

work, these values are the perturbations of the system. And the simulations the performance of control law are analyzed. 

 

 

 
 

Figure 4. Performance of FSS with LQR Control 

 
Analyzing the results in Fig. 4, we can see the time to stability for the booms is around 6 seconds. Good 

performance to the first mode of vibration and control using the LQR. For other hand, the central hub has other conduct, 

more slowly than the booms. In this paper not include the other modes of vibration of the system, which can be excited 

when the control and applied, including leading the system to instability.  
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Figure 5. Signals Control - LQR  

 

In Fig. 5 shows the control rods control a high demand, and varying a large part in a short space of time. After 8 

seconds the control practically stopped to act once the rods are already stabilized. 

 

 
 

Figure 6. Performance of FSS with LQG Control 

 

The results in Fig.6 show that compared to the LQR, Fig. 4, the stabilization time of the booms are also controlled, 

however a longer time. The system still oscillates until it stabilizes. The results for central hub show that tends to 

stabilize, but slower compared to the results of the LQR, displaying a degree of oscillation in angular velocity. 
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Figure 7. Signals Control - LQG  

 

The controllers shown in Fig.7 we can see that the maximum values of the controls are not very different from the 

values obtained for the LQR, Fig.5, but the control work long time, besides showing greater variation. 

 

5. CONCLUSIONS 
 

In this paper were investigated the methods of control, LQR and LQG, in ACS performance of the FSS. This 

investigation use HEP and Assumed Modes Method for describes flexible structures. There preliminary methods could 

control the sail when considering one vibration mode. Next studies should take into account more vibration modes, and 

other robust control techniques as H-Infinity and µ-Synthesis should be implemented. The study of solar sailing offers 

striking advantages for Solar System exploration; it is a subject that covers various areas of space engineering. So, this 

paper is the beginning for the knowledge and application in this area.  
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