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Abstract. We consider phenomenological, mathematical and computational aspects related with the problem of recon-
struction of an unknown characteristic star shape thermal/acoustic source moving inside a domain. By introducing
the definition of an Extended Dirichlet to Neumann map in the time space cylinder and the adoption of the anisotropic
Sobolev-Hilbert spaces, we can treat the problem with methods similar to that used in the analysis of the stationary source
reconstruction problem. Using Green formula we establish a reciprocity gap functional relating directly the boundary in-
tegral of Cauchy data with the domain integral of test functions in the unknown characteristic source support. An adjoint
space of test functions is introduced in order to formulates a system of first kind Fredholm equations. Explicits Fourier
series based solutions for the equations involved in the model are presented. Numerical experiment related with captured
of a source inside a domain from boundary data are presented in one, two and three dimensional implementations. The
problem of source centroid and shape determination also is addressed.

source reconstruction, transient second order equation, Helmholtz equation, finite differences-scheme, shape capture.

1. INTRODUCTION

Inverse source transient heat problem has been studied by a huge number of authors. In relation to books with specific
chapters in the subject, we can give special attention to Anger (1990) and Isakov (1990). This last gives specific results
for the problem of source reconstruction in models with different operators and over specification of boundary conditions,
and specifically demonstrates an uniqueness theorem related with the moving characteristic source studied in this work.
Early works by Cannon and Perez-Estevas (1986) studied stationary support reconstruction under hypotheses of a known
intensity function, f(t, x) = f(t)χω(x). Some years later they studied the same problem in a three-dimensional case,
Cannon and Perez-Estevas (1991). More recently, Lefevre and Nilliot (2002) used the Boundary Elements Method for
identification of static and moving point sources. Also, it is important to mention the authors Hettlich and Rundell (2001)
who model the unmoving characteristic domain and Badia and Duong (1998), whose stationary source reconstruction
and the transient point sources reconstructions have a fundamental influence in the present work. The present work
has come from the investigation of the stationary source reconstruction by the fundamental solution method in Alves
and all. (2008). The adoption of the reciprocity gap functional method to solve the stationary source in the Laplace
Poisson equation, Roberty and Alves (2009), and the solution of the full identification of sources with the Helmholtz
Poisson model, Alves et al. (2009), have developed to the modeling adopted to the transient heat transient characteristic
source reconstruction in this work. The model is based on the modified Helmholtz Poisson equation that is obtained
from the transient equation through the θ-scheme related to time finite differences discretization. Analysis of the related
mathematical and computational work involved has been presented by the author in national conferences, Roberty and
Alves (2007a), Roberty and Alves (2007b), Roberty and Sousa (2008).

2. DIRECT TRANSIENT HEAT WAVE EQUATION PROBLEM

By Ω ⊂ <d, d = 1, 2, 3 we denote a bounded space domain with smooth boundary Γ = ∂Ω, which means that it
will be locally parametrized with C∞ functions and that Ω is locally on one side of its connected boundary. In the spatial
surface Γ the normal ν is defined almost everywhere and the induced measure on the surface is denoted by dσ. In the
time-space <d+1, we consider the time interval I := (0, T ), T > 0 to form the bounded cylinder Q := I × Ω, whose
lateral time-space surface is Σ := I × Γ. A section in this cylinder is Ωt := {t} ×Ω and the complete cylinder boundary
is

∂Q = Σ ∪ Ω0 ∪ ΩT ,
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where Ω0 and ΩT are, respectively, the cylinders’ bottom and top sections. At cylinder top and bottom there exist the
corners Γ0 = Ω0 ∩ Σ ⊂ <d−1 and ΓT = ΩT ∩ Σ ⊂ <d−1, respectively.

The direct transient heat wave source initial boundary value problem consists in finding u(t, x) with (t, x) ∈ Q given
a boundary input g(t, x) with (t, x) ∈ Σ, an initial input u0(x), u′0(x) with (t, x) ∈ Ω0 and a source distribution f(t, x)
with (t, x) ∈ Q that verifies the problem :

(Pu0,u′
0,g,f

)


1
c2 ∂ttu+ α∂tu−∆u = f in Q,
u = u0 , ∂tu = u′0 in Ω0,
u = g on Σ.

(2.1)

and Dirichlet data compatibility condition, u0 = g at the time-space cylinder corner Γ0.
It is well known that this direct problem is well posed. For Hilbert space framework we need to introduce , following

Lions and Magenes (1972), the anisotropic Sobolev spaces. For r, s > 0

Hr,s(Q) := L2(I;Hr(Ω)) ∩Hs(I;L2(Ω))

and the associated lateral boundary spaces

Hr,s(Σ) := L2(I;Hr(Γ)) ∩Hs(I;L2(Γ)).

Here Hr(Ω) and Hr(Γ), r ≥ 0 are the Hilbert family of Sobolev space in the L2 theory, and the space L2(I;X) denotes
the class of functions that are strongly measurable on I = [0, T ] with range in X with the following Hilbert norm:

||v||L2(I;X) = (

∫
I

||v||2Xdt)
1
2 <∞.

The normal space with null lateral boundary trace will be

Hr,s
0,•(Q) := L2(I;Hr

0 (Ω) ∩Hs(I;L2(Ω)) ⊂ Hr,s(Q).

The adjoint transient heat wave problem has a straightforward definition

(P ∗vT ,v′T ,g,f
)


1
c2 ∂ttu− α∂tv −∆v = f in Q,
v = vT , ∂tv = v′T in ΩT ,
v = g on Σ.

(2.2)

and Dirichlet data compatibility condition, v0,T = g|0,T , v′0,T = g′|0,T , at the time-space cylinder corner Γ0,T . The time
reversal operator

κT : Hr,s(Q)→ Hr,s(Q) ; v(t, x) 7→ κ[v](t, x) = v(T − t, x) (2.3)

can be used to change changes of variables u∗(t, x) = v(T − t, x) and convert the adjoint problem into an equivalent
direct problem.

REMARK 2.1. The data in the lateral and bottom d-dimensional surfaces of time-space cylinder can be considered as
Dirichlet prescribed boundary data in the extended boundary Ω0 ∪ Σ of the transient heat wave equation problem. This
set is adjoint by the extended boundary ΩT ∩ Σ for the adjoint problem. Since the transient heat wave problem has two
derivatives in time and also two derivatives in space, the problem and its adjoint are posed with the following set of
Cauchy data: prescribed both function (Dirichlet) and its time derivative (Neumann) on the bottom Ω0 and on the top ΩT
of the cylinder and both Dirichlet and Neumann data at the lateral cylinder surface Σ. If there exists data compatibility
at corners Γ0 and ΓT , it will give to the transient heat wave problem a character similar to the Poisson Laplace equation.

LEMMA 2.2. (SOLUTION OPERATOR) The solution operator is a continuous but not injective linear operator associ-
ated with the Direct problem 5.Pu0,u′

0,g,f
defined by

S(u0, u
′
0, g, f) = u

when u ∈ H2r+2,r+1(Q) is solution of problem 5.with initial data (u0, u
′
0, g) = (u|Ω0 , u

′|Ω0 , u|Σ).

DEFINITION 2.3. (EXTENDED DIRICHLET TO NEUMANN MAP) We call The Extended Dirichlet to Neumann map
for the problem 5.the mapping defined by

ΛfΩ,Σ[(u0, u
′
0, g)] = (u|ΩT , u′|ΩT , ∂νu|∂Ω)

when u ∈ H2r+2,r+1(Q) is solution of problem 5.with initial data (u0, u
′
0, g) = (u|Ω0

, u′|Ω0
, u|Σ).
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Note that this operator can be viewed as a combination of the standard Dirichlet to Neumann map in the spatial
boundary with the Input to Output map in the time boundary, that is, in initial and final interval times, found in control
theory.

DEFINITION 2.4. (DIRICHLET GREEN FUNCTION) By the Dirichlet Green’s function G(t, x, τ, ζ) for the problem 5.
we mean its adjoint problem solution 2.2 solution with source δ(x − ζ, t − τ), (t, x, τ, ζ) ∈ Q × Q, and homogeneous
Dirichlet data on the extended boundary ΩT × Σ, i. e., G(t, x, τ, ζ) = 0 for (t, x) on ΩT × Σ.

REMARK 2.5. For regular data the Green’s function exist Cos, and we can show that

u(t, x) =

∫
Ω0

[u0(ζ)(αG(t, x, 0, ζ)− 1

c2
∂G(t, x, 0, ζ)

∂τ
) + u′0(ζ)G(t, x, 0, ζ)]dζ (2.4)

−
∫

Σ

g(τ, ζ)
∂G(t, x, τ, ζ)

∂ν(τ,ζ)
dσ(τ,ζ) +

∫
Q

f(τ, ζ)G(t, x, τ, ζ)dζdτ (2.5)

for (t, x) ∈ Q is an explicit solution S to problem 5.. By using problem’s 5.linearity we formally decompose the solution in
four parts

u = S[u0, u
′
0, g, f ] := S[u0, 0, 0, 0] + S[0, u′0, 0, 0] + S[0, 0, g, 0] + S[0, 0, 0, f ] (2.6)

where S[u0, 0, 0, 0]) is the homogeneous Dirichlet zero source zero time derivative initial value auxiliary problem so-
lution and S[0, u′0, 0, 0, 0] is the homogeneous Dirichlet zero source zero initial value time derivative auxiliary problem
solution and S[0, 0, g, 0] is the zero source zero initial value zero time derivative auxiliary Dirichlet problem solution and
S[0, 0, 0, f ] is the zero data auxiliary Dirichlet auxiliary problem.

LEMMA 2.6. (EXTENDED DIRICHLET TO NEUMANN MAP IS COMPOSITION OF TRACE AND SOLUTION) The
Extended Dirichlet to Neumann map is a composition of the final time trace, final time derivative trace and the lateral
boundary normal trace with the Solution operator:

ΛfΩ,Ω,Σ[u0, u
′
0, g] = (γT , γT,1, γ1)S[u0, u

′
0, g, f ] = (γT ◦ S, γT,1 ◦ S, γ1 ◦ S)[u0, u

′
0, g, f ] = (uT , u

′
T , g

ν). (2.7)

3. INVERSE TRANSIENT HEAT WAVE EQUATION SOURCE PROBLEM

The inverse source problem that we address consists in the recovery of the source f , knowing the Extended Dirichlet
to Neumann map ΛfΩ,Ω,Σ. When r = 0, the data are regular, the Green’s function exists and f ∈ L2(Q). Let us investigate
this situation. And then, we will show that the unique information available in this inverse problem is given only by one
measurement, say, the bottom and top Dirichlet data and lateral cylinder Cauchy boundary data. The inverse problem
IP f(u0,u′

0,g),(uT ,u
′
T ,g

ν) is: To find f ∈ L2(Q) such that

(IP f(u0,u′
0,g),(uT ,u

′
T ,g

ν))
{

(uT , u
′
T , g

ν) = ΛfΩ,Ω,Σ(u0, u
′
0, g) (3.8)

for all given data pair (u0, u
′
0, g)× (uT , u

′
T , g

ν) corresponding to different solutions to the direct problem. By taking the
normal trace at lateral cylinder boundary of the solution 2.4, we obtain that

γ1[u] =
∂u

∂ν(t,x)
|Σ = Λf•,•,Σ[(u0, u

′
0, g)] =

γ1[S[u0, 0, 0, 0]] + γ1[S[0, u′0, 0, 0]] + γ1[S[0, 0, g, 0]] + γ1[S[0, 0, 0, f ]]

or

γ1[u](t, x) =

∫
Ω0

[u0(ζ)(α
∂G(t, x, 0, ζ)

∂ν(t,x)
|Σ −

1

c2
∂G(t, x, 0, ζ)

∂ν(t,x)∂τ
|Σ) + u′0(ζ)

∂G(t, x, 0, ζ)

∂ν(t,x)
|Σ]dζ

−
∫

Σ

g(τ, ζ)
∂2G(t, x, τ, ζ)

∂ν(t,x)∂ν(τ,ζ)
|Σdσ(τ,ζ) +

∫
Q

f(τ, ζ)
∂G(t, x, τ, ζ)

∂ν(t,x)
|Σdζdτ (3.9)

is an explicit expression of the lateral part of the Extended Dirichlet to Neumann map Λf•,•,Σ mapping for f ∈ L2(Q).
Note that it appears decomposed in its partial traces

Λf•,•,Σ[(u0, u
′
0, g)] := Λ0

•,•,Σ[(u0, 0, 0)] + Λ0
•,•,Σ[(0, u′0, 0)] + Λ0

•,•,Σ[(0, 0, g)] + Λf•,•,Σ[(0, 0, 0)] (3.10)
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where Λ0
•,•,Σ[(., 0, 0)] is the zero source auxiliary zero initial time derivative initial value zero Dirichlet problem solution

lateral normal trace and Λ0
•,•,Σ[(0, ., 0)] is the zero source auxiliary zero initial value zero Dirichlet problem solution lateral

normal trace and Λ0
•,•,Σ[(0, 0, .)] is the zero source non homogeneous Dirichlet zero initial auxiliary problem solution

lateral normal trace and Λf•,•,Σ[(0, 0, 0)] is the homogeneous Dirichlet zero initial value zero initial time derivative source
auxiliary problem solution lateral normal trace.

By taking the final time trace at cylinder top boundary of the solution 2.4 we obtain that

γT [u] = u(T, .) = ΛfΩ,•,•[(u0, u
′
0, g)] =

γT [S[u0, 0, 0, 0]] + γT [S[0, u′0, 0, 0]] + γT [S[0, 0, g, 0]] + γT [S[0, 0, 0, f ]]

or

γT [u](t, x) =

∫
Ω0

u0(ζ)(αG(T, x, 0, ζ)− 1

c2
∂G(T, x, 0, ζ)

∂τ
)dζ +

∫
Ω0

u′0(ζ)
1

c2
G(T, x, 0, ζ)dζ

−
∫

Σ

g(τ, ζ)
∂G(T, x, τ, ζ)

∂ν(τ,ζ)
dσ(τ,ζ) +

∫
Q

f(τ, ζ)G(T, x, τ, ζ)dζdτ (3.11)

is an explicit expression of the final part of the input to output map ΛfΩ,•,• Note that its appears decomposed in its
partial traces

ΛfΩ,•,•[(u0, g)] := Λ0
Ω,•,•[(u0, 0, 0)] + Λ0

Ω,•,•[(0, u
′
0, 0)] + Λ0

Ω,•,•[(0, 0, g)] + ΛfΩ,•,•[(0, 0, 0)] (3.12)

where Λ0
Ω,•,•[(., 0, 0)] is the zero source zero initial derivative auxiliary initial value zero Dirichlet problem solution

final trace, Λ0
Ω,•,•[(0, ., 0)] is the zero source auxiliary zero initial value zero Dirichlet problem solution final derivative

trace, Λ0
•,Σ[(0, 0, .)] is the zero source non homogeneous Dirichlet zero initial auxiliary problem solution final trace and

ΛfΩ,•[(0, 0, 0)] is the homogeneous Dirichlet zero initial Cauchy data auxiliary source problem solution final trace.
Finally, by taking the final time derivative trace at cylinder top boundary of the solution 2.4 we obtain that

γT,1[u] = u′(T, .) = Λf•,Ω,•[(u0, u
′
0, g)] =

γT,1[S[u0, 0, 0, 0]] + γT,1[S[0, u′0, 0, 0]] + γT,1[S[0, 0, g, 0]] + γT,1[S[0, 0, 0, f ]]

or

γT,1[u](t, x) =

∫
Ω0

u0(ζ)(α
∂G(T, x, 0, ζ)

∂t
− 1

c2
∂2G(T, x, 0, ζ)

∂t∂τ
)dζ +

∫
Ω0

u′0(ζ)
1

c2
∂G(T, x, 0, ζ)

∂t
dζ

−
∫

Σ

g(τ, ζ)
∂2G(T, x, τ, ζ)

∂t∂ν(τ,ζ)
dσ(τ,ζ) +

∫
Q

f(τ, ζ)
∂G(T, x, τ, ζ)

∂t
dζdτ (3.13)

is an explicit expression of the final part of the input to output map Λf•,Ω,•. Note that its appears decomposed in its partial
traces

Λf•,Ω,•[(u0, u
′
0, g)] := Λ0

•,Ω,•[(u0, 0, 0)] + Λ0
•,Ω,•[(0, u

′
0, 0)] + Λ0

•,Ω,•[(0, 0, g)] + Λf•,Ω,•[(0, 0, 0)] (3.14)

where Λ0
•,Ω,•[(., 0, 0)] is the zero source, zero initial derivative, zero Dirichlet problem solution final derivative trace,

Λ0
•,Ω,•[(0, ., 0)] is the zero source, zero initial value, zero Dirichlet problem solution final derivative trace, Λ0

•,Ω,•[(0, 0, .)]
is the zero source, zero initial value, zero derivative non homogeneous Dirichlet auxiliary problem solution final derivative
trace and Λf•,Ω,•[(0, 0, 0)] is the homogeneous Dirichlet zero initial Cauchy data auxiliary source problem solution final
trace.

DEFINITION 3.1. (RELATIVE EXTENDED DIRICHLET TO NEUMANN MAP) Consider two problems Pu0,u′
0,g,f

and
Pu0,u′

0,g,0
, one with source f and two other with zero source, but both with the same consistent initial time and Dirichlet

data. By the Relative Extended Dirichlet to Neumann map for f ∈ L2(Q) we mean the application:

ΛfΩ,Ω,Σ − Λ0
Ω,Ω,Σ. (3.15)

Note that the consistence of data (u0, u
′
0, g) is necessary to existence of solution to the problems Pu0,u′

0,g,f
and Pu0,u′

0,g,0
.

LEMMA 3.2. Let uj , j = 1, 2, 3, ... be different solutions of problem 5.with the same source f ∈ L2(Q) and different
initial time value and derivative and Dirichlet data (u0j , u

′
0j , gj), j = 1, 2, 3, ..., respectively. Then
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• (i) The Relative Extended Dirichlet to Newman operator ΛfΩ,Ω,Σ − Λ0
Ω,Ω,Σ is an operator whose functional value

depends only on the source function f ∈ L2(Q), but is independent of the initial time value and derivative and
Dirichlet data (u0, u

′
0, g).

• (ii) For all solution of consistent data problems Pu0j
,u′

0j
,gj ,f , j = 1, 2, 3, ..., with the same source, the source

satisfies the systems of integral equations∫
Q

f(τ, ζ)

(
G(T, x, τ, ζ),

∂G(T, x, τ, ζ)

∂t
,
∂G(t, x, τ, ζ)

∂ν(t,x)

)
dζdτ = (3.16)

(ΛfΩ,Ω,Σ − Λ0
Ω,Ω,Σ)[u0j , u

′
0j , gj ] = ΛfΩ,Ω,Σ[0, 0, 0]. (3.17)

which depend only on the Relative Extended Dirichlet to Neumann map.

REMARK 3.3. Note that in this case the unique information available for source reconstruction is given by only one
measurement, i.e., that final-Neumann boundary measurement

(uT , u
′
T , ∂ν(t,x)u) = ΛfΩ,Ω,Σ[u0, u

′
0, g] = ΛfΩ,Ω,Σ[0, 0, 0] (3.18)

corresponding to some specific initial-Dirichlet data (u0, u
′
0, g), which may be assumed as zero without loss of generality.

3.1 THE RECIPROCITY GAP FUNCTIONAL

THEOREM 3.4. Let v a function in the following test function space

H2,1
1
c2
∂tt−α∂t−∆

(Q) = {v ∈ H2,1(Q)| 1
c2
∂ttv − α∂tv −∆v = 0} (3.19)

the the source f in problem Pu0,u′
0,g,f

() satisfies the Transient Wave Reciprocity Gap Equation∫
Q

fvdxdt = −α
∫

ΩT

ΛfΩ,•,•[0, 0, 0]γT [v]dx−
∫

Σ

Λf•,•,Σ[0, 0, 0]γ[v]dσ(t,x) (3.20)

− 1

c2

∫
ΩT

(ΛfΩ,•,•[0, 0, 0]γT,1[v]− Λf•,Ω,•[0, 0, 0]γT [v])dx

Proof. The second Green formula∫
Q

((
1

c2
∂tt + α∂tu−∆u)v − u(

1

c2
∂tt − α∂tv −∆v))dxdt =

∫
Σ

(γ[u]γ1[v]− γ1[u]γ[v])dσ(t,x)

+
1

c2

∫
Ω0

(γ0[u]γ0,1[v]− γ0,1[u]γ0[v])dx− 1

c2

∫
ΩT

(γT [u]γT,1[v]− γT,1[u]γT [v])dx

−α
∫

ΩT

γT [u]γT [v]dx+ α

∫
Ω0

γ0[u]γ0[v]dx (3.21)

applied to problems Pu0,u′
0,g,f

with normal trace at the cylinder lateral boundary Σ, γ1[u] = gν , initial value at Ω0,
γ0[u] = u0 initial derivative at Ω0, γ0,1[u] = u′0 and the adjoint problem P ∗uT ,u′

T ,γ[v],0 with uT time T value and zero
source yield the following expression for reciprocity gap functional in the transient heat wave equation context:∫

Q

fvdxdt =

∫
Σ

(gγ1[v]− gνγ[v])dσ(t,x) − α
∫

ΩT

uT γT [v]dx+ α

∫
Ω0

u0γ0[v]dx (3.22)

+
1

c2

∫
Ω0

(u0γ0,1[v]− u′0γ0[v])dx− 1

c2

∫
ΩT

(uT γT,1[v]− u′T γT [v])dx

or, by using the Extended Dirichlet to Neumann notation,∫
Q

fvdxdt =

∫
Σ

(gγ1[v]− Λf•,•,Σ[u0, u
′
0, g]γ[v])dσ(t,x) (3.23)

−α
∫

ΩT

ΛfΩ,•,•[u0, u
′
0, g]γT [v]dx+ α

∫
Ω0

u0γ0[v]dx

+
1

c2

∫
Ω0

(u0γ0,1[v]− u′0γ0[v])dx− 1

c2

∫
ΩT

(ΛfΩ,•,•[u0, u
′
0, g]γT,1[v]− Λf•,Ω,•[u0, u

′
0, g]γT [v])dx

By subtracting the Extended Dirichlet to Neumann map for the zero source problem Pu0,u′
0,g,0

with the same data, we
obtain (3.20) as a weak variational form for the systems (3.16).
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4. EXPLICIT SOLUTION TO THERMAL WAVE PROBLEM WITH GREEN’S FUNCTION

Fourier’s law has as consequence an infinity velocity propagation of the temperature field. In this way, if a perturbation
as an external source located inside the domain introduces a modification in the temperature field, the diffusion based
thermal equation will propagates this information to other regions inside the spatial domain, including the boundary with
infinity velocity. Although this situation is clearly unrealistic, this classical theory works well in most situation , since
the propagation velocity is usually 10 orders of magnitude greater thermal diffusivity. As a partial differential equation,
the classical heat equation with can be obtaining by singular behavior o equation 5.with the coefficient in the second
order time derivative 1

c2 → 0,i.e., c → ∞. Its only characteristic surfaces are the time-space planes t =const. Unlike
others usual equation in mechanics, as the wave equation, it is not preserved if we reverse the time t by −t. More can
be observed in the model produced by the heat equation. In some discontinuous initial data is introduced in the problem
at the instant t, after an infinitesimal lapse of time the heat equation model will produces a perfectly smooth solution.
So, in this model a smoother future may be consequence to a very rougher initial condition. The good news for the heat
equation model is that the information propagates with infinity velocity, and this will have an fundamental importance
in the source reconstruction numerical implementation. The wave equation can also be obtaining from equation 5.when
the coefficient in the first order time derivative α goes to 0. This model has the peculiarity that discontinuities in the
initial data propagates along the time-space conical characteristic surfaces with finite velocity but without any smoothing.
Finally, the model equation 5.introduce smoothing to the finite velocity propagation.

We can give explicit formulation to the solution of the thermal wave direct problem using the variable separation
method. The green’s function satisfies equation

(
1

c2
∂tt + α∂t −∆)g(t, x|τ, ζ) = δ(t− τ)δ(x− ζ) (4.24)

with homogeneous initial lateral traces. The auxiliary eigenvalue problem{
∆Gn = −γnαGn in Ω,
Gn = 0 on Γ.

(4.25)

indicates the appropriated geometry dependent orthogonal spatial basis {Gn ∈ C∞0 (Ω), n = 1, ...,∞} when Ω has
smooth boundary.∫

Ω

Gn(x)Gm(x)dx =

{
0 when n 6= m,
‖Gn‖2 when n = m.

(4.26)

Expressing the Green’s function as a linear combination of this basis

g(t, x|τ, ζ) =

∞∑
n=1

Cn(t)Gn(x) (4.27)

with Cn(t) are time dependent unknown Fourier coefficients. Upon substituting 4.27 into 4.24 we obtain

∞∑
n=1

1

c2
∂ttCn + α∂tCn + λnCn)Gn = δ(t− τ)δ(x− ζ) (4.28)

by using eigenfunction orthogonality 4.26 with obtain the following separated system of ordinary differential equations
that must be solved with homogeneous initial conditions to explicitly gives the Fourier coefficients

1

c2
∂ttCn + α∂tCn + λnCn =

Gn(ζ)δ(t− τ)

‖Gn‖2
, n ∈ N. (4.29)

The most common method adopted in this solution is the Laplace transform method and it gives:

Cn(t|τ, ζ) =
Gn(ζ)

‖Gn‖2
c2 exp (−αc

2

2
(t− τ))

sin ((t− τ)
√
λ2
n − α2c4

4 )√
λ2
n − α2c4

4

H(t− τ) , t, τ ∈ R , ζ ∈ Ω , n ∈ N. (4.30)

Substituting these coefficients in the Green’s function expansion 4.27 we obtain

g(t, x|τ, ζ) =

∞∑
n=1

Gn(x)Gn(ζ)

‖Gn‖2
c2 exp (−αc

2

2
(t− τ))

sin ((t− τ)
√
λ2
n − α2c4

4 )√
λ2
n − α2c4

4

H(t− τ) , t, τ ∈ R , x, ζ ∈ Ω
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(4.31)

This deduced Green’ function can be used to construct the homogeneous problem solution

u(t, x) = S[0, 0, 0, f ](t, x) =

∞∑
n=1

∫ t

0

∫
Ω

Gn(x)Gn(ζ)f(τ, ζ)

‖Gn‖2
c2 exp (−αc

2

2
(t− τ))

sin ((t− τ)
√
λ2
n − α2c4

4 )√
λ2
n − α2c4

4

dτdζ

(4.32)

From this formula an explicit expression to the Extended Dirichlet to Neumann map for the problem 5.can easily be
formulated

ΛfΩ,Σ[(0, 0, 0)] = (u|ΩT , u′|ΩT , ∂νu|∂Ω)

and posing the integral equation system 3.16 or generate data for test the transient heat wave reciprocity gap equation 3.20
is straightforward.

REMARK 4.1. (TRANSITION TO THE HEAT AND TO THE WAVE EQUATIONS)
It is not difficult to verify the singular limits

• limc→∞ g(t, x|τ, ζ) to the heat equation Green’s function and

• the limit limα→0 g(t, x|τ, ζ) to the wave equation.

In the mix case in which we observe wave behavior with damping we can distinguish two class of eigenvalue:

• Those for which λn ≤ αc2

2 introduces a complex argument in the sin function, converting it in an hyperbolic sinh
function with is typical of the heat equation and the damping process.

• Those for which λn > αc2

2 preserves the wave behavior of the mode and

The parameter λα,c = αc2

2 is knower as the relaxation time and regulates the transition from over damping to under
damping in the thermal wave model.

5. THE HEAT EQUATION SINGULAR BEHAVIOR FOR c >> α

In the heat equation limit, c >> α the test function space H2,1
1
c2
∂tt−α∂t−∆

(Q) can be approximated by the space

H2,1
−α∂t−∆(Q) = {v ∈ H2,1(Q)| − α∂tv −∆v = 0} (5.33)

the the source f for the near singular problem given by () will satisfy approximately the the Transient Heat Reciprocity
Gap Equation∫

Q

fvdxdt = −α
∫

ΩT

ΛfΩ,•,•[0, 0, 0]γT [v]dx−
∫

Σ

Λf•,•,Σ[0, 0, 0]γ[v]dσ(t,x) (5.34)

We can further improve the approximation by considering a partition of the time interval [0, T ] into N subintervals of
length τ > 0. Let {t0, t1, t2, ..., tn, tn+1, ...tN} be the knots of this partition, with t0 = 0 and tN = T . Let H2

λ(Ω) :=
{v ∈ H2(Ω) : −∆v + λv = 0;κ2 = λ = 1

τθ} the space of Helmholtz functions. For tn < t < tn+1, n = 0, 1, N − 1 the
mean value theorem can be used to approximate the equation (5.34)∫

Ω

f(tn+1, x)v(tn+1, x)dx ≈ −θ2

θ1

∫
Γ

Λf•,Σ[0, 0](tn+1, x)v(tn+1, x)dσx (5.35)

where θ, θ1 and θ2 are same order numerical constants. This approximation to hight velocity of propagation c >> α com-
bines hight velocity of propagation with high thermal dissipation. Information about the source almost instantaneously
arrive to the spatial boundary and almost instantaneously is converted in temperature. So, a modified Helmholtz model
will gives good source reconstruction.
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5.1 The modified Helmholtz equation model

The averaged reciprocity gap equation 5.35 can be solve with parameters θ1 = θ2 to gives an approximates recon-
struction of star shape characteristic source function. The uniqueness of the reconstruction of this kind of source is
demonstrated in Roberty and Rainha (2011) and correspond to solves the following nonlinear integral system:

To find Rn+1(θ) ∈ C2([0, 2π)) such that

∫ 2π

0

∫ Rn+1(θ)

0

ρ
‖m‖2‖m‖I‖m‖(κρ)

κ‖m‖
exp(imθ)dρdθ =

∫ 2π

0

∂νu
n+1 ‖m‖2

‖m‖I‖m‖(κρ)

κ‖m‖
exp(imθ)dσ(θ) , m ∈ N

(5.36)

where we have used the following facts:

1. Ω is circle in R2.

2. The set {‖m‖2
‖m‖I‖m‖(κρ)

κ‖m‖ exp(imθ) ; m ∈ N} is dense in Hκ2(Ω).

3. Λf•,Σ[0, 0](tn+1, x) ≈ ∂νu
n+1, that is, the data from the high velocity thermal wave problem approximates the

spatial boundary trace to the transient heat model.

This nonlinear problem is solved by Levemberg-Maquardt method or by Fourier series expansion of the boundary
shape parametrization.

6. DETERMINING CENTROID AND SHAPE

An problem appears when we work with the modified Helmholtz approximation to thermal wave problem with high
velocity, since functions {1, xi, i = 1, ..., d} /∈ Hκ2(Ω) = {v ∈ H2(Ω) : −∆v + κ2v = 0}. In this case we have

{exp(κ(

d∑
i=1

lixi))} for (l1, ...ld) ∈ Sd−1 (6.37)

which are a special dense set in Hκ2(Ω). We may construct an enumerable dense set by choosing some discrete set of
directions lj ∈ Sd−1 appropriately or by using the Jacobi-Anger expansion. An appropriate modification of this set will
be obtained by substituting these exponentials with hyperbolic functions sinh and cosh. These functions are respectively
skew symmetric and symmetric with respect to origin of the coordinates system. If we know the star-shaped source
centroid, it is best to choose the origin in the centroid and set the following basis

{
sinh(κ(

∑d
i=1 li(xi − x̄i))
κ

; cosh(κ(

d∑
i=1

li(xi − x̄i))} for (l1, ...ld) ∈ Sd−1 (6.38)

to have a more balanced system of test functions to use in the reciprocity gap functional. As already mentioned, contrary
to the classical Novikov’s star shape source reconstruction with boundary data problem for the Laplace operator (κ = 0),
in which the centroid and the source volume may be obtained as zero and first order moments of the Neumann data at the
boundary, the necessary functions for centroid calculations {1, (x1, ..., xd)} are in the space H2

λ(Ω). Fortunately, in this
generic case of κ 6= 0 we may introduce a concept that we are naming meta centroid, κ-centroid or λ−space centroid. It
may also be estimated from Neumann data in the boundary, and in the case in which the star shape source is a Cartesian
domain interval, rectangle or parallelepiped rectangular voxel, this κ-centroid is equivalent to the κ = 0 centroid, that is,
the harmonic centroid in the Novikov’s problem, in the sense that if the source domain is star-shape with respect to one
centroid, it also is star-shape with respect to the other meta centroid.

DEFINITION 6.1. (META CENTROID) Let ω ⊂ Ω ∈ Rd. By meta centroid x̄ = (x̄1, ..., x̄d) of this sub domain we
mean

x̄i =

∫
ω
xi

sinh(κ(xi−x̄i))
κ(xi−x̄i) dx∫

ω
sinh(κ(xi−x̄i))
κ(xi−x̄i) dx

, for i = 1, ..., d. (6.39)

LEMMA 6.2. Suppose that the star shape source characteristic support border curve is symmetric with respect to the
ordinates and the abscissa axis passing through the centroid. Then the meta centroid coincides with the harmonic centroid.
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Proof: In fact, since the function sinh is skew symmetric, expression (6.39) will calculates zero in the coordinates system
for with the harmonic source centroid is the origin.

Since in the transient problem the source is moving inside the box, which means that its centroid position may vary
with the time, the capacity of centroid position determination is fundamental for the solution of the source reconstruction
problem.

6.1 Determining the meta centroid with the sinh function

Since the Neumann data are frequently noisy, the least square non linear method may be used to formulate an uncon-
strained minimizing problem for the determination of coordinates x̄i of the centroid. If necessary, classical regularizations
methods, such as the method of Tikhonov, may be adapted for the stabilization and improvement of the algorithm. With-
out any regularization other than truncation, the problem of centroid determination in the modified Helmholtz equation
with boundary Dirichlet data zero and gν Neumann data on the boundary is

x̄κi = arg min{
∣∣∣∣∫

Γ

sinh(κ(xi − xci ))
κ

gνdσ(x)

∣∣∣∣2 |xc ∈ Ω} for i = 1, ..., d. (6.40)

6.2 Determining shape parameters with the cosh function

Once we have reconstructed the meta centroid, we may proceed with the shape parameters determination with the
same modified Helmholtz data

ω̄ = arg min{

∣∣∣∣∣
∫
ω

cosh(κ(

d∑
i=1

li(xi − x̄κi )))dx− IΓ(cosh, κ, l, x̄κi , g
ν)

∣∣∣∣∣
2

: ω ⊂ Ω; l ∈ Sd−1} (6.41)

where the set of directions l := (l1, ...ld) ∈ Sd−1 is used to generate linearly independent functionals of the trial shape
and

IΓ(cosh, κ, l, x̄κi , g
ν) :=

∫
Γ

cosh(κ(

d∑
i=1

li(xi − x̄κi )))gν(x)dσ(x) (6.42)

may be computed by using only the just calculated meta centroid coordinates and the already known Cauchy data on the
boundary.

6.3 Three dimensional parallelepiped block (voxel) movement inside the unitary cube numerically captured

The example presented here is for the heat equation case only. The model studied in this case is an source inside the
domain Ω = (0, 1)d ∈ Rd with a parallelepiped block (voxel) shape. It is supported with an harmonic centroid evolution
following the parametric curve

(.5(1 + .6 sin(2πt)), .5(1 + .6 cos(2πt)), .25 + .25t)

and deforming equally in all directions by the following time rule

hx = hy = hz = h = .15(1 + .25

∣∣∣∣cos(
πt

2
)

∣∣∣∣),
where block edge is 2h. The number of harmonics in the Fourier sine series is 20, the ∆x for spacial collocation is .01
and θ is choose as .8. The evolution is calculated for various time step τ = [.1, .01] in the interval t ∈ [0, 2]. For these
values of time inclement the modified Helmholtz equation parameter varies as κ = 3, ..., 12. As the κ value approaches to
6 the reconstruction start to become worst, so we may here observe that for this special set of heat equation coefficients,
which means a thermal inertia equal one, the minimum time increment for the present methodology without any kind
of regularization procedure is approximately τ = 0.05. Others experiments enforcing the potentialities of the present
methodology wil be presented during the conference.

7. CONCLUSIONS

We have presented a methodology for star shape source reconstruction in the transient second order problem by using
one set of Cauchy data history. The method is based on a modified Helmholtz system based algorithm derived with the aid
of finite differences time schemes. A methodology for centroid and shape capture is introduced. Numerical experiments
in Cartesian geometry are investigated to stresses associates difficulties.
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Figure 1. 3D meta centroid movement with time increment .05
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