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Abstract.  This work is dedicated to present the development, implementation and assessment of a procedure for 

modeling tridimensional slender structures, like beams, bars, cables, and more specifically undersea risers, based on  

nolinear Cosserat beam theory. This approach has the advantage of taking into account geometric nonlinearities, 

usually neglected by traditional methods. In order to analyze the dynamic behavior of the structure, the deformed 

configuration of the beam is described by the displacement vector of the curve of centroids, and by a moving vector 

basis, rigidly attached to the beam cross section, related to an inertial reference frame. The main advantage of this 

approach is that it is geometrically exact. After that, the discretization of the equations of motion for the structure is 

performed using the Finite Element Method. To perform the static validation, the results obtained using the algorithm 

based on Cosserat Theory and the results simulated using the ANSYS® software were compared with experimental 

data. In order to carry out the dynamic validation, the test structure was analyzed using the implemented algorithm and 

the results obtained were confronted with results from literature. After the validation, several tests were performed to 

identify a sufficiently robust integration method to solve the nonlinear equations inherent to the used approach. Finally, 

using a test structure, it was possible to compare the results from the Cosserat beam theory with those obtained using 

the Euler-Bernoulli classic theory. 
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1. INTRODUCTION 

 

In the context of off-shore industry, flexible risers are shallow structural components designed with the purpose 

of transporting the pressured oil from the well to the platform. Their design involves technological challenges as they 

are becoming increasingly longer as a result of deeper oil exploitation. Also, during their operation they are subjected to 

very complex scenarios, resulting from the combination of static and dynamic loads such as: internal pressure, self-

weight, residual stress resulting from the installation procedure and vibrations induced by water motion (vortex-induced 

vibrations-VIV) and the vertical motion of the platform. Thus, the safe and cost-effective design of such structures 

requires a deep understanding of their mechanical behavior, which can be improved by the use of numerical models 

capable of accounting for the actual geometry and load conditions, especially fluid-structure interaction. 

Pesce (1997) discusses the behavior of long risers, stating that they can be better represented by the theory of 

flexible lines than the classical beam theory, due to their slender profile. In this context, the author refers to the Cosserat 

beam theory. This nonlinear theory was developed in the XVIIth century by the Cosserat brothers, and has been 

revisited and applied to engineering problems in the last few years, as the increase of computer power enables dealing 

with highly nonlinear differential equations.  

As opposed to traditional Euler-Bernoulli or Timoshenko beam theories, the Cosserat beam theory is 

geometrically exact, in the sense that it is not based on geometric approximations. In this theory, the deformed 

configuration of the beam is described by the displacement vector of the centroid curve and an orthonormal moving 

frame, rigidly attached to the cross section of the beam. The orientation of the orthonormal moving frame with respect 

to an inertial system is parameterized using three consecutive elementary rotations. Thus, the equations of motion are 

nonlinear differential equations in terms of time and space variables. For static problems, the equilibrium equations 

become nonlinear ordinary differential equations in terms of a space variable, which can be approximately solved by 

using standard techniques such as the perturbation approach.  

Aiming at solving the nonlinear equations of motion, Simo (1985) and Vu-Quoc et al. (1986) combined the 

finite element theory to the formulation. In this condition, the displacement functions of the beam are obtained as a 

function of the nodal displacements and rotations. The main advantage of this procedure is related to the fact that the 

shape functions are obtained from differential equations of motion, and therefore take into account all the nonlinearities 

of the system. Consequently, one can ensure satisfactory accuracy of response predictions by dividing the structure in a 
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number of elements which is significantly smaller than the number required by finite element discretization, based on 

low order polynomial shape functions.  

Recent publications like Alamo (2006) used that methodology, from the second order shape function, to model 

slender structures, with applications in oil drilling columns. Also, Santos (2005) applied the methodology, but instead 

used as shape functionslow order polynomial for modeling submerged cables from an initial configuration of 

equilibrium and excited by the motion of the platform and by the flow of sea water obtained empirically using the 

Morison’s equations. 

 In the context presented above, one of the objectives of the present work is to define an integration method 

sufficiently robust, as well the assessment of the order of approximations of the shape functions. Thus, several 

numerical simulations were performed to evaluate different integration methods and the order of approximations of the 

shape functions (second and third order). The simulations consisted of a test structure subjected to a force, which was 

applied in the form of a step function. In order to verify the convergence of the integration methods when the structure 

is subjected to different degrees of nonlinearity due the increasing of the transversal displacement of the structure, the 

amplitude of the force was gradually increased for each simulated case.  

 

2. MATHEMATIC MODEL FOR STRUCTURE 

 

One of the most important features of this theory is how the beam is spatially defined in terms of motion of the 

line passing through their cross sections centroids, defined by the vector     t  in a Cartesian fixed (inertial) base 

represented by              with unit vectors  i, and a set of orthogonal unit vectors attached to the cross section, 

forming the basis         t       t       t  , where the variable s represents the position of the cross section along the 

line of centroids. Therefore, for each point on the curve formed by the centroids there is an orthonormal moving frame, 

formed by the unit vector  i   t , that are defined externally to the position vector     t . Figure1 shows a schematic 

representation of a segment of Cosserat beam, which is represented in the two bases mentioned previously. 

 

 

Figure 1 - Schematic model of an element of Cosserat. 

For convenience, it is assumed that      t  and      t  are contained in the plane of cross section and, as a 

consequence,      t  is perpendicular to that plane. 

According to the Cosserat beam theory, the strains are classified in two groups: linear strain v(s) and angular 

strain u(s). The components v1(s) and v2(s) are called shear strain and v3(s) is named elongation, while u1(s) and u2(s) 

are described as bending strain, u3(s) is called the torsion strain. 

The relationship between linear and angular deformation, to which a segment of Cosserat beam is subjected, 

and the fixed and moving bases are established to provide a complete description, that is, the spatial position of the 

centroids as well as the rotation of the cross-section. Thus, the vector of linear deformation is given in terms of torsion 

angles and rotation of the cross section, and these relations are used later in the dynamic analysis. In this work these  

analytical developments were intentionally omitted, but the mathematical details can be found in Cao et al. (2006) and 

Borges (2010). 

 

2.1 THE GOVERNING EQUATIONS OF MOTION 

 

The local dynamic behavior of a differential element of Cosserat beam with density  s  and cross section 

area  A s , as obtained by  Antman (1995), is given by the following partial differential equations: 

  

   
     

, ,
, , ,

s t s t
s t s t s t

t s
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It can be observed that Eqs.(1)-(2) result from the application of the Newton-Euler principles to the differential 

beam element. In such equations,  ,s tn ,  ,s tm ,  ,s th ,  ,s tf  e  ,s tl  are, respectively, the contact force, the 

contact torque, the angular momentum, the external force and the external torque, all defined per unit of length. 

One of the main problems associated to the finite element method is the choice of the shape functions. These 

functions are responsible for determining the displacement field inside the element from the nodal displacements. In the 

classic methods, they are usually approximated using low order polynomials. In contrast, in the Cosserat beam theory, 

the shape functions can be obtained from the differential equations of static equilibrium; hence, they can take into 

account the system nonlinearities. Consequently, the accuracy of the dynamic response can be improved by dividing the 

structure in few elements, the number of which is usually much lower than the number required by the traditional beam 

finite elements. 

In the Cosserat beam theory, the displacements,given as a function of nodal displacements and rotations, are 

obtained from the resolution of the equations of static equilibrium. Nevertheless, for the static equilibrium, the 

equations of motion become ordinary differential equations, where s is the only independent variable. In the literature, 

the static equilibrium is understood as the absence of external forces, and from Eq.(1), the contact forces must satisfy 

the condition: 

 

 
0

d s

ds


n
 

(3) 

 

and, from Eq.(2), the contact torque density satisfies: 

 

 
    0

d s
s s

ds
  

m
v n  

(4) 

 

Once defined the main vectors quantities involved in Eqs.(3)-(4), as described by Borges (2010), it is necessary 

to obtain  sm  and  sn  in terms of deformations  su  and  sv . These can be obtained from the constitutive 

relations of the material. It must be pointed out that, in this work, it was used a constitutive model where the 

characteristics of a linear elastic material were adopted, based on the constitutive relations of Kirchhoff (Caoet al., 

2005). Thus, it is assumed that the Young modulus E, the shear modulus G and the specific mass along the Cosserat 

beam element are only function of the spatial variable s , and the center of mass coincides with the centroid of the cross-

section. 

Therefore, using these relations, the forces and torque of contact are given as functions of linear and angular 

deformations, respectively (Borges, 2010) and, as a result, Eqs.(3)-(4) can be written in terms of the forces and contact 

moments in the form of a highly nonlinear system, given by: 

 

         1 3 2 2 3n s u s n s u s n s    (5) 

         2 1 3 3 1n s u s n s u s n s    (6) 

         3 2 1 1 2n s u s n s u s n s    (7) 

         3 2 1 1 2m s u s m s u s m s    (8) 

 

In order to determine the shape functions, it is necessary to solve the nonlinear system given by Eq.(5)-(8). It 

can be noted that those equations cannot be solved by direct integration. Therefore, the perturbation method will be 

used in order to obtain an approximated solution. For this purpose, it was used a perturbation method oriented to this 

nature of solution and, among several available methods, it was chosen the method of Frobenius (Arfken et al., 2000). 

According to the  robenius’s method, the following approximations for the shape functions can be found: 

 

2 3

1 2 3( ) ( ) ( ) ( ) ( )x s x s L x s x s x s       (9) 
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2 3

1 2 3( ) ( ) ( ) ( ) ( )y s y s L y s y s y s       (10) 

2 3

1 2 3( ) ( ) ( ) ( ) ( )z s z s L s z s z s z s        (11) 

2 3

1 2 3( ) ( ) ( ) ( ) ( )s s L s s s           (12) 

 

It must be emphasized that these functions can be approximated to the order required by the user, but the 

computational costs are drastically increased for higher orders. At first in this work, it was adopted an approximation of 

second order. At last, approximations of third order were used when it was observed an astonishing number of terms 

present in these functions. However, the algorithm presented better accuracy for the representation of systems subjected 

to large displacements. 

It is important to emphasize that these displacement functions obtained from static equilibrium will later be 

used in the dynamic analysis, which eliminates one of the main problems usually found in the classic finite element 

theory, which is to define conveniently the shape functions. 

By associating the shape functions with the extended Hamilton principle it is possible to find the Lagrange 

equations, which constitute a very convenient way to obtain the equations of motion of dynamical systems. The global 

equations of motion, given in Eq. (3), are assembled similarly to the classic theory of finite elements. The equations 

presented below were obtained using symbolic manipulation software. Due to the complexity of their individual terms, 

they were intentionally omitted here. A more detailed description about this implementation and the construction of the 

global matrices of the system can be found in Cao et al. (2005) and Borges (2010). 

 
                       ( ) ( ) ( ) ( ) ,
e e e e e i e c e d e ee t t t t t t    M q K q g q f f f q , (13) 

    

where      is the mass matrix,      is the linear stiffness matrix,               is a nonlinear vector with quadratic and 

cubic terms on the components of     ,     is the nodal displacement vector, 
 i e

f  represents the internal forces and 

momentum, 
 c e

f  the external forces and momentum and 
 c e

f  element distributed loading.  

 

3. RESULTS 

 

In this section, a test structure, described in the literature, was used to evaluate the integration method adopted. 

This structure consists of a cantilever beam, as illustrated in Fig. 2a. This beam model was firstly implemented by Cao 

et al. (2005). The structure dimensions are: 0.3 m of length, 0.01 m of cross section width and 0.005 m of thickness. The 

values adopted for Young modulus and density are 2.08×10
8
 Pa e 3.0× 10

3
 kg/m³, respectively. 

 

 

 

(a) (b) 

Figure 2 – Simulated model: (a) test structure; (b) time varying force applied at the free end of the test structure  

 

It is important to emphasize that the same test structure was initially used by the authors in order to validate the 

implemented algorithm of the Cosserat beam theory for dynamic analyses. The omission of these results is justified in 

order to keep focus in the integration methods used to solve the nonlinear equations, which are the basis of the 

methodology. As presented in Borges et al. (2009) and Borges (2010), an essential aspect when dealing with nonlinear 

systems is the performance of the methods used to integrate the equations of motion, especially accuracy and stability. 
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Therefore, the realization of the numerical simulations presented in this work has demanded significant efforts in order 

to identify the most suitable techniques to be employed in association with the Cosserat theory. 

Another aspect also investigated in this section was the influence of the order of approximations of the shape 

functions on the accuracy of the responses obtained by integration.  

The integration methods evaluated in the simulation cases were: the Composite Implicit Time Integration 

Scheme, proposed by Bathe (2007), and referenced here as Newmark conservative; the Newmark method combined 

with the Newton-Raphson algorithm, proposed by Géradin and Rixen (2001); and the method of Runge-Kutta of fourth 

order with variable time step, available in the commercial software Matlab. 

Several simulations were performed using approximations of order two and three, and for each case, the 

amplitude of the force was gradually increased and the respective time response was calculated using the three 

integration methods studied.  In the first test, the structure was modeled using approximations of order two and 

subjected to a force of 0.001N applied in x direction in the form of a step function localized at the free end of the beam. 

Several simulations were conducted, but the only algorithm that has converged was that one based on Newmark 

conservative method. On the other hand, when approximations of order three were employed, all three integration 

methods converged. In all cases investigated, the structure was discretized in 10 elements of equal lengths. Fig. 3 shows 

the time response history corresponding to the displacement at the free end of the test structure along the x direction. 

 

  

(a) (b) 

Figure 3 – Comparison between the different approximations for the shape functions and integration methods for 

different loading cases: (a) F=0,001 N;(b) F=0,01 N. 

 

In Fig. 3a, one can observe that both shape functions approximations and all integration methods have 

converged to the same result. However, it was necessary to use different time steps for each method. This fact has 

occurred because the resolution of the nonlinear equations is performed at each time step, and a residue is minimized 

until a predefined value, defined by the analyst. Therefore, the method diverges when it is not capable of satisfying this 

criterion. In the simulation cases studied, whenever the algorithm diverged, another simulation was initiated with a time 

step of one half of the previous one and the convergence was tested again  

Comparing the results obtained using two different orders of approximation for the shape functions, it is 

possible to observe different sizes of time step for the same integration method. In the case where the Newmark 

conservative method was employed, the time discretization was 1.0x10
-4 

s for the approximations of order two and 

1.0x10
-2 

s for the approximations of order three. For all other methods, only the approximations of order three have 

converged, and the time steps used were: 1.0x10
-2

 s for Newmark and values varying from 1.058x10
-8

 s to 1.10x10
-5

 s, 

and mean value of 5.88x10
-6

 for  Runge-Kutta method. At this point, it is important to emphasize that the time step is a 

decisive parameter, influencing directly the computational effort required for the simulations. 

The results obtained when the force applied was increased to 0.01 N are presented in Fig. 3(b). In this case, it is 

possible to observe the differences between the results obtained from approximations of order two and three, 

considering the same integration method. These differences are remarkable in the amplitudes, in the response period, 

and the time step used are also different. In the approximations of order three, the time step was the same used for the 

previous simulation case, in other hand, for the approximations of order two the time step had to be reduced to 1.0 x10
-5

 

s in order to achieve convergence, requiring a higher time of processing.  

The integration methods based on approximations of order three have converged to the same results. The time 

step used for Newmark method was 1.0x10
-2

 s, and for the Runge-Kutta method the time step varying from 1.38 0x10
-5

 

s to 1.08x10
-5

 s, and mean value of 5.70x10
-6

 s. 

Comparing Figs. 3(a) and 3(b), one can notice that the displacement amplitudes (except the responses 

calculated based on approximations of order two) are proportional to the value of the applied force. This fact confirms 

the linearity of the test structure behavior, justified by the small magnitude of forces and displacements involved.  
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An important observation concerns to the discretization by finite element method using approximations of 

order two, which was insufficient in terms of precision. It was also noted that, for F=0.1 N the methodology based on 

those approximations, and using the conservative Newmark integration method , the numerical convergence could not 

be achieved, even reducing drastically the time step used. This fact leads to the option of employing the formulation 

based on the approximations of order three. Therefore, in the simulation cases that follow, the force applied was 

progressively increased, assuming amplitudes of 0.1 N, 1.0 N, 10.0 N, and 100 N in order to evaluate the integration 

algorithms for the approximations or order three for the shape functions from Cosserat beam theory. The obtained 

responses from the applied force of 0.1 N are presented in Fig. 4(a). 

 

  

(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 4 – Comparison between the responses obtained from different integration method for: (a) F=0.1 N; 

(b) F=1.0 N; (c) F=10.0 N; (d) F=100.0 N and (e) Details of item (d). 

The time step used for Runge-Kutta method was varied from 1.38x10
-9 

s to 1.10x10
-5

 s, and mean value of 

5.68x10
-6

 s. For Newmark conservative method the time step used was 1.00x10
-3

 s, and for Newmark the time step was 

2.00x10
-4

 s 

In Fig. 4(b) the time responses for F=1.0 N are presented. In this case, the time discretization used for Runge-

Kutta method was varying from 1.38x10
-10 

s to 1.03x10
-5

 s and mean value of 5.5x10
-6

 s. For Newmark conservative 

method the time step used was 1.0x10
-3

 s and for Newmark the time step was 2.0x10
-4

 s. 
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 Fig. 4(c) shows the time responses calculated for F=10 N. The time discretization for Runge-Kutta method 

varied between 1.38x10
-11

 s and 5.5x10
-6

 s, and mean step of 5.23x10
-6

 s.The Newmark conservative and the Newmark 

methods have presented the same time step of 1.0x10
-4

 s. Observing Figure 4(c), it can be seen that the results of 

Newmark method are in disagreement with those provided by the other two integration methods. It is important to 

emphasize that, considering the previous simulated cases, the frequency components presented now are higher, and the 

amplitudes are no more proportional to the applied force, revealing deviations from linear behavior.  

At last, the time response obtained for F=100.0 N is presented in Fig. 4(d). In this case, the time step used in 

the Runge-Kutta method was varying from 1.38x10
-12

 s a 7.56x10
-6 

s and mean step of 4.44x10
-6

 s. The conservative 

Newmark method has achieved convergence using a time step of 5.00 x10
-5

 s, while the integration method of Newmark 

converged with a time step of 2.0 x10
-5

 s. Observing Figs.4(c)-(e), it is possible to verify that the responses present a 

wider frequency content, and the amplitudes begin to suffer variations along the time, which can be attributed to the 

influence of nonlinear effects. 

 After the investigation of the approximations o second and third order, and three different integration methods, 

it is possible to draw some considerations about the computational time spent with simulations imposing large 

displacements. The integration methods of Newmark conservative and Newmark took about 1.5 hours to achieve 

convergence. On the other hand, the integration method of Runge-Kutta took about seven days of processing, which can 

be attributed to the small time step necessary to achieve convergence.  

In order to explain the significant difference observed in the period response calculated for the free end of the 

structure, as illustrated in Fig. 4 (a)-(d), it is important to consider that, in opposition to the linear beam formulation 

(Euler-Bernoulli), the Cosserat beam theory takes into account the effect of stiffening due to the axial components of 

the force applied to the free end of the beam. Such a component will be more pronounced as the displacement in the x 

direction becomes larger. This phenomenon appears due to the coupling between the longitudinal and transversal effects 

that increase the oscillation frequency as predicted by Cosserat beam theory. This effect is known in literature as stress 

stiffening (Bokaian, (1988); Bokaian, (1990)). 

 

4. CONCLUSIONS 

 

Considering to the methodology of structural modeling based on Cosserat beam theory, which leads to 

nonlinear equations of motion, a particular effort was undertaken in tests of several numeric integration algorithms. 

These tests were performed to choose the best adapted algorithms  to perform step by step integration in the time 

domain. In these simulations, the Newmark conservative method was noticed to be more stable and accurate in the 

numeric integration and, therefore, it was chosen to be used in the future works. 

 Another investigated aspect concerns the approximation order of the shape form functions used for the 

discretization equations by the finite elements technique. In this case, were examined the second and third order 

approximations. It was observed that, with the use of a same integration method, the second order approximations do 

not allow to obtain numeric convergence, even by decreasing the time step. On the other hand, with the third order 

approximations the convergence was reached without difficulties. It should be noticed that there are few works in the 

literature that use approaches of the third order. This can be explained by the high complexity of the resulting equations, 

which result from a large volume of algebraic manipulations that could be not accomplished without the computational 

program resources of symbolic manipulation. 

 Numerical simulations showed the capacity of the Cosserat beam theory for the modeling of the vibratory 

behavior in nonlinear regime, which is characterized when the amplitude of displacements and rotations are larger and 

not proportional the applied force. It was also observed that the increase of the oscillation frequency due to the stress 

stiffening caused by the axial force component, can be accounted for by the modeling methodology. 
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