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Abstract. The hydrodynamic of stratified non hydrostatic waters is studied numerically using a stabi-

lized finite element model. In environmental hydrodynamic, the density stratification is mainly function of

the temperature and salinity structure and the internal waves are of importance for the circulation asso-

ciated to low frequency fluid motions. In the present paper a particular emphasis is focused on the cross-sec-

tional dynamics of the coastal ocean forced by a limited shear stress wind acting at the surface. The

resulting motions due the steepness of the waves at the interfaces of the water layers are non-linear and

non-hydrostatic phenomena. The dynamics of water flow on a continental shelf cross section will be

described by a set of nonlinear dispersive equations for a layer system, also called Boussinesq type equa-

tions. To solve the model equations a finite element variational formulation is proposed. The accuracy and

stability of the formulation is showed in different numerical experiments.
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1. INTRODUCTION

The coastal upwelling is due to a wind-induced hydrodynamic divergence. The Ekman transport of the
surface water away from the coast then results in a vertical motion bringing deep water to the surface.
During upwelling, the internal density interface (pycnocline) has large amplitude changes in space and time
with important nonlinear effects and signals of non-hydrostatic behavior. The several upwelling contributions
reported in the literature have used the shallow water theory to describe upwelling phenomena. But, when
the vertical acceleration is non-negligible, due path curvatures of the water particles, the pressure distribution
is no longer hydrostatic and the shallow water theory is not valid. The use of Boussinesq type equations is a
way to describe non-hydrostatic motions (Boussinesq, 1872). These equations are shallow water wave equa-
tions with additional third order terms.

The phenomenon of coastal upwelling of cold water in a coastal strip contributes to increase the produc-
tivity of the sea as well as to climate modifications of the adjacent land. In coastal upwelling regions, the cir-
culation is commonly characterized by the typical formation of plumes of cold surface temperatures. The
physical process of upwelling has been reviewed by Smith(1968). The upwelling is a transient phenomena and
the generation and wave interaction are typical features of the phenomenon. The waves in stratified fluids
play a significant role in geophysical fluid dynamics, particularly in limnology, oceanography and meteo-
rology. Internal waves due to density variations (Gill, 1982) are responsible for producing the lowering and
erosion of thermocline. Baroclinic waves influence the transport of nutrients by large amplitude wave
dynamics and associated baroclinic instabilities.

While several researchers currently use finite difference approximations to deal with non-hydrostatic prob-
lems (e.g. Peregrine, 1967; Shapper and Zielke, 1984; Diebels et al., 1994b), finite element approximations are
still for the most part unexplored. Also, coastal upwelling studies have used mostly finite difference methods.
The present paper is a step in the study of coastal upwelling dynamics in stratified fluids applying a stabi-
lized finite element formulation to approach the non-hydrostatic upwelling equations numerically. The
method is attractive due its properties of accuracy as the selective dissipation at high spatial frequencies,
controlling the spurious oscillation (Carbonel, Galeão and Loula, 2000, Carbonel and Galeão, 2004 and 2008).

A layer model is developed to describe the upwelling governed by non-hydrostatic equations in a two-layer
coastal ocean using a proposed finite element model. The coastal ocean is flowing on a continental shelf cross
section near a coastline in the southern hemisphere. The coastal flow is on an f plane and longshore varia-
tions are neglected. The near-shore circulation is induced into the stratified ocean by surface winds. The
variables in the numerical model are described by linear polynomial. The numerical experiments are oriented
to the simulation of time dependent near-shore circulation for two different bottom topographies.
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2. THE UPWELLING GOVERNING EQUATIONS

It is considered a stably stratified, rotating and incompressible fluid on a continental shelf cross section
along a coastline in the southern hemisphere. It is supposed that the fluid consists of two layers. In the
model it is assumed that longshore variation are neglected (∂/∂y) and the influence of the Coriolis and
eddy stresses are important in the resulting dynamics. The coastal dynamics is forced by the wind acting
longshore on the surface where the atmospheric pressure is uniform. In the present approach the thermody-
namic effects are excluded.

For two layers of fluids the dimensional non-hydrostatic equations of continuity and motion could be
written in function of the mean velocities in the upper and lower layers layers u1̄, v1̄, u2̄, v2̄ and the surface
and interface levels η
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where, the spatial and temporal coordinates are denoted by x and t respectively. The vertical structure of
the coastal ocean is presented in Figure 1. The total depth is denoted by H = h1+ h2(x), η0(x, t) is the water
surface level and η1(x, t) is the interface level. The free surface is z = η0, the interface is at z =− h1+ η1 and
the bottom is z =− h1− h2(x) . The instant thickness of the layers are h1

∗= (η0+ h1− η1) and h2
∗= (h2+

η1). The upper layer velocity components are ū1, v̄1, and ū2, v̄2 are the lower layer velocity components. The

parameter AH is the horizontal eddy viscosity, f is the Coriolis parameter and g is the acceleration of the
gravity. The ratio between the densities is represented by δ= ρ1/ρ2.

The hydrodynamic layer models have time integration restrictions when the internal interface reaches the
surface and are not adequate to study the evolution of a surface front. A way to overcome the problem of the
internal interface reaching the surface is to include the entrainment, a physical-based vertical turbulent mass
transfer. Entrainment is the mass transfer from a non turbulent layer (or less turbulent) into a turbulent
upper layer by surface action of the wind. A consequence is the deepening of the upper layer. The entrain-
ment velocity we is represented by a convenient relation we = (Heq − h1

∗)2/te.Heq (Mc Creary and Kundu,

1988), te and He are the time scale and thickness of effective entrainment.

The hydrodynamic layers are coupled through the pressure gradient forces and the shear stresses, namely
wind shear stress at the surface τS = ρairCSW |W |, the interface shear stress τI = ρ12CI(v̄1− v̄2)|V1−V2| and
the bottom stress τB = ρ2 CB v̄2|V2|, where V1 = (ū1, v̄1), V2 = (ū2, v̄2) are vector velocities at the upper and
lower layer respectively.
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In the equations (3) and (5) the third order terms describe the dispersive features of the dynamics. In the
case of Boussinesq type equations, the non linear and dispersive terms are of the same order of importance
and play an important role in the solutions. The equations (1) to (6) are based on the derived equations of
Diebels (1991) considering additionally the effects of entrainment, eddy viscosity and shear stresses at the
surface and interface.

Figure 1. Vertical structure of the two-layer model with free surface, one interface and botom topography.

3. THE FINITE ELEMENT MODEL

The one dimensional spacial domain Ω is partitioned in N subdomains Ωe = [xi, xi+1], where xi, xi+1

belong to an ordered partition of space level

0= x1<x2<x3			 . <xN =L (7)

and the time domain is also partinionated into subintervals [tn, tn+1] of lenght ∆t, where the time levels
belong to an ordered partition of time levels

0= t0< t1< t2<			 . < tM =T (8)

The governing equations presented in (1) to (6) could be written for convenience as a equation system in
matrix form resulting
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where the matrix A,B,C,D,E,F are coefficient matrix , U is the unknown vector and R is the last vector
according to the following definition:
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We define a finite-dimensional trial solution space Sh and a test function space Vh and we will say that
the discrete Petrov-Galerkin approximate solution for the non-hydrostatic system problem (9) is the vector
U ∈Sh (of piecewise polynomials), such that p∈Vh, which satisfies the following variational formulation
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where the weighting function pj is defines
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The matrix Ψ contains the free parameters (knows as upwind functions according to Hughes and Mallet,
1986). Here, the stabilizing matrix will be approximated by the matrix Ψ = τI, where τ is the intrinsic time
scale free parameter and I is unit matrix.

The variational formulation reads
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which could be written in matrix form
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The time approximation of equation (14) is obtained for U(t) defining a linear approach between two time
levels
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4. NUMERICAL EXPERIMENTS

In the present section, numerical experiments are concerned with the onset of upwelling and the time
dependent response of the stratified water forced by winds. The response of coastal dynamics is explored
using two different shelf case configurations.

4.1 Flat-Shelf case experiment

In the present case, a steady alongshore wind (Wy=10ms−1) blows in a coastal band of 200km ( x ǫ[0, −
200km]) and drops rapidly in magnitude 200km off the coast (Figure 2). The continental shelf of constant
depth 200m with h1 = 50m and h2 = 150m. The value of the Coriolis parameter is f = − 10−4sec−1, the
gravity aceleration is g= 10ms−2, the eddy viscosity is A= 100m2s−1. The fluid densities are defined as ρ1=
1022kgm−3, ρ2 = 1024kgm−3. The friction parameters are CS = 0.001, CI = 0.0003, and CB = 0.0003. The
numerical coeeficient is θ = 2/3 and the intrinsic time scale is τ = 1s. The entrainment is not considered in
this experiment.
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Figure 2. Longshore wind component variation in function of the distance from the shore.

The model is initially at rest with h1 = 50m and h2 = 150m for all x . At time t=0 a longshore wind is
impulsively applied. The model is integrated in time during 8 days. The velocities and interface levels
changes will be evaluated using the non-hydrostatic model presented in section 3.

When the model is forced by the steady alongshore wind (Wy) presented in Figure 2, an upwelling
coastal band is generated near the coastline by a one-sided divergence of waters in the upper layer (due the
Coriolis force an Ekman flow occurs in direction -x ), resulting the shoaling of the upper layer thickness near
the shore. The conservation of mass in the vertical structure requires a compensating flow from the lower
layer; thus the thickness of the lower layer increases and a convergence motion occurs with a mass flow
directed to the shore. Additionally a downwelling sector is generated in the offshore side compensating the
mass conservation in the coastal section.

The Figure 3 illustrates the response of the model to the wind forcing, showing the velocity components
and the surface and interface levels after 4 day as a function of x .

The velocity profiles as function of x are showed in Figure 3(Left). The upper layer velocity u1 is oriented
offshore (one-sided divergence motion) whereas the lower layer u2 is onshore oriented (convergence motion).
The longshore velocities (v1 and v2) are oriented in the positive direction of y. It could be observed that in
the band between the 50 to 150km from the coast, the longhore velocities are practically identical indicating
a barotropic structure. In the band from 0 to 50km and 150km to 250km from the coast, the longshore
velocity profiles indicate a baroclinic structure(larger magnitude in the upper layer than in the lower layer).

The anomalies of the surface and interface level at day 4 are showed in Figure 3 (Right). The interface
has surfaced in a band near the shore (0 to 30km from the coast) due divergence of surface water in the
upper layer and convergence motion in the lower layer. Near the 200km from the coast a downwelling sector
is observed due the convergence flow in the upper layer and divergence flow in the lower layer.

Figure 3. Flat-Shelf Case. Variable profiles after 4 days as a function of x. Velocity profiles (Left). Interface level and

surface level anomaly (Right). The surface jet occurs near x=0 and positive interface anomaly indicates upwelling.
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In the Figure 4 (Left) the evolution of the velocity profiles during 8 days is presented. The velocity pro-
files have a similar format but increasing the magnitude with the time. The inertial oscillations are a feature
of unsteady circulation and the uneven spacing of the lines indicates the presence of these waves. Near the
coastline the coastal Jet is well developed. A weak counter-current is observed from the 200km to 250km
from the coast. The evolution of the interface level is presented in Figure 4 (Right) reaching an anomaly of
38m near the shore at day 8. The interface level in the downwelling zone reaches an anomaly of 17m nega-
tive.

Figure 4. Flat-Shelf Case. Distribution of variables as a function of x for 8 days. Upper layer velocity v1 for each

day(Left). Interface high anomaly for each day(Right).

In the presented numerical results, the baroclinic coastal jet observed in the band of 0 to 50km from the
coast is the most interesting phenomena. The coastal Jet is a feature reported in the literature by time
dependent studies (e.g. O’Brien and Hulburt, 1972; Csanady 1968). The Jet appears during the initial stages
of the hydrodynamic response of the coastal waters to an impulsively applied alongshore wind stress and is
associated to the Rossby radius of deformation of around 20km (Allen, 1973) in the present case.

The presence of a weak counter-current from -250km to -200km could be explained observing the motion

equation (4) where the
∂v1

∂t
is negative during the simulation in this sector. The wind forcing is zero in the

indicated sector and since the initial stages, the term fu1 (positive) is more important in the momentum

transfer equation inducing negative values of v1. Later u1
∂v1

∂x
(will be positive) contributes to increase the

magnitude of the weak counter-current.

4.2 Sharp-Shelf case experiment

This numerical experiment deals with a sharp-shelf configuration. In the present case the continental shelf
is 200m depth but shoreward of 100km there exists a shallow inshore shelf of 64m depth (Figure 5).

Figure 5. Bottom topography of the sharp-shelf case
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The upper layer thickness is defined at 50m depth at t = 0. The wind forcing structure is identical to the
previous case (Figure 2). The model is integrated in time during 8 days.

In Figure 6(Left), the velocity components, as a function of x , are shown after 4 days the wind is blowing.
The upper layer velocity u1 is oriented offshore whereas the lower layer u2 is onshore oriented. The inshore
velocity u2 increases as the bottom rises near 100km from the coast. It is observed that longshore velocity
components in the band between the 40 to 70km and 130 to 170km from the coast have a barotropic struc-
ture, whereas in the band form 0 to 30km, 70 to 130km and 160km to 240km the velocity structure is baro-
clinic. The baroclinic structure is associated to the upwelling and downwelling phenomena producing anoma-
lies (Figure 6, Right) at the interface near the shore, at 100km from the coast (secondary upwelling) and at
200km from the coast (downwelling sector).

The Figure 7(Left) shows the velocity profiles evolution during the 8 days. Near the coast the coastal Jet
is the more important feature. A weak surface counter-current is also observed from the 200-250km. The
longshore velocity component has larger magnitudes from the 40km to 100km from the coast compared to
the values obtained in the previous flat-shelf case.

The Figure 7(Right) shows the interface evolution during the 8 days. A weak secondary upwelling region
appears at 100km from the shore, in the sector of the sharp-shelf topography change. The secondary
upwelling is a dynamic feature observed in the nature and explained by the conservation of the potential vor-
ticity, as indicated by O’Brien and Hulburt (1972). The interface level reaches an anomaly of 28m at day 8, a
smaller value compared to the obtained for the flat-shelf case (38m). The main reason is the smaller inshore
water flux due the smaller thickness of the lower layer in the sector from 0 to 100km from the coast.

Figure 6. Sharp-Shelf Case. Velocity component profiles after 4 days as a function of x (Left). Interface level and sur-

face level anomaly after 4 days(Right). The surface jet occurs near x=0 and positive interface anomaly indicates

upwelling.

Figure 7. Sharp-Shelf Case. Distribution of variables as a function of x for 8 days. Upper layer velocity v1 for each day

(Left). Interface level anomaly for each day (Right).
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4.3 Time dependent wind forcing

In this experiment, the sharp-shelf configuration is forced by a time dependent longshore wind W repre-
sented by a sinus wave

W =Wbas+Wamp sin(2πt/T ) (24)

where t is the time; the parameter Wbas is the wind basic magnitude, Wamp is the amplitude and T is the

period of wind magnitude oscillation, defined equal to 10ms−1, 1ms−1 and 6 days respectively.

Initially the model is at rest and the wind function is applied at time t=0 . The model is integrated in
time during 20 days using the same parameters of the sharp-shelf case. The entrainment effect was included
in this experiment using Heq= 30m and te= 1/4 day giving a physical control of the outcropping of the inter-
face in this kind of models.

The time evolution of the upper layer thickness and velocity component are presented in Figure 8. The
interface level at the shore (Figure 8, Left) shows an evolution with a clear influence of the wind oscillation.
At a control point located at 10km from the shore the time history of the velocities is presented in Figure
8(Right). The longshore velocity components have maximal values around the 0.7ms−1 in the upper layer.

Figure 8. Time history of interface level and velocities at control points during 20 days. (Left) Interface level anomaly

at the shore. (Right)Velocity components at 10km from the shore.

Two kinds of oscillations are observed in the time history of the variables near the shore (Figure 8). After
6 days the interface reaches a level of around 30m. This level is maintained due the influence of the entrain-
ment deepening the interface and acting against vertical advection. The observed long period oscillations of
around 6 days of period are associated to the wind oscillation T . The short period oscillations of around 1
day of period (more visible during the first days in the cross-shore velocity components) are associated to the
inertial waves excited during the initial setup of the model. Near the coast such inertial oscillations are
rapidly damped by friction and mixing processes.

5. SUMMARY AND CONCLUSIONS

A two layer finite element model of coastal upwelling taking into account the non-hydrostatic behavior of
the waters has been formulated. The equation system is based on Boussinesq type equations for non linear
dispersive hydrodynamic and it is assumed that longshore variation are neglected (∂/∂y=0). The model
includes the influence of the topography changes, Coriolis effect, eddy stresses due turbulence and entrain-
ment between the layers. To solve the non hydrostatic governing equations of the two-layer model, a stabi-
lized finite element variational formulation is presented.
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The experiments are focused on the cross-sectional dynamics of the coastal ocean forced by a limited
shear stress wind acting at the surface. It is studied the non-steady response of the waters for continental
shelf cross sections, a flat shelf case and a sharp-shelf case. The results shown some typical features of
upwelling coastal configurations. A coastal jet is generated and confined to a band near the shore. The pres-
ence of downwelling is obtained in each case. The changes of the continental shelf (Sharp-Shelf case) influ-
ences the resulting dynamics generating a secondary upwelling.
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