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Abstract. Unsteady simulations of planar mixing layers are usually started using approximate solutions, obtained from a
hyperbolic tangent function or boundary-layer equations, as initial conditions. This choice introduces large disturbances
during the first time step, causing a phenomenon that is known in the literature as start-up vortex. The amplitude of
this vortex increases significantly when the velocity ratio and/or the faster stream Mach number increase. It has been
suggested that its origin is a first derivative discontinuity between initial and inflow boundary conditions. However, it
is shown in the present work that this is actually caused by a mismatch between initial and outflow boundary conditions
instead. This is demonstrated through the use of a high accuracy reference solution as initial condition and also buffer
region for global boundary conditions at both inflow and outflow artificial boundaries.
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1. INTRODUCTION

A planar mixing layer is formed when two streams with different speeds meet downstream of a splitter plate. This
configuration represents a free shear layer that is convectively unstable for very low Reynolds numbers and constant
properties. In such cases, small perturbations are amplified as they propagate downstream. However, the transition to a
globally unstable flow can occur due to temperature changes or when the layers move in opposite directions.

Numerical simulations of external flow problems pose one of the most difficult challenges in computational fluid dy-
namics because the original unbounded domain must be limited to a bounded one. This difficulty stems from the need for
artificial initial and, more importantly, boundary conditions. The first coherent structure formed in a transient simulation
of planar mixing layers is the startup vortex. A first derivative discontinuity between initial and inflow conditions has been
deemed responsible for its formation (Buell and Huerre, 1988). In the absence of external excitations, the flow should
relax to its steady-state solution according to both linear (Huerre and Monkewitz, 1990) and nonlinear (Chomaz, 2005)
stability analyzes. As expected from a convectively unstable flow, the initial vortex amplitude increases as it propagates
downstream. However, a new vortex is excited near the inflow whenever another one reaches the outflow boundary. This
numerical reflection between inflow and outflow boundary conditions may become self-sustained, forming an artificial
global instability.

The small amount of computer simulations about this problem present in the literature can be seen in the article
by McMullan et al. (2007), which simulates incompressible spatially developing planar mixing layers in two and three
dimensions. The hyperbolic tangent function and data derived from boundary layer simulations are used to generate the
inflow conditions, which are extended to the rest of the domain in order to form the respective initial conditions. They
show important differences between each one of these cases, providing strong evidence that initial conditions must be as
close as possible to the experiment they intend to reproduce for a good agreement to be possible.

Nevertheless, some authors have claimed otherwise. Grinstein et al. (1990) used the conservative compressible flow
equations to simulate spatially planar mixing layers. At the inflow boundary, all variables were prescribed except pressure,
which was obtained from a zero gradient condition. On the other hand, linear advection equations were imposed using
the local velocity near the outflow boundary, where pressure was relaxed towards a specified ambient value. Initial and
inflow velocity profiles were defined using a hyperbolic tangent function. In order to avoid numerical reflections at the
boundaries, simulations were performed on a long very domain and restricted to small enough times, not allowing any of
the vortexes formed to reach the boundaries. These authors conclude that downstream pressure gradients due to vortex
pairing affect the formation of these vortices upstream. They also state that this effect is reduced when: 1) the propagation
speed of pressure waves in each stream tends to be equal, i.e., at the incompressible limit, and 2) the free stream convective
velocities os each layer tends to be equal. This study was repeated by Grinstein and DeVore (2002) for free coaxial jets,
where the inner jet is supersonic ant the outer jet is subsonic and moves in an opposite direction. The self-excitation
occurs in this case due to subsonic speed of the external annular jet , despite the supersonic speed of the internal one. A
review of these results can be found in the article by Drikakis et al. (2005).

The major problem of these studies lies in the quality of the initial and boundary conditions used in both compressible
and incompressible simulations. The best boundary conditions for artificial boundaries found in the literature today are the
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ones used in compressible flow simulations (Colonius, 2004), since incompressible flows do not account for characteristics
propagation directions (Poinsot and Lele, 1992). The challenge then is to extend the use of these boundary conditions
for incompressible mixing layers. This study is an extension of previously reported work by Teixeira et al. (2008) as
well as Teixeira and Alves (2010). It investigate the influence of initial and artificial boundary conditions in the computer
simulation of unsteady compressible planar mixing layers.

2. GOVERNING EQUATIONS

The two-dimensional preconditioned governing equation are

Γ
∂Q̂

∂τ
+
∂Q

∂t
+

∂

∂x
(Ei − Ev ) +

∂

∂y
(Fi − Fv ) = H (1)

where the set of variables Q̂ and Q are given by transpose vectors below

Q̂ = (pg, u, v, T, Y1)T and Q = (ρ, ρu, ρv, ρE, ρY1)T , (2)

with ρ standing for density, p for pressure, u and v for the Cartesian velocity components, e for thermal internal energy,
E = e+(u2 +v2)/2 for total internal energy, Y1 for mass fraction of specie 1 and N for the total number of species in the
mixture, where N = 2 here. The inviscid and viscous fluxes Ei , Ev , Fi e Fv have a standard definition and H represents
the source term. More details about the preconditioned differential model used here is provided by Teixeira et al. (2008)
and further information about the numerical schemes employed are given by Teixeira and Alves (2010).

2.1 Boundary Conditions

One of the critical points in the computer simulation of external flows is the appropriate implementation of boundary
conditions. A possible solution to this problem is coordinate transformation, i.e., mapping the unbounded domain into a
bounded one before attempting a numerical solution of the respective governing equations (Grosch and Orszag, 1977).
However, the loss of implicit mesh resolution introduces undesirable numerical oscillations whenever the flow does not
relax smoothly to its boundary conditions at infinity. Hence, truncation of the infinite or semi-infinite domain is necessary,
which creates an artificial boundary where approximate conditions must be imposed instead of the original conservation
equations. Unfortunately, these additional approximations can generate undesirable numerical reflections.

Two types of high accuracy artificial boundary conditions can be found in the literature mitigate this problem. The first
type includes global boundary conditions, which require a finite region that extends away from the boundary to damp any
errors generated by its artificial condition (Blaschak and Kriegsmann, 1988; Bodony, 2006). Stretched meshes, commonly
used to introduce dissipation in the far field, can be considered a subset of this group. However, arguably the most widely
used method is known as a buffer zone. This method introduces a source term in the conservation equations that forced the
computed solution towards a reference solution within a predefined region near the artificial boundary. Thus, undesirable
oscillations are damped before reaching the boundary. The other type is known as local boundary conditions, since
it only acts on the line (2D) or surface (3D) of the artificial boundary. One of the most used techniques is known as
non-reflective boundary conditions, which models the behavior of linear perturbations around a base flow (Giles, 1990;
Colonius et al., 1993). Another widely known technique is referred to as method of characteristics (Thompson, 1987;
Poinsot and Lele, 1992). This method prevents characteristic wave coming from outside the truncated domain to enter it,
minimizing unwanted numerical reflections.

The original code by Teixeira et al. (2008) works with a local boundary condition that uses a version of the method
of characteristics known as LODI (Poinsot and Lele, 1992). This technique is discussed bellow with an important im-
provement used by Teixeira and Alves (2010) and described here in detail. Global boundary conditions have also been
implemented, discussed and shown for the first time in the present work.

2.1.1 Local Boundary Condition

An appealing technique used to specify boundary conditions for hyperbolic systems is based on characteristic lines’
relations, i.e., on the analysis of the different waves crossing the boundary. This method, called L.O.D.I. in the litrature,
has been extensively studied and is based on local Euler equations normal to the boundary (Poinsot and Lele, 1992). It
determines the direction of propagation of the convective and acoustic waves at the boundary, filtering the waves that are
entering the domain (Thompson, 1987).

First, consider the Euler equations below

∂Q

∂t
+
∂Ei

∂x
= 0 (3)

where Q is the vector of conservative variables and Ei vector of inviscid fluxes (Teixeira and Alves, 2010). By applying
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the chain rule in equation (3), the following equation is obtained

∂Q

∂t
+
∂Ei

∂Q

∂Q

∂x
= 0 or

∂Q

∂t
+ A

∂Q

∂x
= 0, (4)

where it is defined that A = ∂Ei/∂Q.
Using the right eigenvector matrix M to diagonalize matrix A leads to

M−1 ∂Q

∂t
+ (M−1AM)M−1 ∂Q

∂x
= 0, (5)

which can also be written as

∂ω

∂t
+ Λ

∂ω

∂x
= 0, (6)

if the following relations are defined

∂ω

∂t
= M−1 ∂Q

∂t
and

∂ω

∂x
= M−1 ∂Q

∂x
, (7)

where Λ is the eigenvalue matrix of A given by

Λ = M−1AM =

 λ1 0 0
0 λ2 0
0 0 λ3

 . (8)

System of equations (5) is orthogonal, where each equation, written as

∂ω1

∂t
+ λ1

∂ω1

∂x
= 0 ,

∂ω2

∂t
+ λ2

∂ω2

∂x
= 0 and

∂ω3

∂t
+ λ3

∂ω3

∂x
= 0 , (9)

can be solved separately, where the eigenvalues λi are given by

λ1 = u , λ2 = u+ c and λ3 = u− c , (10)

and the characteristics ωi are given by

ω1 = s , ω2 = u+
2

γ − 1
c and ω3 = u− 2

γ − 1
c , (11)

where s is entropy and γ the ratio between specific heats.
According to characteristic propagation directions, given by the eigenvalues above, a boundary condition implemen-

tation procedure is defined in Table (1). Since subsonic inflow and outflow conditions are used in the present work, ω1

and ω2 are fixed and ω3 is calculated at the inlet , whereas ω1 and ω2 are calculated and ω3 is fixed at the outlet. Once the
appropriate wave crossing the boundary is removed from the orthogonal system, the procedure is reversed, leading to a
filtered version of the original Euler equations. An improved version of this approach is considered in the present paper,
where the inviscid and viscous terms tangent to the artificial boundary are added back into the filtered Euler equations.
As will be seen later, this simple additional procedure greatly increases boundary condition accuracy.

The prescribed conditions used at the inlet are

u(0, y) = Ū

(
1 +R tanh

[
y

2θ0

])
and v(0, y) = 0, (12)

where R = ∆U/(2Ū) is the ratio between velocity difference ∆U = U2 −U1 and mean velocity Ū = (U1 +U2)/2, and
θ0 is the momentum thickness. On the other hand, only pressure is prescribed at the outlet:

p(1, y) = patm. (13)

Subsonic Supersonic
Inlet Two conditions (ω1 and ω2) Three conditions (ω1, ω2 and ω3)

Outlet One condition (ω3) No conditions
Table 1. Numbers of prescribed boundary conditions according to LODI
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2.1.2 Global Boundary Condition

Absorbing conditions, a subset of global boundary conditions (Colonius, 2004), are conditions where the physics of
the problem is modified in a finite region of the flow. This region can be located anywhere within the flow domain. Given
the compressible Navier-Stokes equations (Teixeira and Alves, 2010), a source term is introduced as follows

∂Q

∂t
+

∂

∂x
(Ei − Ev ) +

∂

∂y
(Fi − Fv ) = −σ(Q − Q0) (14)

where Q0 is a reference solution and σ controls the buffer region and was chosen according to Freund (1997),

σ(x) =


σo

(
Wσ − x

Wσ

)β
; 0 ≤ x < Wσ

0 ; Wσ ≤ x < Wσ − xmax

σo

(
x− (xmax −Wσ)

Wσ

)β
; xmax −Wσ ≤ x < xmax

(15)

where Wσ is the buffer zone length, xmax is the computational domain length and σo is an arbitrary constant that controls
the absorption levels. This parameter must be much larger than the other terms in the governing equations, including
inviscid and viscous fluxes, in order to allow the numerical solution to smoothly converge towards the reference solution.

3. RESULTS AND DISCUSSION

This study begins with planar mixing layer simulations ran using standard initial conditions, i.e., hyperbolic tangent
function for the streamwise velocity, zero for the transverse velocity and imposed atmospheric pressure and temperature.
Furthermore, the standard LODI formulation discussed at the end of subsection 2.1 was used at the inflow and outflow
artificial boundaries (Teixeira et al., 2008). The mesh used is described in Teixeira and Alves (2010), where free-stream
velocities are U1 = 0.34605 m/s e U2 = 0.173025 m/s. Figure 1 shows the transverse velocity disturbance behavior in
time, obtained by subtracting the steady-state solution from the unsteady simulation results. All curves were measured at
the shear-layer centerline, with each consecutive curve located one wavelength downstream of the previous one, starting
one wavelength downstream of the inlet. This wavelength was obtained from the most amplified perturbation according
to linear stability theory. The numbers in each line show the maximum amplitude of each wave. Based on this figure, it
seems there is a perturbation at the inlet during the initial transient. Its amplitude increases as it is propagated downstream
by the mean flow, a clear indication of a convective instability. This is the start-up vortex, also observed in Figure 2, which
shows streamwise velocity disturbance isolines from the same simulation at four different times. It does seem likely that
this coherent structure was generated by some type of perturbation due to a mismatch between initial and inlet conditions,
a hypothesis originally stated by Buell and Huerre (1988).
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Figure 1. Transverse velocity disturbance obtained with standard LODI and tanh initial condition.
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Figure 2. Streamwise velocity disturbance isolines from Figure 1 at times t = 1.74s, 2.17s, 2.61s e 3.04s.

3.1 Local Boundary Conditions

In an attempt to minimize this effect, the standard LODI inflow and outflow boundary conditions were modified to
enhance their accuracy. As described previously, this boundary condition is based on the one-dimensional Euler equations
normal to the artificial boundary. Its modified version simply adds to the filtered version of this equation any terms that are
tangential to the artificial boundary. Two variations are considered here. The first one, called inviscid LODI, re-introduces
only the tangential inviscid fluxes in the filtered equation. On the other hand, the second variation, called viscous LODI,
introduces tangential inviscid and viscous fluxes.

Figures 3 and 4 show results from a simulation ran with the same conditions used to generate Figure 1, but using
instead the inviscid and viscous LODI boundary conditions, respectively, at both inflow and outflow boundaries. The
same qualitative behavior observed in Figure 1 is also seen in these Figures. Furthermore, the difference in transverse
velocity disturbance amplitudes at any given downstream location between these figures is less than ten percent, even
though the modified boundary conditions are supposed to greatly improve accuracy. This analysis indicates that there
is another error source contaminating the numerical simulation, preventing any improvements these modified boundary
conditions might otherwise yield. A possible candidate is the initial condition.
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Figure 3. Transverse velocity disturbance obtained
with inviscid LODI and tanh initial condition.
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Figure 4. Transverse velocity disturbance obtained
with viscous LODI and tanh initial condition.
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Recent simulations of spatially periodic mixing layers using the boundary layer similarity profile as initial condition
showed high-frequency oscillations in the unsteady solution (Lardjane et al., 2004). This problem was minimized by
modifying the similarity solution to account for spatial periodicity. Such an approach does show the impact of poorly
chosen initial conditions, but cannot be extended to general problems. This modest gain in accuracy and lack of generality
illustrates the need for new procedures that generate accurate reference solutions. An interesting alternative would be to
use a steady state solution as initial condition. However, as is often the case, this solution is unstable. Hence, such a
procedure must damp all unsteady disturbances without affecting spatial resolution. The best way to achieve this goal
is to introduce dissipation through the transient term, since it disappears at steady state. Time marching with the Euler
method was chosen here because it introduces a significant amount of dissipation. It is implemented in an implicit way
to allow larger time steps, since its dissipation is proportional to the time step. Furthermore, time marching must be
implemented in residual form to avoid time step dependent steady states (Tannehill et al., 1997). Finally, it is important
to remember that these steady states are artificial, since the flow is unstable. They are used only as initial conditions to
minimize errors, since they also satisfy the steady part unsteady of the code (Teixeira and Alves, 2010).

New simulations were run with same conditions used to generate Figures 1, 3 and 4, but using their respective steady
states as initial conditions instead. Their results are shown in Figures 5, 6 and 7, respectively. Now, the error introduced
by the initial condition has been reduced dramatically and the largest source of error in the simulation are the boundary
conditions. The amplitudes of the reflected waves near the outflow boundary, compared with their respective values
obtained with the tanh initial condition, were approximately 25 times smaller with standard LODI, 558 times smaller
with inviscid LODI and 546 times smaller with viscous LODI. These results confirm the expected greater accuracy of
the modified LODI boundary conditions. More importantly, they demonstrate the importance of using accurate initial
conditions in unsteady simulations.
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Figure 5. Transverse velocity disturbance obtained with standard LODI and steady state initial condition.

Now that the largest sources of error are the boundary, instead of initial, conditions, another important result can be
seen in these figures. The origin of the start-up vortex has, for a long time, been attributed to a first derivative discontinuity
between initial and boundary conditions at the inlet (Buell and Huerre, 1988), caused by the use of approximate initial
conditions such as a hyperbolic tangent function or a similarity solution of the boundary layer equations. However, Figures
6 and 7, and to a smaller extent also Figure 5, show a small perturbation at very early times near the outflow boundary. In
these figures, its amplitude is more than twice as large as the amplitude of the reflected wave near the inflow boundary.
This is a strong indication that the start-up vortex is formed by a discontinuity between initial and outflow boundary
conditions, since this perturbation travels upstream at the speed of sound in the form of pressure waves. Hence, the well
known numerical self-excitation mechanism induced by inaccurate outflow boundary conditions is also responsible for the
very first vortex formed in an unsteady simulation. This result is important because many studies found in the literature
construct their initial conditions by extending whatever profiles are imposed at the inflow boundary towards the inner
domain (Grinstein et al., 1990, 1991; Grinstein, 1994; Grinstein and DeVore, 2002; Drikakis et al., 2005). Perhaps even
more imporant, they claim that downstream vortex mergers generate pressure waves that propagate upstream to excite new
vortices at the inflow boundary, even though linear (Ho and Huerre, 1984; Huerre and Monkewitz, 1990) and nonlinear
(Chomaz, 2005) stability analyzes show there is no such self-excitation mechanism under the same flow conditions.
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Figure 6. Transverse velocity disturbance obtained
with inviscid LODI and steady state initial condition.

t*U/2 0

v’

100 200 300 400 500 600

7.0822*10-06

vmax = 2.9578*10-06

4.3323*10-06

9.5734*10-06

1.3811*10-05

1.9517*10-05

3.6496*10-05

4.8603*10-05

7.9821*10-05

ruído numérico

Figure 7. Transverse velocity disturbance obtained
with viscous LODI and steady state initial condition.

3.2 Global Boundary Conditions

Additional evidence about the start-up vortex origins can be uncovered with the use of nonuniform meshes. They
represent a well known technique that clusters grid points in regions with strong gradients as well as pushes artificial
boundaries further away by stretching the distance between consecutive grid points. The former increases numerical
accuracy whereas the latter introduces dissipation, damping perturbations crossing this region. It is considered a global
boundary condition, since it utilizes a finite domain away from the boundaries (Colonius, 2004). Figures 8 and 9 show
results from a simulation similar to the one performed to generate Figures 6 and 7, respectively. The difference between
each group is the longitudinal grid point distribution. It is uniform in the second case, whereas points move away from
each other monotonically from inflow to outflow in the first case. As one might expect, grid stretching increased the
disturbance amplitude near the outflow boundary at very early times. Nevertheless, the reflected wave amplitude is still
smaller because of the dissipative effect of a stretched mesh.
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Figure 8. Same as Figure 6, but with a stretched mesh
in the longitudinal direction.
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Figure 9. Same as Figure 7, but with a stretched mesh
in the longitudinal direction.

Arguably the most effective way to minimize the effect of boundary generated numerical self-excitation is the use of
buffers, also known as sponge zones or absorption regions, yet another type of global boundary conditions (Colonius and
Lele, 2004; Wang et al., 2006). This technique forces the simulation towards a reference solution within a predefined finite
region of the domain, damping unwanted oscillations. When placed near artificial boundaries, it can be used to control
numerical self-excitation. However, its strength and size must be carefully controlled, otherwise the buffer itself might
reflect nonphysical numerical waves.These techniques have been successfully used to simulate flow generated sound in
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many open shear flows (Colonius et al., 1993; Freund, 1997; Freund et al., 2000; Freund, 2001; Wei and Freund, 2005).
It is interesting to note that in these simulations, placing a buffer near the inflow, instead of outflow, boundary was a more
effective way to minimize numerical self-excitation.
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Figure 10. Same as Figure 4, but using an outflow
buffer region with σ0 = 0.1.
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Figure 11. Same as Figure 4, but using an outflow
buffer region with σ0 = 1.0.

The next test placed a buffer region near the outflow boundary. Only results obtained with the viscous LODI boundary
condition will be shown, since the inviscid LODI variant leads to similar results. Figures 10 and 11 do reproduce the
simulation used to generate Figure 4, but now using absorption regions of different lengths. Two conclusions can be
drawn from these figures. First, the outflow buffer has a small but non-negligible effect on the start-up vortex. However,
if this coherent structure is generated by an inconsistency between inflow and initial conditions, the outflow buffer should
have no effect whatsoever on this vortex structure. On the other hand, the buffer does reduce the inconsistency between
outflow and initial conditions. Furthermore, this problem can still generate upstream moving pressure waves since it is
already at the outflow boundary during the very first time step. Another evidence in favor of numerical self-excitation as
the cause of the start-up vortex. Second, when the buffer strength is increased, a second reflected wave appears in the
simulation. This is an expected result, but it should be noted that this new wave does have a much smaller amplitude.
Figures 12 and 13 show results obtained when reproducing the simulation used to generate Figure 7, but now using
absorption regions of different lengths. The same trends already discussed are observed once again.
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Figure 12. Same as Figure 7, but using an outflow
buffer region with σ0 = 0.1.
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Figure 13. Same as Figure 7, but using an outflow
buffer region with σ0 = 1.0.

As a final test, the previous four simulations are repeated but now with a buffer placed near the inflow, instead of
outflow, boundary. Figures 14 e 15 show a small decrease in the start-up vortex amplitude when compared to Figure
4. This is also true when they are compared to Figures 10 and 11, as expected. Another important difference and,
hence, advantage for the inflow buffer, is the absence of a second reflected wave. These improvements are significantly
more dramatic when a steady-state is used as reference solution for the inflow buffer, as can be seen in Figures 16 and
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Figure 14. Same as Figure 4, but using an inflow buffer
region with σ0 = 0.1.
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Figure 15. Same as Figure 4, but using an inflow buffer
region with σ0 = 1.0.

17. Numerical self-excitation is not present, even though the initial and outflow boundary inconsistency is still present.
Reflected waves cannot be observed because they are smaller than the prescribed tolerance for the sub-iteration procedure
used at each time step, which is O(10−8) (Teixeira and Alves, 2010). This means a decrease of approximately two to
three orders of magnitude in the perturbation amplitude was achieved in comparison with the results presented in Figure
7. No secondary reflected wave was observed here as well.
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Figure 16. Same as Figure 7, but using an inflow buffer
region with σ0 = 0.1.
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Figure 17. Same as Figure 7, but using an inflow buffer
region with σ0 = 1.0.

4. CONCLUSIONS

The present paper has shown that inaccurate initial conditions generate substantial error in numerical simulations.
Strong evidence was provided to support the idea that their interaction with outflow boundary conditions, and not inflow
ones as previously believed, is responsible for the formation of the start-up vortex. Furthermore, the efficacy of global
boundary conditions that require reference solutions depend strongly on the accuracy of this solution.
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