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Abstract. Currently PID controllers are widely used in industrial process control, but controllers which use Al
techniques, such as fuzzy, neural networks and hybrid techniques, are no longer restricted to academic research. They
are also gaining ground among industrial applications. However, each type of controller, depending on the tuning or
training technique, presents better performance in certain regions or operation points, and that the design and
implementation of these controllers frequently depends of proprietary software, which usually has a very high cost.
Aiming to have an open source environment capable of tuning PI, PD or PID fuzzy controllers, while determining the
best control signal for each instant and switching between those controllers, this work proposes an algorithm of
reinforcement learning, named Q-learning to identify which controller is best suited to work in different linear regions
of the system. It is used a soft-switching technique to switch between control signals and the integral of the error as
metric for selection of the most suitable controller. For validation and testing of this proposal, it is used a system level
control of Quanser, where the Q-learning algorithmis trained using the e-greedy policy. Test results display the system
switching among controllers and the comparison with each controller performing separately in order to prove the
functioning and effectiveness of the proposed implementation.

Keywords: Intelligent system, PID, Fuzzy, Q-learning, control signal soft-switching.
1. INTRODUCTION

PID controllers are extensively used to control idewvariety of industrial processes, mainly becatisy are
robust, easily understood and capable of satisfagierformance (Wang, 2001; Ingimundarson and Higbl 2002;
Piazzi and Visioli, 2002; Zhong and Li, 2002; Chemd Seborg, 2003; Astrém and Hagglund, 2004; Fa@fo4,
Fonsecat al., 2004). However, complexity and nonlinearities@dl systems have stimulated new control techsique
to emerge lately. Fuzzy controllers are suggessedna of them to replace the traditional PID or@ntrollers with
fuzzy logic have been used to control differentetypf systems, ranging from the simplest systeow) as control of
inverted pendulum shown in a study of Mohanlal &admal (2002) to more complex systems such as aumtouns
robot navigation, as proposed in the work of Samehalanet al. (2007), Baturone et al. (2008) and RaguramanqR00

In the industry the use of different controllers floe same process is already usual, but the noastnon technique
is the gain-scheduled, as in the work presenteédinteset al. (2008) which used it to control a pH neutraliaati
process. The purpose of the gain-scheduled tecangto switch among multiple controllers of thensatype (PID),
tuned to act differently in the various regiongpodcess operation.

Research has been proposed with the intention ttérbeontrolling industrial processes, considertihg different
characteristics inherent to classical (PID) andliigent controllers (fuzzy), and different tuningpproaches for each
of these controllers in order to work in differeagions of operation of the same industrial procEss of the papers
regarding switching techniques among different walgrs is presented by Diniet al. (2010). It proposes the
implementation of a system for automatic switchémgong controllers, P, fuzzy and neural, impleméntih the help
of MatLab ® being used to control a system of leval Quanser ®.

The idea proposed by Dingt al. (2010) formed the basis for the development &f thsearch, although no soft
switching technique was proposed in the cited w@litching technique among controllers can causeouse
mechanical or electrical problems in real systentgn low signal values are applied by controllerd & is necessary
to switch to higher ones provided by more aggressontrollers.
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Another improvement in the work proposed by Digtial. (2010) presented in this work is the change inwdating
the area of the figure when occurs the interseasfotime sampling of the training process with gassage by desired
reference, in this case the figure approximateatoutate of the error will be one or two triangiastead of a trapeze.

It's thinking about these improvements and the dépece of proprietary software for the design akzfuand PID
controllers to act in the same process which thajgep proposes the construction of an open sourdeoement, able to
tune PID and fuzzy controllers and able to making $election and soft switching to the best coletrolising as
comparison metric the integral of the error, thetem will be previously trained in a real envirommeusing the
algorithm of reinforcement learning Q-Learning wittgreedy policy for decision making .

As a test scenario will be used a Quanser ® lgyglem connected to a server via a power ampiifedule UPM
2405 and a data acquisition board, both Quansen®. glant is already ready and connected, as weathplementation
of a service running on this server for communaratvia socket with the notebook where the proposetem is
running.

2. Q-LEARNING

According to Sutton and Barto (2002), the reinfoneat learning is an approach to artificial intedlige that allows
an entity to learn from its interaction with thevénnment, through knowledge about the state ofitldévidual in the
environment, of their actions within this envirormhend the state changes that happened after tiomaperformed.
An apprentice agent seeks to maximize the perfocmameasure based on receiving reinforcements witeracting
with the unfamiliar environment. Its use is recomehed when there are no models, or when it is nt# &b get
appropriate examples of situations which the leaagent will confront. The intelligent agent is antonomous
computational entity which acts without the intertren of another system and is never advised oft\abtion to take.
It aims to learn autonomously an optimal policyaefion, through interaction with the environmehtough trial and
error.

state ‘reinforcement action

B agent
.

Figure 1. Representation of reinforcement leari#ggton and Barto, 2002).

The main elements of reinforcement learning are:

» The environment where the agent will act;

» Policy (r) which represents the behavior that the systeirfalibw to get the goal;

» Reinforcementr,.{which is the signal given by the environment to #gent, when an action has been
made and a state transition has occurred;
Return ®;) is the sum of reinforcements received over theti
Function of state-action value (Q (s, a)), useeé\valuate the quality of the actions taken by thenag
representing an estimate of the expected totatnretu

The purpose of the learning process is to guideatiient to take decisions (actions) which will maxien(or
minimize) the expected return value. Thus callb@aciction is defined as a sum of reinforcements awee. In simple
cases, where the environment ends naturally in speeific episode (finite time), the return is givey:

Ry =1y + 1y + 1y + o+ 1y 1)

But in cases where this happens () the return will also tend to infinity. To sol¥kis, a discount factor is used,
set in the range 8y < 1 to ensure that the return is finite, i.e.:
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R = Yk=o Vk "Ttrk+1 (2

To achieve this maximized return value, the agemstrfollow a given policyx), which occurs in the mapping of
states (s) and actions (a) in a vatués, a) in order to converge to a poliey* * (s, a) which leads to solving the
problem in an optimal way.

The function of state-action value Q (s, a) is usedvaluate the actions taken by agent in the sfat s (actual
state) when a actiom, = a is chosen from there by following a poligyany, according the following expression:

Q"(s,a) = E, v oy +k+1|S, =S,a, = a} (3)

To make the agent capable of making the right detsand choose the most appropriate actions fprawing the
system, we use the algorithm of reinforcement liegr@-learning, one of the most important contribig to the area,
proposed by Watkins et al. (1992). Among its adages, one which stands out is the fact that it enyes to optimal
values of Q (s, a) without depending of the poligljich is being used, i.e., the action-value furncti@ directly
approximates the optimal value function Q * (s, tAypugh updates of the state-action pairs, whighraade when
these pairs are visited, making thus the Q-learaim@ff-policy method. The expression of updatimg matrix of Q-
values in Q-learning algorithm based on the actiale function and is denoted by:

Q(s,a) =Q(st ,ar) + alrrpr + v -maxaQ(Serq,ar) — Q(se,ar)] 4)

wheres, is the actual states, is the action realized in the state and r,,, the reinforcemensignal received after
executea; in s;, s; + 1 is the next state, is the discount factor (8 y < 1) andx is the coefficient of learning (@ «x<
1).

For the convergence of the algorithm is guaranta#tdstate-action pair must be visited and updat@atinuously
and can be used any policy that ensures that gatdaction pair is visited often. A very commonastgy is the
random exploratiorg-greedy, where the agent performs the action aguptd the random probability i.e.:

where, o N

R Ao 0
where,

a’*(s) = argmax Q(s,a) (6)

To carry out this work, it was decided that statesild be admissible values of the error in the tdrdm -4 to +4
volts, discretized with a resolution of 0.2 volisijilding a table with 41 discrete states. Thus,niaping of these states
is given by:

S(k)=e(k)*s +21 @)
where, S (K) is the state e (k) is the error betvtbe desired and measured at the bottom of thesigstem at time t.

In the work proposed by Dinit al. (2002), the reward is given by minimizing theograsing calculating the area
of the error at time instant k and k +1 being appnaited by a trapezoid function, as shown in Fig2irend whose

reward function suitable for the trapeze is givgn b

_ le()+e(k+1)|

Rk 2 ta (8)
being,
e(®) =r@)—y@®) 9)

where r (K) is the reference for the level of t&nly (k) the value actually measured for refer@ktand ta the decision
period (verification of switching) whose value atexpfor this work was 0,5 seconds.
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Figl2. Area delimited by the curve of error (DintzAl., 2010).

But when the moment of decision period (ta) coiasidvith the passage through the desired referdmee t
approximate figure ceases to be a trapeze and l@sctwo triangles, as shown in Figure 3, whose fanstof reward
to calculate the area of triangles are given by:

le(k)] _ le(k+1)]
tr - trr (10)
t" =ta—t' (11)
le(k)] _ le(k+1)]
& ta—ts (12)
le(k + D)| = t" = |e(k)| * ta — |e(k)| =t (13)
1 le(k)|*ta
B = e ivietol (14)
t" =ta—t' (15)
t'«|e(k
Ay = Iz( )| (16)
t" xle(k+1)|
Ay=—7"" 17)
Af = Al + AZ (18)
where:

t' -> Triangle’s base (time) before cross the sattpo
t" -> Triangle’s base (time) after cross the setpoin
ta -> Total sampling period (0,5s).

A, -> Total area before cross the set point.

A, -> Total area after cross the set point

A; -> Total area calculated.
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Figure 3: Area delimited by the curve of the ergygssing the reference.

The training consists of the agent's interactiothwiie environment in a sequence of discrete si&peach time
step t, there is a representation of the environn@estates; (error). Based on the statg intelligent agent selects an
actiona; (controller type). As a consequence of the choicaction, the environment is somehow changed, thisd
change is communicated to the agent through addigeinforcement (the error minimization functicand the shift to a
new states,, ; of environment.

At the beginning of the learning process, the admst no knowledge of the result of choosing betwdiéfarent
actions, so he performs various actions and obsé¢heeresults.

This interactive process allows the intelligentrsigean determine, after a number of trials, the bestroller to be
used in every state. Thus the agent can learn amadpolicy of action that maximizes the estimawgbected return
represented the state-action value function Q)(sn@ependent of the initial system.

It was adopted a-greedy policy with 80% chance of choosing theactvith the highest estimate. In the first step
the choice is made randomly. It was also adopteddarning coefficient=0.15 and the discount factgs1. Training
was performed online, for 70 episodes, with ea&ntp120 periods of decision (0.5 s). The duratidreach episode
was approximately 1 minut&he decision period is 0.5 s the sampling periothefsystem is 0.1 s.

3. PROPOSED SOLUTION

The proposed solution is a system developed in Jsivey the Net Beans IDE version 6.9.1, able tdément PID
controllers and fuzzy controllers Takagi-Sugenok@ia, 1985). These controllers can be graphicalhet through the
screens of the system.

The proposed system is also able to decide whabekecontroller is for different operation regiarfsthe plant,
using the training algorithm Q-learning, and toahehich controller had the lowest error for eaample time (ta).

For the implementation of soft switch technique amaontrollers it was adopted a policy of perceasagvhere
each cycle read/write of the system, i.e., evel§ filiseconds during the switching of the conteadl will be done a
percentage calculation of the controller signat thas being applied and the signal to be appliedritbe seen in Table
1.

Table 1: Percentages of the switching process.

Controller/Time 100 ms 200 ms 300 ms 400 ms
Controller 1 80 % 60 % 40 % 20 %
Controller 2 20 % 40 % 60 % 80 %

The system has many screens to configure PID drsand fuzzy. Next, it is shown and discussetiesof the
screens, that can be seen in figures 4 and 5.
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Figure 4:

Main Screen

The main screen of the system is responsible fowsliy the reetime graphical simulation of the tank system,
first graph showing the reference level, and lewdltank 1(top) and 2(lower). The second chart shtive values c
error and error derative. Third graph shows the value of controlletpoi to be applied to the plant and the fot
graph shows what controller is in execution eadaint. The main screen too permits select theatb$ivel, and th

parameters: alfa, gama, epsilon amel humbers of episodes to trai-learning algorithm.
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Figure 5: Membership Functions Screen.
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In screen of membership functions we can definentin@ber and parameters of membership functionsnfaout
variables: Derivative Error and Error.
4. TEST ENVIRONMENT

The chosen test environment uses a system of abtgoids of Quanser ®, a Power Amplifier Module URND5-
240, a capture card and a level plant (Quanse8)2@@h two coupled tanks, level sensors and a ity pump with
double direction attached to the upper tank, aseaseen in figure 6.

_ Notebook
Amp]iﬁfr Server

Coupled Moduls

Tanks

Figure 6 Test Environment.

The need to use the power amplifier module is nyainle to the low current and tension provided bytwee board
in to the server that is not sufficient to feed tidwek system pump. The electrical and hydraulicigations of the tank
system are shown in Table 2 (Quanser, 2008).

To establish the communication between the propsegstém running on the laptop and the server otahks, it
was used a new Java class incorporated into thersy$t enabled communication via socket with the/ige running
on the server.

The communication via sockets or IP: port uses ME#bernet network of the lab, something that does n
compromise the communication with system of takkewing that this communication presents a resptinseof less
than 1 ms and sampling rate of the system is 100 ms

The electrical and hydraulic characteristics ok&are shown in table 2, extracted from the taakumal (Quanser,
2008).

Table 2: The Electrical and Hydraulic Specificaiaf Tank System

Specification Value Unity
Pump Constant Flow 4.6 cralV
Pump Max Flow 100 Cis
Pump Voltage +15 Vv
Pressure Sensor +12 V
Pressure Range 0~6.89 KPa
Sensitivity 5 cm/V

The power module UPM 2405-240 is capable of prowjda continuous voltage of + 24 volts and a maximum
current of 5 Amps. Its specifications are showit able 3.

Table 3: UPM Power Module 2405-240, Electrical Raters

Parameter Value Unity
Amplifier Voltage Gain 1,30u5 VIV
Maximum Direct Voltage Amplified +24 V
Maximum Direct Current Amplified 5 A
Direct Voltage of Exit +12 \Y;
Maximum Direct Current of Exit 1 A
Alternate Current Supply 100/120/230/240 V
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6. RESULTS

The graphs presented in this work were taken frbw main screen of the system running on the laptop
communicating with the server system of tanks \é@atfEthernet network, as shown in Figure 7
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Figure 7:GraphSet Point 15 cm

Figure 7 shows the graph for the three controlleeking separately, trying to keep a referencelle¥d5 cm. The
empirical method was used to tune controllers whth purpose of forcing them to have different sigread to make
clear how the process of soft switching workss Ibétter visualized in Figure 8.
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Figure 8.Graph with controller’s switch.

Figure 8 shows in the first graph the performariceoatrollers working together to control the sapnecess, trying
to keep a reference level of 15 cm. Controllerskivy together, and using the Q-learning algorittan delecting the
best one, presented better performance than whearated. Even when compared to the best contrsiewn in
Figure 7, the fuzzy one, the proposed switchingtswh (graph 1 of figure 8) does not present oveosland also shows
the smallest oscillatory period.

The second graph of Figure 8 shows the signal sathat each controller is calculating, but also $ignal
calculated in the soft switching. It demonstrates technique of soft switching between the consighals — it is
displayed by baby blue line that represents theutatied signal.
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In the third graph is shown which controller isiagtfor each instant, becoming clear by observivggfigures 7 and
8 which controller has the smallest steady statar.eAccording to figure 7, it is the fuzzy contierl and this is the one
selected by Q-learning for instants of time gre#itan 55 seconds.

6. CONCLUSION

The proposed solution proved to be effective wheplémenting fuzzy and PID controllers, as can lmnse the
graphs of Figure 7. It was able to decide whathibst controller is to each time instant using thle@ning algorithm
and to make the soft switch among controllerseas $n graph 2 of figure 8.

The switching solution presented better performahes each controller acting separately. It hasimized the
settling time, oscillations and system overshoat takes the best features of each controller. Topgsed solution is
feasible for tuning and making the selection oftiket controller to act in the same process.

The system presented in this paper will be avadlas® open source, so other researchers wishingeat wor
improve the system will have access to the sourde.c
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