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Abstract. Electric vehicles use just energy of electrons and open the era of zero emission mobility. They use the 

batteries as sources of energy for driving. But the principal drawback of the battery is its big time for recharging. To 

resolve this problem the model of switchable battery station was suggested. Switchable battery station consists of m 

fast chargers (30 minutes for full battery recharging) and k full batteries at the beginning. Electric cars arrive to the 

station randomly according to Poisson flow with the known rate (for example 20 cars per hour). Each car gives its 

battery for recharging in one of the free chargers. If all the chargers are occupied, then the battery goes to the waiting 

queue for recharging. If there are full batteries at the station, then the car may take the full battery and does not wait. 

If there is not ready full battery at the moment of the arrival, then the car is forced to wait. The aim of the paper is to 

try to choose the parameters of the station (m - number of chargers and k - number of batteries at the beginning) to 

provide short average waiting time for the car. It turns out that the number of chargers may be chosen a little bit more 

than some critical number (which is equal to 10 for the rate of 20 cars per hour) and the number of batteries at the 

beginning may be chosen dependently on the requirements to the waiting time (more strict requirement implies more 

batteries at the beginning of the process). The method does a computer simulation of random car arriving and also the 

arbitrary distribution of the charging time with the condition that the average time of recharging is 30 minutes. A 

pseudo random number generator is used for this purpose. A time interval of 10 hours is chosen for simulation and 200 

cars arrive to the station during this time. The algorithm for calculating the waiting time was proposed. The use of this 

algorithm permits to calculate the waiting time of each of 200 cars in the sequence. This gives one random experiment 

with the cars. But these results are not very stable. Therefore the 1000 tests are repeated and stable results are 

obtained for various number of chargers (from 11 to 29) and for various number of full batteries at the beginning 

(from 0 to 29). Average waiting times and their standard deviations are obtained for each car (total 200). It turns out 

that these waiting times vary a little bit at the beginning, but turn to be more stable with greater number of arriving 

cars. Because of this the average of these waiting times for the last 100 cars is chosen for obtaining the table which 

gives the waiting times values for various numbers of chargers m and various numbers of full batteries at the 

beginning k. This table permits to give recommendation on how to choose the number of chargers (a little bit more 

than critical, 13 or 14 for example) and the number of full batteries at the beginning (dependent on the waiting time 

requirement). The results of the paper can be used to optimize these parameters and to save financial resources. 
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1. INTRODUCTION 

 
Our time is characterized by massive use of fossil fuels as a source of energy. This leads to depletion of the natural 

resources and of the oil in particular, and to the climate change, air and environment pollution in general. Oil is a unique 
fuel resource for our transport. Most of transport based on fuel, about 99%, has its origin from petroleum. Big countries 
that were in the past completely independent became dependent on several relatively small countries that have big fields 
of petroleum. Those are a good reason to look for alternative transportation means which are not based on petroleum. 
There are different alternatives to solve this problem (Electrification Roadmap, 2009). The most economically viable 
alternative technologies employ biofuels, natural gas, hydrogen and electrification.  

One of the first alternatives is to use biofuels, ethanol may serve as a famous example. They represent already a 
significant amount of the fuel market of some countries in the world and most of them are produced domestically. 
Advanced biofuels are used in car, ship and aircraft industries. However, biofuel prices tend to track oil prices closely. 
This is because the market price is determined by the marginal price of the crude oil barrel in the global oil market. The 
world economy is still dependent on the oil price, and so does the chain of biofuel production and distribution. 
Therefore, when gasoline price rises or falls, the same happens proportionally to ethanol. Consequently, when the price 
of gasoline falls below the marginal price of producing ethanol, also the production of ethanol declines.  

A second alternative is the use of natural gas. Consumption of natural gas emits about 30% less CO2, than oil, and 
45% less than coal on an energy equivalent basis. However, using natural gas in transportation would require a 
significant expansion of distribution and refueling infrastructure. Electrification would also require infrastructural 
upgrades, but of a very different and significantly less substantial nature. If the electricity produced from 28 cubic 
meters of natural gas burned in a current power generation plant were used to fuel an electric vehicle, it would provide 
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enough energy to travel 735 kilometers. The same 28 cubic meters burned in a natural gas vehicle would only provide 
enough energy to move 360 kilometers. 

A third alternative is the hydrogen fuel cell. At some point in the future the progress in fuel cell technology and fall 
of the cost of fuel cells will allow for hydrogen vehicles to be a successor or supplement to battery-powered electric 
vehicles (Kelly et al., 2010). Commercialization of hydrogen-fueled vehicles, however, faces several obstacles that are 
far more significant than those facing battery-powered vehicles. First, the cost of hydrogen fuel cells is currently in 
excess of the cost of a comparable battery cell. Second, reliance on hydrogen would require the construction of an 
entirely new infrastructure to distribute it to consumers. At the same time there is no clear ability to manufacture 
sufficient quantities of hydrogen to fuel the automotive fleet. And perhaps the largest obstacle to the development of the 
hydrogen-fueled light-duty fleet is the fact the hydrogen itself is much more expansive than electricity, and likely 
always will be.  

Electric vehicles get attention as most perspective alternative for transportation. Instead of Internal Combustion 
Engine they have electric motor and use batteries as a source of energy. But the batteries have one essential shortage 
because they need a relatively long time to recharge, so other than fast recharging battery technology, efficient 
recharging systems are also required (Solero, 2001). The most recent electric car designs have their own charger that 
allow for recharging the batteries from 0 to 100% in approximately 18 hours. Home chargers allow that in 8 hours. Fast 
chargers do this in half an hour, however they are also more expensive (Wang et al., 2004 and Wang et al., 2005). 
Conventional recharging systems coupled to the vehicle are not as fast as the refueling process in a gasoline station for 
regular cars. Therefore, a new business model in which the battery and the vehicle are separated has to be established. 
Switch Battery Stations in which the car owners leave their batteries for recharging and take full batteries in exchange 
are suggested to increase competitiveness of the electric car technology (Nansaiet al., 2001).  

Several works in the literature deals with different aspects of the electric car technology (Solero, 2001; Wang et al., 
2004; Wang et al., 2005; Egan et al., 2007 and Pellegrino et al., 2010) but few have explored the development of 
methodologies to design the |charging infrastructure  (Nansai et al., 2001). Design variables such as the number of 
batteries, chargers, flux of cars and waiting time are important characteristics to define electric cars as a competitive 
alternative to other commonly employed technologies. Therefore, the main goal of this work is to develop a consistent 
and reliable mathematical methodology to design switch battery stations taking into account flux of cars and waiting 
time as basic characteristics. This work intends to design switch battery stations with waiting time similar or even 
smaller to that of other fuel supply stations to show the potential of use of electric cars. 

The mathematical methodology, here introduced, was firstly studied by Yudai and Osamu (2009) under the 
assumption that recharge times are exponentially distributed, which permitted to apply the queuing theory (Adan and  
Resing, 2002). The work of Yudai and Osamu (2009) described the probability distribution of system states and found 
the functional dependence of the loss probability when there is no possibility to exchange the batteries because the stock 
of full batteries is empty. They explored characteristics such as the stock size of full batteries for a fixed number of 
chargers and the number of chargers for a fixed battery stock. They also determined the functional dependence between 
a recharge time and a reasonable stock size of batteries. 

The work is subdivided in different items, the first one refers to this text of introduction where many aspects of the 
system of propulsion of cars and in particular the electric cars are discussed. The second item presents the concepts 
behind the switch battery station model, and the third item introduces a mathematical algorithm based on the waiting 
time characteristic. The fourth item discuss the possibility to account for random vehicles arrivals and charging time 
distribution, and the fifth item shows the results of some test cases used to illustrate the methodology developed. The 
sixth and last item presents the main conclusions and some suggestions for future work. 
 
2.SWITCH BATTERY STATION MODEL 

 
Suppose that the arrival of vehicles to the station occurs according to the Poisson flow with parameter λ. It means 

that for each moment t the probability that the vehicle arrives in the time interval (t,t+∆t) is equal to  λ∆t+o(∆t) and does 
not depend on t chosen from the real axis. Suppose also that the time for recharging of the battery from 0 to 100% of its 
capacity is 30 minutes or half an hour. Suppose that at the beginning of the process there are k full batteries. The vehicle 
arrives and gives its battery for recharging. If there is a free charger, the battery goes directly for recharging. If there is 
not free charger, then it goes to the queue to wait. If there are full batteries at this moment, then the vehicle takes the full 
battery and leaves the station. If there are not full batteries at this moment, then the vehicle has to wait in queue for a 
swap. 

Consider one example of service when the vehicles arrive at specific moments. Suppose that there are 10 chargers 
and 10 batteries at the beginning. Suppose also that the vehicles arrive each 3 minutes. The first vehicle arrives, gives its 
battery for recharging, takes a full battery and leaves the station. The second vehicle arrives and also swaps its battery. 
This situation continues until the arrival of the vehicle number 11. Now, there are not full batteries, but the first battery 
is finishing, at this moment, its recharging and can be used by the vehicle number 11 for swap. Further vehicle number 
12 arrives and uses the battery of the second vehicle which will be ready at this moment for the swap. Thus, this process 
continues without stopping and without any wait. 
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3. WAITING TIME CALCULATION ALGORITHM 

 
Suppose that the first vehicle arrives at the moment ��, the second vehicle arrives at the moment ��, and so on, the 

vehicle number� arrives at the moment ��. Suppose also that the first battery has recharging time ��, the second battery 
has recharging time ��, and so on, the battery number � has recharging time ��. At the beginning, all the chargers are 
not occupied. Therefore, the first battery can get recharged at the first charger, the second battery can get recharged at 
the second charger, and so on, the battery number � can get recharged at the last charger number �. The first battery 

arrives at the moment �� and  can start its recharging and finish it at the moment ��
	�
 � �� � ��, the second battery 

arrives at the moment �� and  can start its recharging and finish it at the moment ��
	�
 � �� � ��,…, the battery number 

� arrives at the moment  � and can start its recharging and finish it at the moment �
	�
 � � � �. Now, we can find 

index �� such that 

���
	�
 � min

���,…,
���

	�
�. (1) 
 

This defines the moment of the first battery at the exit 

�� � ���
	�
. (2) 

 
Now, the vehicle number � � 1 arrives at the moment ��� and brings its battery for recharging. This battery can get 
recharged at the charger number ��, which is liberated at the moment ��. Therefore, the initial moment of this new 
recharging is 

�	�
 � max	���, ��
. (3) 

The final moment of the recharge of this battery is 

 	�
 � �	�
 � ���. (4) 
 

Now, we have to change the final moment of recharging for the charger ��. 

���
	�
 �  	�
and ��

	�
 � ��
	�
if  i$��. (5) 

 
We can find index ��, that leads to the minimum 

��%
	�
 � min

���,…,
���

	�
�. (6) 
 

This defines the moment of the second battery at the exit 

�� � ��%
	�
. (7) 

 
Now,the vehicle number � � 2 arrives at the moment ��� and brings its battery for recharging. This battery can get 
recharged at the charger number ��, which is liberated at the moment ��. Therefore, the initial moment for a new 
recharge is 

�	�
 � max	���, ��
. (8) 
 

Therefore, the final moment for recharging of this battery is 

 	�
 � �	�
 � ���. (9) 
 

Now, we have a change in the recharging final moment for the charger number ��. 

��%
	'
 �  	�
and ��

	'
 � ��
	�
if  � $ ��. (10) 

 
We can find index �' such that 

��(
	'
 � min

���,…,
���

	'
�. (11) 
 

This defines the moment of the third battery at the exit 

�' � ��(
	'
. (12) 

 
Continuing at this manner, we can obtain all these moments. They form an increasing sequence 

�� ) �� ) * ) ��. (13) 
 

Now, we are going to calculate the waiting times for a given number of batteries at the beginning. Let + be the number 
of batteries at the beginning of the process. Define waiting times of the vehicles that arriving as 

,�, … , ,�. (14) 
 

The first + vehicles do not need to wait, because they can swap their batteries with the full batteries at the beginning 

,� � ,� � * � ,- � 0. (15) 
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Now, the vehicle number + � 1 arrives at the moment �-��. If it arrives before the first battery at the exit (�-�� ) ��), 
then it should wait until moment ��in order to swap this battery. In opposite case it does not wait. Therefore, waiting 
time here is 

,-�� � max	0, �� / �-��
. (16) 

Now, the vehicle of general � arrives at the moment ��. If it arrives before the 	� / +
 batteries at the exit (�� ) ��0-), 
then it should wait until the moment ��0- in order to swap its battery.  In the opposite case it does not wait. Therefore, 
waiting time here is 

,� � max	0, ��0- / ��
. (17) 
 

 
4. GENERALIZATION OF THE ALGORITHM FOR TWO DIFFERENT BATTERY TYPES 

 

Let again �� ) �� ) * ) �� be the arrival moments and ��, ��, … , ��be the recharging times of the corresponding 
batteries. Let 1�, 1�, … , 1� be the types of batteries (1� � 1,2 - two types). The first � batteries go to the free chargers 

with termination times ��
	�
 � �� � ��, ��

	�
 � �� � ��, … , �
	�
 � � � �. These batteries have types 2�

	�
 � 1�, 2�
	�
 �

1�, … , 2
	�
 � 1, respectively. Now, denote by �� ) �� ) * ) �� for the first, the second and the�34 battery at the 

exit. This order can be different from the order of arrivals. Denote, also, by ��,� ) ��,� ) * and ��,� ) ��,� ) * 

corresponding moments for the batteries of type 1and 2, respectively. Now, we can subsequently find all these numbers. 
The vehicle � � 1 arrives at the moment ��� and gives its battery for recharging. It will use the charger that finishes 

its recharge first. To find this charger we define index ��, such that ���
	�
 � min����

	�
�. If 2��
	�
 � 1, then the type of the 

battery that finishes first is 1 andwe have �� � ��,� � ���
	�


. If 2��
	�
 � 2, then the type of the battery that finishes first is 2 

and we have �� � ��,� � ���
	�


.  Now, the battery of the vehicle � � 1can start its recharge with charger �� at the moment 

�	�
 � max 	���, ��
 and finish it at the moment  	�
 � �	�
 � ���. We put now ���
	�
 �  	�
, 2��

	�
 � 1�� and 

��
	�
 � ��

	�
, 2�
	�
 � 2�

	�

if � $ ��. Now, the vehicle � � 2 arrives at the moment ���. To define the number of the next 

released charger, we can find index�� such that ��%
	�
 � min����

	�
�. If 2�%
	�
 � 1, then the type of battery that finishes 

second is 1 and we have �� � ��%
	�


. If this battery is also the second battery of the type 1, then ��,� � ��. If it is only the 

first battery of the type 1, then ��,� � ��.  If 2�%
	�
 � 2, then the type of the battery that finishes second is 2 and we have 

�� � ��%
	�


. If this battery is also the second battery of the type 2, then ��,� � ��. If it is only the first battery of the type 2, 

then ��,� � ��. Now, the battery of the vehicle � � 2can start its recharging with charger �� at the moment �	�
 �
max 	���, ��
 and finish it at  	�
 � �	�
 � ���. We define, now,��%

	'
 �  	�
, 2�%
	'
 � 1�� and ��

	'
 � ��
	�
, 2�

	'
 �
2�

	�

if � $ ��. By the same way we can find all the numbers ��,� ) ��,� ) * ) ��,�and ��,� ) ��,� ) * ) ��,�. Denote, 

now, by 5�,� and 5�,� the numbers of vehicles of the types 1 and 2 respectively after �34 arrival. Then, we can define them 

subsequently. If 1� � 1, then 5�,� � 1, 5�,� � 0. If 1� � 2, then 5�,� � 0, 5�,� � 1. Now,if 1� � 1, then 5�,� � 5�,� �
1, 5�,� �  5�,�. If 1� � 2, then 5�,� � 5�,�, 5�,� �  5�,� � 1. By the same way, we can obtain all 5�,�and 5�,�. Let, now,+� 

and +� be the numbers of batteries of type 1 and 2 respectively at the beginning of the process. Denote by 

,�, ,�, … , ,�waiting times of the vehicles. Now we define them. Consider first case 1� � 1. If 5�,� ) +�, then ,� � 0. 

If 5�,� 6 +�, then ,� � max 70, �89,�0-�,� / ��:. Consider now the case 1� � 2. If 5�,� ) +�, then ,� � 0. If 5�,� 6 +�, 

then ,� � max 70, �89,%0-%,� / ��:. 

 
5. SIMULATION OF RANDOM ARRIVALS OF THE VEHICLES AND CHARGING TIME DISTRIBUTION 

 

We have used a pseudo random number generator to simulate 200 arrivals in a time interval of 10 hours. The 
ordering of these arrival times and corresponding vehicles leads us to the Poisson flow. There could be several different 
cases: the recharging time is a constant and equal to half an hour; probability of a given recharging time is proportional 
to the time itself; or an arbitrary recharging time distribution with an average of half an hour. As a result of 1000 
simulations we have found the means of the waiting times and their standard deviations. After this, we took the second 
part of the series (last 100 vehicles of a total of 200) and found the average values (the means and standard deviations). 
The tables of the waiting times for different number of chargers and different number of batteries at the beginning were 
obtained. It was also done for different rates of arrival. These tables demonstrate explicitly how a waiting time changes 
with the number of chargers and the number of batteries. There exists some critical number of chargers for a given rate 
of recharging and a given rate of arrival such that taking a number of chargers less or equal to the critical number may 
lead to the growth of the queue. After some limit, which is a little bit greater than the critical number, an increase of the 
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number of chargers does not affect significantly the waiting time. The increase of the number of batteries at the 
beginning affects essentially how rapid decrease the waiting times. It is not necessary to bring additional batteries 
during the process. The batteries at the beginning will supply the whole process, without the need for new batteries. The 
number of chargers may be chosen as a little bit greater than the critical number and the number of batteries may be 
chosen according to the tables and requirement for waiting time. 
 
6. RESULTS 

 
Several simulations of the same queue formation process were carried out in order to obtain statistically 

representative results. In this sense, our simulation is a Monte Carlo procedure (Kroese and Taimre, 2011). It was 
supposed that the unit of time is one hour and that the average time of charging is 0.5 hour (µ=2 batteries per hour). For 
simplicity we present graphics only for the constant recharging time. 

 

 
Figure 1.Test case for an arrival rate λ of 20 vehicles per hour, a number of chargers m=11 and a number of batteries at 
the beginning k=11, 12, 13, 14, 15. 
 
The critical number of chargers (when the arrival rate is equal to the recharge rate) here is 10. The waiting time at the 
beginning of the process is zero. We can easily see that the mean waiting time (after 50000 tests) is jumping at some 
definite points. Each jump is followed by a horizontal level which is reaching the next jump. After a sufficiently large 
number of iterations (which leads to a stable mean) it is possible to explain the jumps of waiting time as a consequence 
of the initial condition of the system. At each curve of Fig. 1, a number of vehicles, equal to the number of batteries at 
the beginning of the process, does not need to wait, because there are full batteries available. The behavior, in a general 
case (arbitrary distribution of recharging time), is slightly different. In this case, the horizontal levels here are not 
expressed so clearly. When the arrival number exceeds a hundred of vehicles per unit of time, we observe the 
stabilization of the waiting time. Here also we can see clearly that the waiting time is decreasing with the number of 
batteries growth from 11 to 15. 
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Figure 2.Test case for an arrival rate λ of 5 vehicles per hour and a number of chargers m = 3, 4, 5, 6, 7. 

 
Figure 2 shows the behavior of the waiting time as a function of the number of batteries, for several different numbers 
of charges. We choose an arrival rate of 5 vehicles per hour. At this rate, the critical number of charges is 2.5 (not an 
integer). These 5 curves demonstrate how the waiting time is changing with the number of batteries at the beginning of 
the process for the different numbers of chargers m = 3, 4, 5, 6, 7. We can see here that the curves for m = 4, 5, 6, 7 are 
quasi-coincident, which demonstrates that the number of charges is not significantly affecting the waiting time. For 3 
chargers (m = 3) and for the number of 5 batteries at the beginning, we have approximately 10 minutes (0.17 hour) 
average waiting time (after 50000 tests). For the number of chargers m = 4, 5, 6, 7 and for the same number of batteries 
we have less than 2.4  minutes (less than 0.04 hour) for the average waiting time. 
 

 
Figure 3.Test case for an arrival rate λ of 10 vehicles per hour and a number of chargers m = 6, 7, 8, 9, 10. 

 
In the Fig. 3, the arrival rate is equal to 10 and the critical number of chargers is 5. These 5 curves demonstrate how the 
waiting time is changing with the number of batteries at the beginning of the process for the different numbers of 
chargers m = 6, 7, 8, 9, 10. We can see here that the graphs for m = 7, 8, 9, 10 practically coincide. For 6 chargers and 
for the number of 5 batteries we have approximately 15 minutes (0.25 hour) average waiting time. For the number of 
chargers m = 7, 8, 9, 10 and for the same number of batteries, we have approximately 10 minutes for the average 
waiting time. The shape of the curves in the Fig 2 and Fig. 3 is qualitatively the same. In contrast, we notice an 
important increase of the performance of the station. In the first case, Fig. 2, 6 batteries are required to provide a waiting 
time of 6 minutes, for 3 chargers, at an arrival rate of 5 vehicles per hour. If the arrival rate would be of 10 vehicles per 
hour, two stations should be necessary to keep the waiting time equal 6 minutes. In other words, 12 batteries and 6 
chargers are necessary to maintain the waiting time at this level. In the case of Fig. 3, where the station is two times 
higher, only 7 batteries and 6 chargers are necessary to reach a waiting time of 6 minutes. This represents an economy 
of 5 batteries or a relative gain of 41%. 
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Figure 4.Test case for an arrival rate λ of 20 vehicles per hour and a number of chargers m = 11, 12, 13, 14, 15. 

 
In the Fig. 4, the arrival rate is equal to 20 and the critical number of chargers here is 10. Comparing results of Fig. 4 
with Fig. 3, similarly to what was done for Fig. 3 and Fig. 2, we found that to keep the waiting time equal to 6 minutes, 
at an arriving rate of 20 vehicles per hour, a single station with 12 chargers would need 10 batteries while two stations 
of 6 chargers would need 14 batteries. In this case, the gain is 28%, which is less than in the previous situation. 
Actually, for greater stations (in the sense of the number of chargers), the relative gain obtained with the integration of 
stations, progressively decrease. 
To take into account the deviations in each test we give also the curves with standard deviation as a function of the 
number of batteries. Each one of the following figures may provide subsequently more reliable estimation compared to 
the above figures, for the individual waiting time. In the Fig. 5, we show curves for mean plus standard deviation 
waiting time, as a function of the number of batteries. It means that 84.14% of the vehicles that arrives in the station 
would wait less than the value defined by the curve. In the figures 6 and 7, the curves correspond to mean plus two 
(97.73% of confidence level) and three (99.87% of confidence level) standard deviation waiting time, respectively.  
 

 
Figure 5.Test case for an arrival rate λ of 20 vehicles per hour and a number of chargers m = 11, 12, 13, 14, 15. 
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Figure 6.Test case for an arrival rate of 20 vehicles per hour and a number of chargers m = 11,12,13,14, 15. 

 

 
Figure 7.Test case for an arrival rate of 20 vehicles per hour and a number of chargers m = 11, 12, 13, 14, 15. 

 
We have also studied the dependence of the waiting time as a function of the number of batteries for different 

service time rates. In the Fig. 8, we can see that the waiting time is inversely proportional to the service rate. To reach 
the waiting time of 0.1 hour (6 minutes) we need approximately 80 batteries at the beginning for the rate of 0.25 
batteries per hour, 43 batteries for the rate of 0.5, 28 batteries for the rate of 0.75 and 25 batteries for the rate of 1.0. It 
means that the number of batteries at the beginning of the process decrease proportionally to the recharging rate of the 
charger. We can compare here two chargers: the regular charger with a rate of 0.125 batteries per hour and the fast 
charger with a rate of 2.0 batteries per hour. The cost of the installation of the first one is approximately US$2000 and 
of the second one is $45000. To serve the arrival rate of 20 vehicles per hour we need at least 160 regular chargers 
which cost US$320000. The corresponding number for the fast chargers is 10 which cost US$450000. So, the cost of 
the 10 fast chargers is greater than the cost of the 160 regular chargers. But to reach a good waiting time we need 
approximately 160 batteries at the beginning for the case of regular chargers and just 10 batteries for the case of fast 
chargers. The cost of the battery pack for the Nissan Leaf is approximately $9000. The cost of 160 batteries is 
$1440000 and the cost of 10 batteries is just $90000. The total cost of 160 regular chargers and 160 batteries is 
$1760000. The total cost of 10 fast chargers and 10 batteries is $540000.  It means that the case of the regular chargers 
is more than three times costly than the case of fast chargers. 
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Figure 8.Test case for an arrival rate of 20 vehicles per hour and a recharge rate µ = 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 

2.0. 
 

 
7. CONCLUSION 

 

In the present work we have studied the queue formation process in switchable battery model for electric cars. A 
direct Monte Carlo methodology was developed where the main parameters are the number of chargers �, the number 
of batteries +, the arrival rate λ and service rate of each charger µ. We attempted to describe the behavior of the waiting 
time as the function of these parameters. 

In each case there is a definite critical number of chargers. If we take the number of chargers less or equal to this 
critical value, than the queue will grow up and we cannot obtain a stable situation. But if we take the number of 
chargers a little bit more than critical, then the waiting time will be defined mostly by the number of batteries at the 
beginning. We obtained the tables with two entries: the number of chargers and the number of batteries. Each 
intersection of these entries gives the corresponding waiting time. These tables permit to find the number of chargers 
and the number of batteries in such a manner that the waiting time would be less than some small value. We do not 
suppose that the recharging time of the battery is exponentially distributed as in the paper of Yudai and Osamu, 2009. 
These authors use this assumption to apply the classical approach of the theory of queues. But we use just the computer 
simulation. 
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