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Abstract. This study establishes a new procedure for selecting the control parameters in preconditioned Density-Based
methods. These methods are used to accelerate the convergence to a steady-state for low mach number compressible
flow simulations. The main parameter studied here is the preconditioned speed of sound. Its formula is derived in the
literature from an analysis of the governing equations at low Mach numbers, making sure their respective eigenvalues
have the same order of magnitude. However, preconditioning is simply a mathematical tool used to remove stiffness
from ill-conditioned systems of equations. In this paper, we showed that an optimal value of the preconditioned speed
of sound obtained by minimizing the condition number of this system can increase the asymptotic convergence rates of
the Density-Based methods. The non-orthogonality of the eigenvectors of the preconditioned system is crucial in
determining the potential for transient amplification of perturbations. This non-normality leads to significant robustness
problems at stagnation points. Several existing Density-Based methods possess a highly non-normal structure for low
Mach numbers. The suggested preconditioned speed of sound optimization also eliminates this non-normality problem.
In order to validate this novel methodololgy, several steady-state simulations were performed with explicit and
implicit pseudo-time marching schemes as well as approximations for spatial derivatives with different accuracy
orders. The results obtained were compared to the ones generated with the standard preconditioned speed of sound
used in the literature. The one are presented showing the marked improvement in robustness and asymptotic
convergence rate.
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1. INTRODUCTION

In fluid mechanics, the Navier-Stokes equations provide the most complete model for the study of compressible
flows of Newtonian fluids. However, the main difficulty associated with the numerical simulation of these unsteady
equations is the degradation of convergence at very low flow speeds. Whenever the Mach number is very small, there is
a huge disparity between the convective and acoustic eigenvalues in this system of equations because the speed of
sound is much larger than the convective velocity. Hence, time step size in time marching schemes is limited by
acoustics instead convection, even though the former is not relevant in most low Mach number flows (Turkel, 1987).
The significant increase in computational cost that follows is not the only problem that must be dealt with. Pressure
gradients are inversely proportional to the Mach number square. Hence, pressure round-off errors are amplified at low
Mach numbers, causing accuracy problems as well (Merkle and Choi, 1988). A few different techniques have been
developed to minimize the problem of numerical stiffness and accuracy of compressible flow simulations at low Mach
numbers. They enable the development of robust methods capable of dealing with flows at arbitrary Mach number. The
present paper focuses on Preconditioned Density-Based methods.

These methods deal with the problems mentioned above in two steps. First, they solve a set of primitive variables
instead of the standard conservative ones. This set always contains pressure and velocity components but there are
different possibilities regarding the last dependent variable, although it is usually temperature. Furthermore, pressure is
split into hydrodynamic and thermodynamic contributions. The latter is usually constant whereas the former is the
actual dependent variable. In doing so, round-off error propagation is dramatically reduced. This variable
transformation follows a simple chain rule and generates a Jacobian matrix that multiplies the physical-time derivative.
The second and final step modifies this matrix, forcing all eigenvalues to have the same order of magnitude. Hence, it
essentially eliminates all stiffness issues related to the differences in acoustic and convective flow speeds. There are
several different ways of specifying this modified matrix (Turkel, 1993; Turkel, 1999), known as preconditioning
matrix, which introduces a few control parameters. They are the subject of the present paper.

1.1. Low Mach Number Stiffness

The eigenvalue disparity of the Navier-Stokes equations at low Mach numbers may be checked algebraically if one
considers an inviscid and one-dimensional unsteady compressible flow, written as
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where Q represents the standard conservative variables and E; the inviscid fluxes, given by

Q ={p.pu.pE} and E; ={pu,pu’®+ p,(pE + p)u}, )

and p is the density, u the flow velocity in the direction x and p is the pressure. Only perfect gases are considered in this
study. Their equation of state is

p=pRT =(y=1)pe, 3
where e is the internal thermal energy per unit mass, obtained with
e=CT, 4

and T is the temperature, C, the specific heat of gas at constant volume, & the coefficient of thermal conductivity, R the
gas constant and vy is the ratio of specific heats. Finally, the total internal energy per unit mass E is given by

u
E=e+—. 5
e 5 (5

Using the chain rule allows one to re-write equation (1) as

a_Q+aEia_Q—a_Q+Aa_Q=

— == 0, (6)
ot dQ oJx ot ox

where A is the inviscid flux Jacobian matrix defined as

3 0 1 0
Az P gy, P °_ )
aQ dp d(pu) d(pE)
u(@—Hj u op +H u(1+ op ]
| op d(pu) I(PE) )|
and, according to Fedkiw et al. (1997), the pressure derivatives above for thermally perfect gases are
ap u’ op op
—=y-D)—-h +C,T|, ——=—(y—Du and =(y-D, 8
i )( 5 , j S =7 o5~ 7D @®)
with & representing the enthalpy per unit mass and H the total enthalpy per unit mass, defined as
u’
H=e+Z+L 9)
p 2

The eigenvalues of matrix A provide the direction in which characteristic waves propagate information in this
particular flow model given by equation (1). They are given by

A—){/‘iq, A, ﬂg}z{u, u+c, u—c}, (10)

where c is the speed of sound.

Now it is clear why low Mach number flows, where u << ¢ and the flow is dominated by convective time scales
instead of acoustic ones, yield eigenvalues with vastly different magnitudes. These differences are responsible for the
stiffness faced by time marching schemes, since the time step utilized is calculated with expressions such as
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. L L
At—CFLXmln{m,m,m}, (11)

where L is a characteristic length, usually given by the local grid spacing, and CFL is the Courant-Friedrich-Lewy
number, which relates the physicals velocities with the numerical ones (L/At). Hence, time steps are going to be
dictated by acoustic scales even though the convective scales are the most important ones at low Mach numbers. In
other words, they are going to be dictated by numerical stability instead of accuracy considerations, drastically
increasing computer times since the former imposes values that much smaller than the latter.

1.2. Low Mach Number Preconditioning
It is well known that density becomes independent of pressure at low Mach numbers. In the zero Mach number limit
when the flow is incompressible, pressure gradients are important but not the pressure itself. Therefore, as previously

mentioned, it is important to obtain pressure directly from the conservation equations rather than indirectly from an
equation of state. This can be achieved by using the chain rule to re-write equation (1) as

a_Q@_FE:T&_F%:O

~ (12)
9Q dt odx ot ox
where the Jacobian matrix 7" that achieves this transformation is given by
» o,
op aT
T = a—? = ua—p p ua_p s (13)
0Q ap oT
p oh a0 oh
—=|1=-p=— H—+p—
p ( papj S TREE™
and the chosen primitive variable vector Q is
Q={p,-u.T}, (14)

with p = pr + py, where the new dependent variables pr and py are the thermodynamic and hydrodynamic pressure
contributions, respectively, with the former assumed constant in the present work. Hence, the spatial derivatives in the
momentum equation depend only on py. This additional modification is justified by the fact that p; ~ O(pc’) and py ~
O(pu’) and is crucial to reduce the pressure round-off error propagation.

The second necessary step to enable low Mach number simulations using the original conservation equations
requires reducing the stiffness caused by eigenvalue disparity, as discussed previously. This can be better understood by
looking at the thermally perfect gas relations

p_ 1 9p_—p Oh_q g N _ (15)
op RT T T  9p or 7

or, more specifically, at the density dependence on pressure. For an arbitrary real fluid, it is given by

dp 1 dp oh oh
9 _ Pl p [ p2, 16
p GT( pap]/[paTj (16)

according to Merkle and Choi (1987). Equation (12) still contains eigenvalues with vastly different values because the
speed of sound c is still much larger than the convection speed u. This problem can be minimized if we replace the
sound speed by a preconditioning velocity V), in relation (16), effectively re-writing it as

1 9p(. _on)/( n
= _Fl1_p— — |, 17
P =Ve E)T( pap]/(paTj (17)
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which changes the Jacobian matrix 7 into the preconditioning matrix / given by

pp 0 pT
r= up, P upr , (18)
oh oh
pr—(l—PgJ pu Hpp +Pg

where p; is obtained from

ap
0. =01~ 19
roror (19)

and was introduced only to generate the preconditioning matrixes used by Venkateswaran and Merkle (1999), with
0 =0, and Weiss and Smith (1995), with d =1.

The impact caused by preconditioning the governing equations can be evaluated through the calculation of their new
eigenvalues. In order to do this, one must re-write equation (12) as

rQ 9B _pdQ 390 _0Q .30

, (20
J07  ox or ox 0T ox

where 7 represents a pseudo-time, since the correct physical-time ¢ is lost upon preconditioning, and the new inviscid

flux Jacobian matrix A is given by

op op |
“op P “or
A=§2= 1+u23—p 2u uzg—’T’ , Q1)
p
ua(gH) p(H+u2) ua(pH)
| op or |

noting that the total enthalpy derivatives can be obtained by combining relations (9) and (15). The eigenvalues of

equation (20), in either one of its forms, are obtained from matrix I''A to yield

2 2
v: v, v v
Zqzu,ﬂng[l+—[;]+ VPZ{%[“_QH and @:%[H—g]— V§+[g(l——g : (22)
Cc c c c

clearly showing that as long as 'V, <<c, low Mach number stiffness will be negligible.

2. STANDARD PRECONDITIONED SPEED OF SOUND

The derivation above follows what is arguably the most used preconditioning method used in the literature, the one
by Venkateswaran and Merkle (1999). According to this method, one should use

V. =min{V, ,c}, where Vim=\/F, (23)

for steady inviscid flows. This formula guarantees two important features. First, Vp is always positive, which means the
mathematical nature of a flow will not be modified. In other words, if a flow is originally either parabolic or hyperbolic,

it will remain so under preconditioning. Furthermore, it is not possible for compressible flows to be elliptic since a time
derivative, with or without preconditioning, is always present. Second, this formula has a switch that reverts Vp back to
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its original value when the flow is transonic. Nevertheless, it must be modified whenever stagnation points are present
since the flow velocity approaches zero in such regions. For this reason, a stagnation velocity is defined as

V, = M, (24)

st p
where Ap is the local pressure difference. Relation (23) is then re-written as

V, =min { max { V,

inv?

V.t e} (25)

3. OPTIMIZED PRECONDITIONED SPEED OF SOUND

The solution of algebraic systems can be obtained by different methods. Each one requiring multiplications between
scalars and/or vectors and/or matrixes. These are composed of integer and/or real numbers that must be approximated
by a finite number of digits, giving it what is commonly called machine precision. The propagation of these round-off
errors is related to the number of basic algebraic operations performed by each method and, specially, to the condition
number of the associated matrixes. The first source of error is minimized by an efficient implementation of each
method, which reduces the number of basic operations, most importantly multiplications and divisions. The second one
is problem dependent and is the main focus of the current paper.

Given a generic algebraic system such as A-x =b, its condition number with respect to a Frobenius norm is

K (A =[A], x[a ) . (26)

which essentially measures the sensitivity of a system to small perturbations. The values of x_(A) go from one to

infinity. One represents perfect conditioning, where perturbations will not be amplified at all throughout the algebraic
operations. As this number gets higher, the system becomes more and more ill-conditioned. In extreme cases, round-off
errors will be amplified to such an extent that accuracy degrades severely. The same happens to convergence whenever
iterative or marching schemes are utilized. As the Mach number gets smaller, the discrete version of the compressible
governing equations, obtained after applying a numerical solution method to it, becomes more and more ill-conditioned.
This relationship between a numerical property and its physical origin arguably led all studies found in the literature to
define control parameters for low Mach preconditioning methods, such as the preconditioned speed of sound, following
a dimensional analysis of the governing equations under different flow conditions. These studies always had the same
basic goal: select the control parameters in such a way to force the well known eigenvalues of the compressible Euler
equations to have the same order of magnitude. However, this problem is a numerical one and no relationship with the
original physical properties of the flow should be necessary, only its mathematical nature must be maintained. Hence,
this basic goal can be refined: select the value of Vp that minimizes the condition number x_ .

An algebraic system of equations is obtained at each grid point whenever explicit time marching schemes are
chosen. Its size depends only on the number of differential equations being solved. This leads to

K (D) =[], *[r7 27)

where [/ is the same preconditioning matrix defined in (18). An analysis of & shows a single global minimum that

varies little throughout the grid, giving Vp a smooth spatial distribution.

Even though multigrid strategies and parallelization are easier to implement with explicit marching schemes,
implicit ones should be used instead because they are more efficient at driving a solution to steady-state. Whenever
doing so, the algebraic system ceases to be decoupled and one should look at all grid points simultaneously. Hence,
their size depends on the number of grid points utilized. This usually leads to block tri-diagonal systems for one-
dimensional problems because they can be solved more efficiently. However, minimizing equation (26) for such a
system is very inefficient and an alternative path must be followed. This starts with the fact that these tri-diagonal
systems are very often diagonally dominant. Furthermore, a block diagonal system would be obtained in the theoretical
limit of maximum diagonal dominance. The condition number of such a system is simply the maximum value among
the condition numbers of each block diagonal element. It will be minimized whenever the condition number of each
element is minimized. Hence, one could say that equation (27) is still a valid approximation for multi-diagonal systems
as long as they are diagonally dominant.
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4. NUMERICALS EXPERIMENTS

To validate the methodology, explicit and implicit Euler methods were used to march in the pseudo-time, with
spatial discretizations of first order. The results obtained by the new method of optimizing the preconditioned speed of
sound were compared with what is presented in work (Venkateswaran and Merkle, 1999), both using the maximum
CFL number of each method (optimized and non-optimized), as presented in Figures 1 to 4:
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Figure 1. Mach number’s variation per spatial grid - Explicit Euler, Nx = 51, M = 10™, spatial discretizations of first
order, 0 = 0, subsonic diffuser.
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Figure 2. Eigenvalues ratio variation per spatial grid - Explicit Euler, Nx = 51, M = 10™', spatial discretizations of first
order, 0 = 0, subsonic diffuser.
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Figure 3. Conditioning number matrix 7/~ variation per spatial grid - Explicit Euler, Nx = 51, M = 10", spatial
discretizations of first order, ¢ = 0, subsonic diffuser.
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Figure 4. Pressure’s variation per number iteration - Explicit Euler, Nx = 51, M = 10", spatial discretizations of first
order, 0 = 0, subsonic diffuser.
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4. CONCLUSION

Based on the results presented from Fig. 1 to Fig. 4, we can conclude that, in all the cases, the rate of convergence of
the novel methodology is bigger than the method presented in (Venkateswaran and Merkle, 1999). Besides,
independently of the optimization method employed, for different Mach numbers, spatial grids and spatial derivatives
with different accuracy orders, the behavior is the same. However, we should use spatial grids with number of points
that ensure the convergence of grid.
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