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Abstract. The load support and other performance charactiegsof any bearing depend on its film thicknessfife

which can be affected by elastic deformationshis work, finite volume method is used to solvecthssical equation
of journal bearings considering elastic deformatiof bearing pad as well. Presence of cavitationthie journal

bearing is considered. Results of static perforneaare compared with bearing with no deformationsvehg that
elastic deformations cannot be neglect in somesdnos.
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1. INTRODUCTION

In their simplest form, a journal bearing and iabng consist of two eccentric cylinders. The owginder
(bearing) is usually held stationary while the inoglinder (journal) is made to rotate (Szeri, 2D0Ehe clearance gap
between those cylinders is fulfilled by some lulnt In journal bearings, where the journal is atde with the
bearing, Eq. (1) is used to describe the film thads,h :

h=c(1+¢cod) (1)

where c is the radial clearancé <e < 1 is the eccentricity ratiorq is the angular coordinates measured from lines of

cylinders centers (Szeri, 2005). Equation (1) matydescribe accurately the film thickness in maitiyasions because
it considers both cylinders (bearing and journalyigid cylinders. It is possible that any smadkiation of the film
thickness caused by the film pressure at the bgatirface (bearing pad) could affect the film puesstself.

The classical Reynolds theory of lubrication hasrbased to develop equations to model the lubrittamtflow in
several types of bearings, including journal begsin This equation can be written as (Prata & Herrd990; Szeri,
2005):
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where p is the pressurey the viscosity,w shaft angular velocity an®is the radius of the shaft.

As can be seen, the film thickness is presenteigin(2) and possibly plays an important role irs thguation,
therefore to achieve accurate valuespothe film thickness must be evaluated correctly.

In this work, the journal was not considered rigit the effects of this hypothesis has been andlfgredifferent
D/L ratios, whereD = 2R is the bearing diameter and is the bearing length.

2. ANALYSIS

In dimensionless form Eq. (2) can be written as:
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To complete the statement it is necessary to déffiméoundary conditions of this problem:
P(6,Z=#1)=0, P(0=0,Z)=0 6)

Under normal operating conditions a lubricant fifnconverging-diverging geometry is expected toitedw within
the diverging part of the clearance (Szeri, 200But, the position where is the film-cavity intecéais not knowra
priori. Therefore the boundary condition for this integaan be written as:

I3(9:7T+a,2):g—5(9=77+a,2)=0 @)

where the positiord = 7r+a(Z) is the film-cavity interface and)ga(Z) <7 is not known and must be evaluated

using some methodology. In this work was used ehattlogy proposed by Prata and Ferreira (1990)ddal with
this problem, the solution domain was transformet ia simple shape using a new coordinate systerm the

0 direction defined as

0= (m+a)n (8)

Equation (3) is now rewritten for this new coordmaystem as

2 = 2 =
) 2 () 2
T+a ) on on L) oz 0z T+0a ) on

It should be noted that in this new coordinate exystthe domain used to calculate the pressure tahange,
therefore the boundary condition is defined as:

P(n.Z=+1)=0, P(n=0,Z)=0 (10)

_ _ oP _
Pln=1Z)=0, 6—n(n=1,z)

0 (11)

As can be seen in Eqg. (10) and (11), now the bayndandition is not dependent af. This variable which its
value is unknown now appears just in the govereiqgation, Eq. (9).

As stated before, Eq. (1) or its dimensionless fdeap (5), can be used only for rigid bearingsthis work it was
introduced a new term in the film thickness equatieqg. (5), given by

H =1+¢coq(m +a)n)+ BF, (12)

where F, is the dimensionless force at the journal surfaeluced byP and 3 is the flexibility coefficient. An

additional difficulty is introduced by Eq. (12). &@tdeflection of the pad depends on de pressurdbdigon in the
bearing gap, while that pressure is influencedngygeometry of the bearing gap. This nonlinearaton needs to be
carefully considered by the numerical method emgdtp solve the Reynolds equation.

Similar equation were proposed by Higginson (1968ethin (1985) or Jaiet alli (1990), but in those works
cavitation were not considered.

3. FINITE VOLUME EQUATIONS

The finite volume method (Patankar, 1980; Maliskd94) was used to solve numerically all differengiguations
presented herein. The domain is divided into nosrapping small control volumes and the differdnéiquation is
integrated over each one of these volumes. Usiagltssical finite volume notation, all terms of. £9) becomes:
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Equation (9) is now rewritten as:
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or, in an usual form (Patankar, 1980):
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Equation (16) is valid for all internal volumes dde discretize the domain. This equation shouldllggnt modified

to those volumes located at the boundary. For el@nvolumes located at right side of the domaiavitation
boundary) have the following equations:

_22 AV _22 s Anp _n- _ AZF, H_v3v
A [L] "z, 'A‘*[L] gz, 0 A””‘(H@p)zcsnw &4
A= At Ak Ee Do g 5)
(m+ap) 0,
SP:[ Lon ](He_ HW)AZP (26)
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The film thicknessH , and o are dependent oP thus usual techniques employed to solve nonlisgaations
must be used to accelerate the convergence rates.

4. CAVITATION INTERFACE

The cavitation interface is not knowarpriori, thus one equation should be proposed to evaluatdn this work it
was used a methodology proposed by Prata and fee(i€i90). Equation (17) is rewritten as:

S=AR- AR~ AR- %‘F_z,:[ T ]( He HJA 2 @7)
T+ ap
then _ _ _ —
_AR-AR-AR- AR (28)
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Since H, =1+ ¢ cod(w +a,)n,) + BF, and at the cavitation boundary,=1, P(n=1,Z)= 0:

H, =1-ccoqa,) (29)
and

ap =cos'(1H,) (30)
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Figure 1 — Sommerfeld NumberD/L =10
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5. RESULTS AND DISCUSSION
All results presented herein were obtained usiggdawith (41 x 81)(17,2) volumes. The linear system was solved

using Jacob Method (Maliska, 1994).

5.1. Short Bearing

The first result presented in this work, Figure hhs been obtained for short bearing, whibiL >4. The

Sommerfeld number is shown for three differentifddity coefficients (0, 100 and 200). In this worthe Sommerfeld
number is defined by the Egs. (31) to (34).

W W W @

W, = uw[g]z[%]]I(w—i—a)j:5cos((w+a)n)dndz (32)
W, = jw [g]z [%]Llfl(”“)f Psen((r +a)n)dndZ (33)
W

Figure 1 shows that there is not an important erlee of the flexibility coefficients on the Somneddf number for
short bearing, because it works with small valuegressure, therefore the influence of the flexipiterm in Eq. (12)
seems to be irrelevant.
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Figure 2 — Cavitation pattern

Figure 2 illustrates the effect of the flexibiligpefficients at the cavitation boundary fer= 0.4. As can be seen,
the cavitation pattern is clearly affected by thestc deformation in the pad. This effect will bagher for higher
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valuese . Figure 3 shows the pressure field for the sanhgevaf ¢ . The pressure values were not significantly aédct
by the flexibility coefficients.
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Figure 3 - Dimensionless pressure for D/L = 10 and 0.4

5.2. Finite Bearing

Finite bearings are those whidhi4< D/L < 4(Szeri, 2005). The results presented now have bétmined for
D/L=1.
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Figure 4 - Sommerfeld NumberB/L =1
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Significant differences were observed in the Sonfielemumber for different values of flexibility cfigient in
Figure 4. The highete value, the higher this difference. Such differenaere not observed for short bearing.
It is visible the influence of the flexibility coldient on the boundary shape located at the cémitaegion as well,

as shown in Figure 5.
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Figure 5 - Cavitation patternB/L=1and ¢ = 0.6

Figure 6 summarizes Figure 4 and Figure 5. One®baarve that both pressure field and boundaryeshepe

affected by flexibility coefficient in Eq. (12).
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Figure 6 - Dimensionless pressure fL =1and e = 0.6

5.1. Long Bearing

Long bearings are those whicB/L<1/4(Szeri, 2005). The results presented now have tmained for

D/L=0.1.

Significant differences were observed again inSbenmerfeld number for different values of flexityilcoefficient
in Figure?. Itis clear that the load capacity is affectgdaby deformation of the pad.
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Figure 7 - Sommerfeld NumberD/L =0.1

Figure 8 shows the cavitation boundary and howlibisndary changes affected by the pad deformation.
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Figure 8 - Cavitation patternB/L =0.1and ¢ = 0.7

Figure 9 reviews Figure 7 and Figure 8. Presdaté &nd cavitation boundary has been affectedduy p
deformation as we observed in finite bearing.
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Figure 9 - Dimensionless pressure ©fL =0.1land ¢ = 0.7

6. CONCLUSIONS

In this work, the influence of pad deformation retjournal bearing performance has been investig@emodel

where cavitation and pad deformation were takeneurmbnsideration has been analyzed numericallygufiimite
volume method.

Results have shown that pad deformation causeddsspre field in the film gap affects the load dityaof the
bearing and the pad deformation changes the cawithbundary. It changes the position and the pats well.
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