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The analysis of fluid-structure interaction problems involves the modification of the computational domain as the 

geometry under consideration is moving with time. In several engineering applications, to avoid updating the 

computational mesh too frequently, an arbitrary Lagrangian Eulerian (ALE) formulation is adopted together with a 

mesh movement algorithm. In such approach, generally, the reference frame at the moving interface between the 

structure and the fluid has a Lagrangian description and apart from that has a mixed Lagragian and Eulerian 

description to accommodate the arbitrary movement of the frame of reference. In this paper, a stabilized finite element 

method, based on a Fractional Step Method is extended to deal with bidimensional incompressible flow problems with 

moving boundaries using an ALE formulation. The algorithm adopted to build the dynamic mesh is based on the 

Modified Laplacian Equation and will be fully described. The structural model considers a simple rigid body with 

three uncoupled degrees-of-freedom. Some important numerical and implementation issues are also addressed. 

Finally, the whole system is used to study external flows over a circular cylinder, including the analysis of a fixed 

cylinder, a moving cylinder with a prescribed forced cross-flow oscillation and a moving cylinder due to the 

interaction between the fluid and a rigid body. The vortex shedding “lock-in” phenomena is evaluated, which is of 

great importance for the analysis of vortex induced vibrations (VIV). 
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1. Introduction 

 
Several practical structures, in different engineering fields, are subjected to vibration as a result of flow induced 

phenomena. Such behavior can compromise the integrity of the structure or make uncomfortable for human use. The 
analysis of these problems involve the study of a coupled fluid-structure interaction model and can be done using 
computational modeling. The numerical simulation of such applications is most commonly performed using an interface 
approach and involves the modification of the computational domain as the geometry under consideration is moving 
with time. In order to avoid updating the computational discretization too frequently, an arbitrary Lagrangian Eulerian 
(ALE) formulation (Childs, 1999; Nomura and Hughes, 1992) is normally adopted together with a mesh movement 
algorithm. In such approach, generally, the reference frame at the moving interface between the structure and the fluid 
has a Lagrangian description and apart from that has a mixed Lagrangian and Eulerian description to accommodate the 
arbitrary movement of the frame of reference.  

In this paper we briefly describe the finite element procedure developed to simulate the two dimensional fluid-
structure interaction of a rigid circular cylinder, immerse in an incompressible viscous fluid flow (Antunes, 2008, 
Antunes et al., 2009). The analysis of such model application gives insight on many problems of industrial interest, for 
instance the study of “VIV” (Vortex Induced Vibrations) (Blevins, 1986) on offshore platform legs. The adopted 
procedure uses a stabilized like Petrov-Galerkin “ALE” (Arbitrary Lagrangian-Eulerian) finite element formulation 
with Euler time-integration for the fluid-dynamics analysis (Antunes, 2008). This scheme represents an SUPG-like 
algorithm (Streamline Upwind Petrov-Galerkin (Brooks and Hughes, 1982)) with the Fractional Step Method to 
stabilize the pressure field. For the structural analysis it uses a simple lumped model with three degrees-of-freedom and 
the Newmark Method (Hughes, 1987). The fluid-structural coupling is solved through interfacing and implemented in a 
segregated approach, using an algorithm to control errors due to the existing time delay between the fluid and structural 
analysis (Blom and Leyland, 1998). Several alternatives for the subdivision of domain into subdomains, where the 
different descriptions (Eulerian, Lagragian or ALE) are adopted, were incorporated in our computational system. 
Different types of mesh movement and mesh smoothing were implemented in order to reduce the distortion of the 
computational meshes over the fluid domain, therefore, in this work we are presenting the most efficient technique 
found, the Modified Laplacian Equation. The obtained results are in good agreement with the experimental, theoretical 
and numerical data available in the literature. A preliminary numerical study on the lock-in phenomena is presented. 
The results show the influence of the amplitude of the displacement of the cylinder on the vortex shedding frequency. 
Further details and the results for many applications dealing with different levels of difficulty and interaction between 
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fluid and structure will be analyzed in the future. Finally, we draw the most important conclusions and some on going 
and future extension of this research. 

 
2. Numerical Formulation 

 
Most fluid structure interaction problems where there is a strong coupling between the displacement of the structure 

and the flow field are characterized by large displacements of some of the boundaries of the domain. The regions close 
to these moving boundaries are more naturally discretized with a Lagrangean approach. The fluid regions away from 
the moving boundaries, however, are more naturally treated with a conventional Eulerian formulation, with a fixed 
reference frame. We use an Arbitrary Lagrangean Eulerian framework to combine these two approaches in a single 
numerical technique. The differential equations that described the dynamics of the fluid and the structure therefore must 
be written in this framework. 

 
2.1. Standard Eulerian Formulation 

 
The flow of incompressible fluids can be described by a specialization of the general Navier-Stokes Equations, 

where we will also consider that the viscosity is constant and that the fluid is Newtonian. Unless otherwise noted, in the 
following we will use indicial notation with the summation convention. Within an Eulerian framework, i.e., using a 
fixed frame of reference and fixed control volumes, the Navier-Stokes equations in non-conservative form reduce to: 
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In the above equation, 2,1=i , ix are the spatial coordinates, t  is the time variable, ρ is the density of the fluid, iu  

are the components of the velocity of the fluid, 
i

b  are the external body forces, and ijτ  is the stress tensor. Equation (1) 

is subjected to the incompressibility restriction  
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and the stress tensor is given by 
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where µ is the dynamic viscosity, p  is the pressure and ijδ is Kroenecker’s delta. Equations (1), (2) and (3) are 

written for a fixed geometric domain fΩ  and for a time interval I . For a well posed problem, it is also necessary to 

impose to the above set of equations boundary conditions on Γ , the boundary of the domain fΩ , and initial conditions 

on fΩ . The boundary conditions are known velocities u  on uΓ  and known surface tractions t  on tΓ , with tu Γ∪Γ=Γ  

and 0=Γ∩Γ tu . The boundary conditions associated to the mass balance are given in terms of known pressure  p  on 

pΓ  and known mass flux G on GΓ , with Gp Γ∪Γ=Γ  and 0=Γ∩Γ Gp . Here, ii nuG ρ= with 
i

n  being the outward 

pointing unit normal vector to Γ . The initial conditions are known velocities on FΩ  in the initial time of the analysis. 

 
2.2. ALE Formulation 

 
To develop a finite element discretization applicable to deformable domains, we use an ALE formulation, as 

proposed in Hughes et al (1981). We define three domains: the spatial domain YΩ  which is the physical space defined 

by the material particles at time t ; the referential domain XΩ , which is a fixed domain whose image at time t , 

subjected to a transformation φ̂ , is the spatial domain; and the material domain 
Z

Ω , which is the domain occupied at 

the time 0=t  by the material particles that occupy the spatial domain at time t . If we define the transformation from 
the material domain to the spatial domain as φ , i.e., YZ Ω→Ω:φ , then the transformation from the material domain to 

the referential domain is given by 
XZ

Ω→Ω:ψ , where φφψ �
1ˆ−=  ( �  is the functional composition operator). Now let 
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us consider that 
i

z  and 
i

x  represent particles in 
Z

Ω  and 
X

Ω  whose image at time t  is 
i

y  in 
Y

Ω . Therefore, 

considering the transformation φ , we can write that: 
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where 

i
u  is the displacement, 

i
u�  is the velocity and 

ji
y

⋅
 is the deformation gradient. In a similar manner, considering 

the transformation φ̂ , we can write: 
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where 

i
û  is the displacement, 

i
u′ˆ  is the velocity and 

ji
y ′  is the deformation gradient. Finally, considering the 

transformation ψ , we can write: 

 

iii
zxw −= , 

ii
xw �� =  and 

j

i

ji
y

x
x

∂

∂
=

⋅ ,       (6) 

 
where 

i
w  is the displacement, 

i
w�  is the velocity and 

ji
y

⋅
 is the deformation gradient. Equations (4) to (6) are the 

kinematic relationships for the different descriptions of a continuum.  
 

With the above mappings, we can write (Antunes et al., 2005) that: 
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where ic is defined as the convective velocity. If f is a scalar function of the flow field, the material derivative of this 

function is given by (Childs, 1999): 
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where 
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∂
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=  is the deformation gradient between the reference and the spatial domain, and 

i
c  is the convective 

velocity defined in Eq. (7). In this work, we used a single step Crank-Nicholson scheme for the time integration, 
therefore throughout the duration of each and every time step, the referential and spatial domains are coincident. The 
deformation gradient between these two domains is the identity transformation, so Eq. (8) reduces to: 
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It is well worth noting that if 0ˆ =′

i
u  in Eq. (7), we have the conventional Eulerian description, and if 

ii
uu �=′ˆ , we 

have the Lagrangean description. With this definition of the material derivative, the incompressible Navier-Stokes 
equations in the ALE formulation reduce to: 
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2.3. Finite Element Discretization 

 
The incompressible Navier-Stokes Equations Eqs.(1-2) can be write, in an ALE description, without thermal 

effects, in continuous form can be written like: 
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t

υ
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where Ω  is the spatial fluid domain, t is the time variable, (0,t) is the time interval, u is the velocity field, υ  is the 

kinematic viscosity, p is the pressure, f is the external force vector, ∇  is the gradient operator and ∆  is the Laplacian 
operator, and c is the convective velocity field. The physical boundary was divided in two non-overlapping parts 

duΓ and nuΓ  in which the Dirichlet and Neuman boundary conditions are prescribed to each equation, respectively. 

The Dirichlet and Neuman boundary conditions are: 
 

=u u   in duΓ ,  p p=   and  ⋅ =n σ t   in nuΓ                      (13) 

 
where σ  is the viscous stress tensor, n is the unit outward normal vector, and t is the surface stress or traction. An 
upper bar refers to a prescribed value. Finally, initial conditions must be known in the whole domain at the initial time. 

In this work, a Fractional Step method based in a LU factorization (Antunes, 2008, Antunes et al., 2009, Codina, 
2002, Chang et al., 2002, Henriksen et al., 2002) was applied. In this method the final system is analogous to the 
method proposed by Chorin in 1967, and Temam in 1969, that applies Helmholtz decomposition. The final discrete 
system is obtained by using a θ  method in time, resulting in a trapezoidal discretization, and a Finite Element Method 
for the spatial discretization (Gresho et al., 1998, vols. 1 & 2, Zienkiewicz ant Taylor, 1988). The stabilization of the 
advective and the gradient pressure terms are obtained with an orthogonal projection of these terms in a finite element 
space (Codina, 2000, Codina, 2002, Soto et al., 2001). The discrete variational formulation (Soto et al., 2001, Soto et 

al., 2004) can be written as: knowing n
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where 1 1 1 1, , ,n n n n

h h h h
p

+ + + +
u π ξ  are the velocity vector, pressure, advective projection term and pressure gradient 

projection term, respectively, and 
h h h h

× × ×V Q V V� �  are the corresponding finite element functional spaces, 

respectively. The superscripts n and i refer to time step and Gauss-Seidel iterations counter in each time step, the 
subscript h refers to discrete variables, δt is the size of the time step, β is the stabilization parameter based on pressure 
gradient, limited to the interval I=[0 1], taking values close to 1 where the pressure field is smooth and close to 0 in flow 
regions with sharp pressure gradients (Soto et. al., 2004), τ is the stability and convergence parameter, θ is the time 

integration parameter (for instance θ = 1.0 implies Backward Euler and θ = 0.5 Crank-Nicholson), νh, h
ν� , qh, are the 

finite element weight functions to velocity, advective and pressure gradient projections and pressure, respectively. The 
variables π  and ξ  were obtained by LU factorization of the system. The functional form (· ,·), is defined by: 
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2.4. Edge Based Data Structure 
 

We are using an edge based data structure, which is advantageous in terms of CPU time, because most of the 
discrete terms do not need to be re-computed at each iteration by looping through the elements. The local conservation 
and symmetry are enforced at the discrete level calculating only the non-diagonal terms and by computing the diagonal 
one as the negative value of the summation of the same-row non-diagonal terms (Soto et al., 2004). The final edge 
based terms are obtained replacing the standard loop over the elements to edge loops. To exemplify, consider the first 
term of the Eq. (15), which has diffusive transport character, and eliminating sub/super-index, yields: 
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where the Galerkin formulation (i.e. the same weighting and shape function N ) is adopted, and 
IJ

C  is a coefficient 

associated to edge IJ. 
Observe that the final term of Eq. (19) is naturally conservative, meaning that the diffusive transport from node I 

to node J is equal to the diffusive transport from node J to node I.  
 

2.5. Structural Dynamics 

 
In this work we only consider dynamics of rigid bodies. The movement of the body is obtained with a 

straightforward application of Newmark’s Method (Hughes, 1987, Antunes et al., 2005): 
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where d, v, and a are the displacements, velocity and acceleration of the body, and β  and γ  are parameters of the 

method, and M, C, and K are the mass, damping and stiffness matrices of the structure. In this work we used 2/1=γ  

and 4/1=β , which leads to an implicit, second order accurate and unconditionally stable time integration scheme. The 

stability of this scheme is important because the time step increment for the structural time evolution is taken as the 
same as the time increment chosen for the CFD solution. This time increment is determined by the stability 
requirements of the CFD algorithm, and therefore its time scale is completely unrelated to the dynamic behavior of the 
structure. 
 
2.6. Fluid Structural Coupling 

 
The coupling between the fluid and structural field was imposed in a segregated manner, and compatibility 

conditions are imposed a posteriori, at the end of each time step, to enforce the consistency of the interface between 
both fields. This approach has the advantage, in contrast to a monolithic approach, that the most efficient numerical 
solution technique can be used for each particular field. 

At the start of each time step, we assume that the interfaces are consistent, i.e., that points lying on the interface 
between the structural and fluid domain have the same velocities, when considered belonging to either domain. Each 
domain is then advanced in time independently, according to its own physics. The other domain is considered static, and 
used only as a source of initial and boundary conditions for the current time step. At the end of the time step, the 
interfaces will therefore no longer be consistent, so in fact a series of predictor-corrector steps is repeated until 
satisfactory agreement between the two fields is reached. As the interfaces between domains move along the time, the 
mesh is distorted by the movement of the boundaries of the domain, and when this distortion becomes excessive, the 
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inadequate elements are removed and the mesh is recreated in these regions. The predictor-corrector technique adopted 
is adapted from the one proposed by Bloom et al. (1998), and the general procedure is summarized below: 

 
a. For all time step do: 
b. Estimate a predictor velocity Vp 
c. Move structure and mesh in the computational domain 
d. Solve the CFD problem 
e. Solve the structural dynamics problem 
f. Compute a corrector velocity Vc 
g. If Vp and Vc converged to each other, then: 
h.  Advance to next time step 
i. Else: 
m. Vp = Vc  
n. Repeat from step c 
 

The predictor velocity Vp at the start of each time increment (step b) is taken as an estimate of the current velocity 
of the structure. This velocity is computed by a simple linear extrapolation from the structural velocity and acceleration 
computed at the previous time step. As the interpolation of solutions between meshes (step f) is not cheap and can 
introduce errors, we try to minimize it by restricting the regions where the mesh is allowed to move. This will be 
described further below. The CFD solution (step d) uses as boundary conditions for the moving boundaries the current 
velocity of the interface, Vp. The corrector velocity Vc (step f) is the interface velocity that results from the solution of 
the structural dynamics problem (step e). The convergence test (step g) verifies if the difference between the corrector 
velocity Vc and Vp are less than some prescribed tolerance. If this is so, the algorithm advances to the next time step 
(step h), otherwise the current corrector velocity is taken as the new predictor velocity and the predictor-corrector loop 
is repeated. In this work we only dealt with rigid bodies, therefore the velocity of the interface nodes can be easily 
computed from the velocity of body with simple transformation matrices (Nomura and Hughes, 1992). 

 
3. Numerical Tools 

 
There are many practical aspects to a successful computational implementation of the procedures described above. 

Clearly, facilities for dealing with deformable domains, which involve automatic mesh generation, assessment of mesh 
quality, and automatic mesh movement are all important aspects. The most interesting aspects of our implementation 
will be described below. 

 
3.1. Subdomain partitioning 

 
The partition of a domain into simpler subdomains is a well proven practical technique that helps the mesh 

generation in domains with complex geometry. Is this work, this idea is extended and different numerical formulations 
can be employed for the discretization on each subdomain. We have implemented three distinct possibilities: a 
conventional Eulerian formulation, an ALE formulation with a deformable mesh and an ALE formulation where the 
mesh is movable but not deformable. The Eulerian formulation is more appropriate for regions of fluid away from the 
moving boundaries. The ALE formulation with non-deformable but moving meshes is used in the regions very close to 
the moving interfaces. These meshes are attached to the moving bodies, and are not deformable because, in general, 
complex flow phenomena that require very fine and high quality meshes, such as boundary layer formation or 
separation bubbles, occur in these regions. Deformation of the mesh would quickly destroy the quality of these meshes 
and compromise the quality of the solution. The ALE formulation with deformable meshes is used to couple the two 
kinds of domains just described. A simple sketch example can be seen in Fig. (1). For the structure, of course, we use a 
Lagrangian decription. 

The use of different formulations for different subdomains is important because it minimizes the needed 
interpolation of solutions between different meshes. Clearly, in the subdomains where an Eulerian formulation is used, 
the interpolation is completely unnecessary because the mesh never varies. Interpolation between unstructured meshes, 
even with the use of adequate data structures to speed up searches, is a somewhat costly procedure. The interpolation 
can also reduce the accuracy of the numerical solution, therefore it is important that it be restricted to the as small a 
region as possible. In the current implementation, the subdomain decomposition and the assignment of formulations is 
done a priori by the user, therefore some knowledge of the expected amplitudes of displacement is necessary. In 
practice, however, this has not proven itself to be a problem. 
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Figure 1. Computational model: subdomain decomposition and differents descriptions. 
 

3.2. Mesh Movement 

 
In the domains with a deformable ALE formulation, the movement of the interface nodes causes distortions of the 

original shapes of the elements connected to these nodes.  
In order to avoid excessive elements distortion, in this work we are solving a modified Laplace equation for the 

mesh domain. The diffusivity coefficient is based on volume of the elements, and is designed to smooth the distortions 
caused by structure displacements (Kanchi and Massud, 2007, Liberato et al., 2010). 

The domain is divided as follow: Ω  is the domain of the equation, 
m

Γ  is the moving boundary (structure 

surface), and 
f

Γ  is the fixed domain. So the classical formulation of the problem results: given v on the boundaries, 

find v in the domain, such that 
 

[ ]( )1 0τ∇ ⋅ + ∇ =v                                                                                                                                              (23) 

v = v0 in 
m

Γ                                                                                                                                                             (24) 

v = 0  in 
f

Γ                                                                                                                                                              (25) 

 

where 
m m

Γ = Γ ∪ Γ , and v, the displacement vector, and is need to solve the equation for each direction. 

Note that the diffusivity coefficient must be defined in order to the smaller elements, generally defined close of the 
structure, where the small scale effects are presents, they are suffering minimum deformations. This way, the 
displacements are sent through the mesh until the bigger elements, close to the boundaries, can be smooth the 
displacements. Kanchi e Masud, 2007, propose the calculus of the coefficient to avoid excessive deformations 
providing aditional subjects for the elements. The coefficient used by Kanchi and Massud, 2007, in the Eq. (23), and 
used in this work is; 
 

min

max

max

1
e

e

V
V

V
V

τ
−

=                                                                                                                                               (26) 

 

where minV =  minimum volume of the mesh element, maxV =  maximum volume of the mesh element, e
V = volume 

of the element.  
 

4. Applications 

 
The scheme above described has already been utilized for the simulation of a variety of applications (Antunes, 

2008, Antunes et al., 2009,  Liberato et al., 2010), involving stationary and/or moving boundaries, including the study 
of the flow around a fixed cylinder, the flow around a cylinder with an imposed periodic displacement, the free 
vibration of the cylinder in a stationary fluid and the next step of this work is to analyze the coupled fluid-structure 
problem of the vortex inducing vibrations on a rigid cylinder. In this work we are interested to obtain the lock-in 
phenomena conditions. 
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4.1 Vortex “Lock-in” Regime Under Forced Oscillating Cylinder 

 
The numerical procedure described is used to simulate the external flow over a moving cylinder with a prescribed 

forced cross-flow oscillation, for several different Reynolds number. A detailed description of the computational 
domain with boundary and initial conditions can be seen in the Fig. 7. 

The follow boundary conditions are applied in this example: non-slip condition on the surface of the rigid body; 

uniform velocity field with 0
1 uu =  e 02 =u  is prescribed in the inflow face; for the below and above faces  the 

boundary condition are 02 =u  e 01 =t ; on the outflow boundary , the pressure value is prescribed, with p = 0 and 

traction free condition, e.g., 021 == tt . The initial condition is the velocity field with the components 0
1 uu = , 02 =u  

which are specified over the all the domain in the initial time 0tt = , and a referential pressure 0=p . In this notation, 

the boundary condition traction is represented by “ it ”, where the subscript i, represents the directions of application, 

and the time is represented by “ nt ”, ,where the superscript n represents the level time. The vertex of the domain are (-
5,-5), (-5,5), (10,-5) e (10,5), and the circular cylinder have a unitary diameter and is centered on the origin of the 
orthogonal  coordinates.  
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0
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Figure 7. Description of domain for the lock-in applications. 

 
By computing the fluid flow considering a fixed cylinder we obtain the variation of the frequency of the vortex 

shedding at different Reynolds number, Re. The computed frequencies of the vortex shedding, presented in the first 
column of Table 1, agree with the experimental data (Blevins, 1986). 

The “lock-in” phenomena (Blevins, 1986) occurs when the response frequency of the cylinder synchronises with the 
vortex shedding frequency. By imposing an harmonic oscillation to the cylinder and by analysing the modification on 
the vortex shedding frequency such phenomena can be studied. Taking the vortex shedding frequency obtained with the 
analysis of a fixed cylinder at Re=120 (0,1613 Hz) as the forced frequency imposed to the cylinder, varying the 
Reynolds number from 100 to 140 and the amplitude ratio (Ay/D) from 0% to 8% we built the Table 1. This table show 
the influence of the amplitude of the forced displacement on the vortex shedding frequency. The flow regime are 
“locked-in”, i.e. the displacement and vortex shedding are in phase, for all values of Reynolds number and displacement 
amplitude ratio presented in the table with bold numbers. Whenever the vortex shedding frequency is different from the 
one obtained with a fixed cylinder we say that it is in a “perturbed” regime, and when the imposed movement does not 
change the vortex shedding frequency, the regime is unperturbed and out of  “lock-in”. Our results are in good 
agreement with that presented in the literature (Blevins, 1986, Correia, 2001). By increasing the displacement ration to 
2% we get a perturbed regime, and then a “lock-in” regime for all Reynolds number analysed, for 3,5% and 5%. If we 
increase the amplitude ratio to 8% the flow gets out of the “lock-in” regime for most Reynolds number..  

The harmonic function to displace the cylinder adopted is 
 

( ) ( ) 







−=

n
ttfatY
02sin π                                                                                                                             (37) 

 

where, a is the amplitude displacement, f is the frequency, and 0t is the initial time. In this work 00 =t , 1=n , 

1613,0=f  Hz and a  varying. 

For such Reynolds number and amplitude of oscillation the flow is initially perturbed by the oscillation of the 
cylinder and later the “lock-in” phenomena is established. This can be further observed in Figure 8, which shows the 
transversal velocity (Uy) and the relative displacement amplitude. 
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Table 1. Displacement ratio influence to obtain “lock-in” for different Reynolds numbers. 

Re 
Displacement Ratio (Ay/D) 

0,0% 2,0% 3,5% 5,0% 8,0% 
100 0.1412 0.1613 0.1613 0.1613 0.1618 
120 0.1613 0.1613 0.1613 0.1613 0.1613 

140 0.1634 0.1618 0.1618 0.1613 0.1615 

   
Figure 8. Velocity and Amplitude of oscillation, regime under forced transverse oscillation, Ay/D = 3.5% at Re=100. 

 
A contour plot of the computed pressure can be seen in Figure 9, where the Von Karman vortex street behind the 

cylinder is characterized, for the flow at Re=120. 
 

 
Figure 9. Pressure isolines. 

 
5. Conclusions 

 
A brief description of the developed computational system for fluid-structure interaction analysis was presented. 

Such system incorporates several important tools (different mesh movement algorithms; possibility to decompose the 
domain into several subdomains with different reference frame description) which renders it’s very flexible and capable 
to deal with a large class of two dimensional applications. Some of these tools and strategies were not exploited in this 
application and must also be tested with more complex problems to stress their real importance. The results obtained 
through the study of the lock-in phenomena on a circular cylinder are qualitatively consistent with the literature, 
however they are just preliminary and requires further investigation. A monolithic implicit FEM formulation has been 
presented to solve Navier-Stokes equations for laminar incompressible tridimensional flows. The formulation also 
includes stability properties for pressure and convection and a Fractional Step procedure. An edge-based data structure 
was used to assembly all global matrices involved in the computational model. The implicit formulation presented is 
very attractive for the analysis of transient problems in which the time step can assume larger values than those required 
for explicit formulation, which are severely restricted by stability criteria. 

Finally, other improvements are required in terms of efficiency to allow the analysis of large-scale problems within 
an acceptable time. This improvements would involve, for instance, the incorporation of an error estimator to control 
the adaptive procedure, a parallel or parallel/vector implementation and others elements of high performance 
computation. Some of this aspects are already under investigation. 
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