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Abstract. An efficient numerical model to analyze problems on Nonlinear Solid Mechanics is presented in this work. It 

is well known that static analyses of solid bodies and structures with nonlinear behavior are usually carried out using 

the incremental approach and Newton-Raphson iterations in order to obtain equilibrium configurations during the load 

steps. Consequently, the computational costs associated to this kind of analysis are generally high when numerical 

models based on the Finite Element Method (FEM) are adopted. The key procedures of a static nonlinear algorithm are 

related to evaluations of the gradient matrix and stress state at element level, which must be updated at every iterative 

step. In addition, the constitutive relation must be also integrated during the iterative process if a nonlinear material is 

considered. Obviously, these computations are multiplied by the number of Gauss points needed for an exact 

integration of all the element matrices in a FEM formulation. In the present model, eight-node hexahedral elements 

with one-point quadrature are utilized to discretize the spatial field without excessive computations. The equilibrium 

equation is written in the rate form and a corrotational formulation is adopted for kinematical description of the 

continuum. Loads are applied using load subincrementation, where a coarse load increment is initially defined by the 

user, which may be automatically divided by the algorithm into smaller subincrements according to an error estimate 

based on the difference between first and second order displacement solutions. An explicit algorithm for integration of 

elastoplastic constitutive models is employed, where strain increments are divided into subincrements by using a 

subincrementation procedure similar to that utilized for the load increments. Some classical numerical examples are 

analyzed to demonstrate the efficiency and accuracy of the present formulation. 

Keywords: Finite Element Method (FEM), Nonlinear analysis, One-point quadrature 

1. INTRODUCTION 

 Although the linear behavior hypothesis can be considered as a reasonable approximation for many situations in the 

field of Solid Mechanics, it is well known that nonlinearities play an important role for most of the practical problems. 

These nonlinearities may be associated to geometrical or physical characteristics of the body analyzed, or a combination 

of both. Depending on the kind of nonlinearity observed, different approaches may be assumed to describe the problem 

analytically, which are basically related to the kinematical description of the continuum as well as the constitutive 

formulation of the material (see Belytschko et al., 2000). 

 The nonlinear problem is usually solved using the incremental approach with linearizations performed by taking into 

account the Newton-Raphson method (see Bathe, 1996). However, geometrically nonlinear analysis may present limit 

points related to snapping response of structures, where failures to achieve convergence are generally observed when a 

classical Newton-Raphson iterative procedure is adopted. Moreover, special characteristics are verified if the numerical 

model is developed using the Finite Element Method (FEM). The stiffness matrix and the internal force vector require 

periodic updates and the stress field must be evaluated employing energetically conjugated stress-strain measures at 

every iterative step. Since matrices and vectors derived from the application of the FEM are usually obtained 

considering numerical integration with the Gauss-Legendre quadrature, the computational efforts concerning all 

evaluations inherent to the method are multiplied by the number of quadrature points required for an exact 

representation of the geometrical field, which is also referred to as full quadrature. In this sense, finite elements utilizing 

one-point quadrature are very useful for nonlinear analysis, despite the additional numerical requirements related to 

element stabilization (see, for instance, Liu et al., 1998). 

 The classical Newton-Raphson method is based on iterative evaluations of the residual force vector, which consists 

in the difference between the external and internal force vectors. The stiffness matrix may be obtained considering 

displacement fields related to iterative or equilibrium states during the load steps, although the load is generally kept 

constant during iterations. These alternative procedures are referred to as full and modified Newton-Raphson method, 

respectively. Unfortunately, they may not converge owing to numerical difficulties associated to limit points or 

situations where the stiffness matrix changes by orders of magnitude. Therefore, various techniques have been 

developed to stabilize Newton-Raphson schemes, where the arc-length methods are the most popular. 

 In arc-length methods, the Newton-Raphson iterations are forced to remain near the last converged equilibrium 

point, such that load and displacement increments are dynamically adjusted along the equilibrium iterations in order to 

deal with limit points. The basic arc-length concepts were introduced by Wempner (1971), Riks (1972, 1979) and 

Crisfield (1981) and many contributions have been proposed since then. A review on the subject may be found in 

Memon and Su (2004). 
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 The solution of the nonlinear equilibrium equation is usually obtained by dividing the total load into a number of 

load increments, where the magnitude of the load increments is defined considering a trial and error process. However, 

the size of the increments may vary by several orders of magnitude during the analysis, which is generally associated to 

the level of nonlinearity observed in the displacement response. In a subincrementation scheme, the load step is defined 

taking into account an estimate of the local error based on the difference between first and second order solutions of the 

equilibrium equation (Sloan and Abbo, 1999). Consequently, the load increments can be dynamically adjusted 

considering the local error estimate and a specific tolerance criterion based on an admissible error level. The numerical 

procedure is started considering a prescribed load step defined by the user, which must be large enough in order to 

reproduce the displacement response efficiently when the linear behavior is more evident. 

 Materials presenting physically nonlinear behavior require integration of the constitutive equation to obtain new 

stress states (see Owen and Hinton, 1980; Souza Neto et al., 2008). Methods for integrating the stress-strain relation are 

classified as explicit or implicit, where the former method is characterized by numerical schemes for which the yield 

surface, plastic potential gradients and hardening law are evaluated at known stress states and iterations are not 

necessary to predict the new stress state. On the other hand, in an implicit scheme, the new stress states are obtained by 

solving a system of nonlinear equations iteratively, which automatically satisfies the yield criterion for a specified 

tolerance value, considering that the hardening law and gradients are evaluated at unknown stress states. Furthermore, 

implicit schemes do not require a special algorithm to search the intersection point of the stress path on the yield surface 

during elastic-plastic transitions. However, explicit models are more attractive for a general purpose algorithm that can 

be applied to different constitutive formulations, since they require only first derivatives of the yield and plastic 

potential functions. Efficiency and accuracy can be also improved by using an automatic subincrementation scheme 

with error control, where the strain increment imposed by the solution of the equilibrium equation may be splitted into 

subincrements according to an estimate of the local error in the stress states (Sloan et al. 2001). Although explicit 

models can obtain the new stress states without solving a system of nonlinear equations, they need an additional step 

related to the evaluation of intersection points on the yield surface during elastic-plastic transitions. 

 It is well known that some of the most important characteristics of a finite element model are associated to 

convergence and numerical stability, which can be achieved when mesh refinement and the full quadrature technique 

are utilized. Nevertheless, finite element formulations with full quadrature are very inefficient, especially if three-

dimensional nonlinear analyses are carried out, because evaluations of the stiffness matrix as well as the internal force 

vector require many computational operations. In addition, volumetric locking and shear locking may arise whether 

incompressible/nearly incompressible materials and thin structures under dominant bending are analyzed. In order to 

overcome those drawbacks, reduced integration and numerical techniques for hourglass control have been proposed, 

leading to explicit evaluations of the stiffness matrix and suppression of spurious modes that may be excited when full 

quadrature is not adopted. Finite element formulations for eight-node hexahedral elements with one-point quadrature 

were presented by Hu and Nagy (1997) and Duarte Filho and Awruch (2004), where a corotational system is employed 

to eliminate shear locking and for the kinematical description of the continuum. A comprehensive study on reduced 

integration applied to hexahedral elements may be found in Liu et al. (1998). 

 In the present work, a numerical model for linear and nonlinear static analysis of solid bodies is presented. A FEM 

formulation for eight-node hexahedrals with one-point quadrature is described, where the stiffness matrix can be 

analytically evaluated taking into account an accurate element stabilization procedure to eliminate hourglass and 

locking phenomena. The equilibrium equation is formulated considering a corotational system for the kinematical 

description of the continuum and a subincrementation scheme is employed in order to apply loads incrementally and 

efficiently. An explicit algorithm for integration of the constitutive equation is utilized, where strain increments are 

divided into subincrements by using a subincrementation scheme similar to that employed for the load increments. 

Some numerical applications are analyzed in order to validate the present model. 

2. ANALYTICAL MODEL 

Considering a classical Lagrangian kinematical description in the Cartesian coordinate system and in the absence of 

temperature changes and inertial forces, the conservation equations are reduced to the following expressions: 

( ) ( )0, d , dt tρ ρ

0Ω Ω

Ω = Ω∫ ∫X x              (1) 

T 0          in ∇ + = Ωbσσσσ              (2) 

where X and x are vectors containing components of the material (Xi) and spatial (xi) coordinates in the Cartesian 

coordinate system, respectively, t represents time, ρ is the specific mass, ∇ is the differential operator, b is the body 

force vector and σσσσ is the Cauchy stress tensor. It is important to notice that the equilibrium equation, which is derived 

from the Cauchy’s equation of motion, is defined taking into account the current deformed configuration of the body 

(Ω). 

In the present work, a linear hypoelastic constitutive model is adopted in order to relate strain and stress measures in 

the elastic regime, which may be described as follows: 

= eDσ εσ εσ εσ ε                   (3) 
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where εεεε is the infinitesimal strain tensor and: 
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where K and G are the bulk and shear moduli, respectively, given as follows: 

( )3 1 2

E
Κ

ν
=

−
              (5) 

( )2 1

E
G

ν
=

+
               (6) 

where E is the Young’s modulus and ν is the Poisson’s ratio. The bulk modulus associates spherical pressures with 

volumetric strains while the shear modulus associates deviatoric stresses with deviatoric strains. 

When infinitesimal displacements and rotations are observed, the geometrical linear approach can be utilized, where 

the undeformed configuration of the body is taken as reference throughout the analysis. In addition, the Cauchy stress 

tensor and the infinitesimal strain tensor are adopted in order to describe the stress-strain relation. On the other hand, 

when displacements and rotations are large, a special treatment must be considered in order to obtain accurate results 

for the strain field. The equilibrium equation may be written in terms of the undeformed or current configurations, 

depending on the formulation utilized for the kinematical description of the continuum. 

Although the total and updated Lagrangian formulations are commonly utilized in the field of solid mechanics, a 

corotational formulation is employed in this work, where a local coordinate system is embedded to every element of the 

finite element mesh (see Belytschko et al., 2000). The corotational coordinate system may be defined as a Cartesian 

coordinate system that rotates along with the element, leading to stress measures that are not affected by rigid body 

motions. Moreover, considering that the finite element discretization is fine enough, the motion of the continuum can be 

decomposed locally into rigid body motion and pure deformation. When the rigid body motion is eliminated from the 

displacement field, which corresponds to large displacements and rotations and small strains in the present work, the 

portion related to pure deformation will be a small quantity when compared to the element size. Therefore, the Cauchy 

stress tensor and the small strain tensor defined in the corotational coordinate system can be utilized in the constitutive 

equation (see Eq. (3)). 

In order to maintain objectivity over the stress measures in the corotational coordinate system for incremental 

formulations, the Truesdell rate tensor is adopted here to calculate stress increments, which may be written as: 

ˆˆ ˆ ˆ ˆ ˆ tr∆ = ∆ ∆ ∆ + ∆TR TL Lσ σ − σ − σ σ εσ σ − σ − σ σ εσ σ − σ − σ σ εσ σ − σ − σ σ ε             (7) 

where σ̂σσσ  is the Cauchy stress tensor defined in the corotational coordinate system and ∆L is the increment of the 

velocity gradient tensor in the corotational coordinate system, which may be decomposed into symmetric and skew-

symmetric parts by: 

ˆ ˆ∆ = ∆ + ∆L ε ωε ωε ωε ω               (8) 

where ˆ∆εεεε  and ˆ∆ωωωω  are increments of the strain rate and spin rate tensors, respectively. These increments are obtained 

by assuming that the velocity vector ( u& ) is constant during the time interval [tn, tn+1], i.e.: 

n+1

n

Tt

n+1 2 n+1 2t

ˆ ˆ
ˆ d

ˆ ˆ

  1 ∂∆ ∂∆ ∆ = τ = +   2 ∂ ∂   
∫

u u

x x
&ε εε εε εε ε             (9) 

n+1

n

Tt

n+1 2 n+1 2t

ˆ ˆ
ˆ d

ˆ ˆ

  1 ∂∆ ∂∆ ∆ = τ = −   2 ∂ ∂   
∫

u u

x x
&ω ωω ωω ωω ω             (10) 

where ˆ∆u  is the displacement increment referred to the corotational coordinate system and 
n+1 2

x̂  is the intermediate 

configuration of the body defined in the corotational coordinate system and within the time interval [tn, tn+1], which are 

obtained from the following objective transformations: 

n+1 n n+1 n+1 n n
ˆ ˆ ˆ∆ = − = −u x x R x R x           (11) 

( )n+1 2 n+1 2 n+1 2 n+1 2 n n+1

1
ˆ

2
= = +x R x R x x           (12) 
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where x̂  and x represents body configurations in the corotational and global coordinates system, respectively, which 

are defined with respect to their positions in the time interval and are denoted by the subindices. The rotation matrix R 

is also defined considering a specific position within the time interval [tn, tn+1]. In the present work, a simple procedure 

for obtaining the rotation matrix is utilized according to the paper presented by Belytschko and Bindeman (1993). 

Once the stress and strain tensors are defined in the corotational coordinate system, the stiffness matrix and the 

internal force vector will be also referenced to the same coordinate system. In order to solve the system of equilibrium 

equations in the global coordinate system, the stiffness matrix and the internal force vector must be submitted to the 

following objective transformations: 

ˆ= TK R KR              (13) 

ˆ=int T intf R f              (14) 

where K and intf  are the stiffness matrix and the internal force vector defined in the global coordinate system and K̂  

and ˆ intf  are the stiffness matrix and the internal force vector defined in the corotational coordinate system. Further 

information about the corotational formulation employed in this work may be found in Duarte Filho and Awruch (2004) 

and Braun and Awruch (2008). 

In the elastoplastic range, a yield function f, a plastic potential g, a flow rule and a hardening law must be introduced 

in order to define the elastoplastic formulation (see Owen and Hinton, 1980). The yield function for the von Mises 

criterion is employed in the present work, which may be written as (Souza Neto et al., 2008): 

y

2
(

3
f J

σ
) = −σσσσ             (15) 

where J2 ( 2

1
:

2
J = s s ) is the second invariant of the deviator stress tensor s (

1
(tr )

3
=s Iσ − σσ − σσ − σσ − σ ) and σy is the uniaxial 

yield stress. 

Since the constitutive equation may become nonlinear in the elastoplastic range, an incremental approach must be 

adopted to define the stress-strain relations during the stress path, i.e.: 

d d= epDσ εσ εσ εσ ε              (16) 

with: 

d
A

= −
+

e T e

g fep e

T e

f g

D a a D
D D

a D a
εεεε            (17) 

where A is the hardening parameter and af and ag are flow vectors based on the yield and plastic potential functions, 

respectively. For materials with linear isotropic hardening, A = h, where h is the hardening modulus. By assuming an 

associative flow rule, where f g≡ , ag and af lead to the same result. 

2. NUMERICAL MODEL 

Applying the Bubnov-Galerkin weighted residual method in conjunction with the Green-Gauss theorem over the 

momentum equation (Eq. 2), the following expression is obtained: 

E E E

nel nel
T T T

E E E

E 1 E 1

( ) d d dδ δ δ
= =Ω Ω Γ

   
∇ Ω = Ω + Γ   

   
   

∑ ∑∫ ∫ ∫u u b u tσσσσ         (18) 

where t is the traction vector and ΩE and ΓE are the volume and the boundary surfaces referred to element E, 

respectively, with both considered in the FEM context. The total number of elements utilized in the spatial 

discretization is indicated by nel. 

Spatial coordinates and displacements are approximated at element level using the eight-node hexahedral finite 

element formulation (see, for instance, Belytschko et al., 2000). The final matrix format of the equilibrium equation is 

obtained by introducing the finite element approximations for the spatial and variable fields into Eq. (18), which may be 

represented, considering an incremental/iterative approach based on the Newton-Raphson linearization, as follows: 
tan ext int

n 1,i 1 n+1,i n 1 n 1,i 1
( , ) ( , )+ − + + −∆ = −K u u f f uσ σσ σσ σσ σ           (19) 

where subscripts n + 1 denote current position in the time marching with i and i-1 indicating current and previous 

iterative steps in the Newton-Raphson method. The vector of external forces f
ext

 represents the right-hand side terms of 

Eq. (18), while K
tan

 and f
int

 are related to the tangent stiffness matrix and the internal force vector, respectively. The 

tangent stiffness matrix and the internal force vector are evaluated in the corotational coordinate system using the 

following expressions: 

E

tan T

n,i E

ˆ

ˆ ˆ ˆ ˆ( + ) d

Ω

= Ω∫K B D T B            (20) 

E

T

n,i i E

ˆ

ˆ ˆ ˆˆ d

Ω

= Ω∫f B σσσσ             (21) 
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where 
E

Ω̂  refers to the current element configuration in the corotational system, D and T are fourth order tensors 

related to the elastic constitutive equation and Truesdell rate terms, respectively, and 
i

σ̂σσσ  is the corotational Cauchy 

stress tensor evaluated at iterative step i (see Braun and Awruch, 2008 and Duarte Filho and Awruch, 2004 for further 

details). It is important to notice that T vanishes when geometrically linear problems are carried out as well as D 

becomes D
e
 for elastic materials and D

ep
 for elastoplastic materials. In order to solve the equilibrium equation, the 

tangent stiffness matrix and the internal force vector are brought back to the global coordinate system using objective 

transformations (see Eqs. 13 and 14). 

Element formulations based on reduced integration must be stabilized using hourglass control techniques in order to 

avoid numerical instabilities. In this work, volumetric locking is remedied using reduced selective integration, where 

the gradient matrix B̂  defined in the corotational system is decomposed into deviatoric and volumetric terms of the 

strain tensor εεεε, with the last terms evaluated at the center of the element. In addition, deviatoric terms must be expanded 

using Taylor series at the center of the element up to bilinear terms. The same procedure is carried out over the stress 

tensor σσσσ. On the other hand, shear locking is removed by describing shear components of the strain tensor εεεε in an 

orthogonal corotational coordinate system. Moreover, all shear components must be linearly interpolated in a single 

direction of the reference system. In order to evaluate the internal force vector accurately when distorted elements are 

considered, the gradient matrix obtained with reduced integration is replaced by uniform gradient submatrices defined 

by Flanagan and Belytschko (1981). Further details about the reduced integration scheme adopted in this paper may be 

found in Braun and Awruch (2008). See also Reese (2005) for element stabilization techniques considering three-

dimensional finite elastoplasticity. 

An automatic load stepping scheme is employed in this work in order to solve the system of nonlinear equilibrium 

equations. The present algorithm assumes that a coarse load increment is initially proposed by the user, which may be 

automatically splitted into a number of smaller load increments denominated subincrements according to the current 

characteristics of the nonlinear equilibrium equations. The coarse load step is defined in the fictitious time interval [tn; 

tn+1], where ∆t is the coarse load increment such that ∆t = tn+1 - tn. The subincrements hi are assumed to be within the 

time interval [tn; tn+1] and the load stepping procedure during subincrementation may be defined as ti+1 = ti + hi, where ti 

is assumed to be tn for the first subincrement h1 and ti+1 must be equal to tn+1 for the last subincrement. 

The size of the subincrements is defined considering an estimate of the local truncation error in the displacements 

field, which is based on the difference between first and second order approximations obtained from Taylor series 

expansions, i.e.: 
i+1 i22

(2) (1) i+1

1 i 1 i 1 2
2 2 2

i

h h h

h hh
+ + +

 ∂ ∆ ∆   
= − = = ∆ = −    

∂      

u u u
E u u u&           (22) 

where: 
22

(2) i+1 i+1

i 1 i 22

h
h

h h
+

∂ ∂
= + +

∂ ∂

u u
u u            (23) 

(1) i+1

i 1 i
h

h
+

∂
= +

∂

u
u u             (24) 

with i denoting subincrements. 

The error control scheme utilized in this work takes into account the relative error defined by Eq. (22) and the 

current displacement field ui+1, both obtained considering the last converged subincrement in the Newton-Raphson 

iterations. A dimensionless relative error is then given by: 

i 1

i 1

i 1

R
+

+

+

=
E

u
             (25) 

The current subincrement is accepted if Ri+1 lies below a specified tolerance error Etol and rejected otherwise. In 

either case, the size of the next subincrement hi+1 is determined from: 

i 1 i
h qh+ =              (26) 

where hi is the last load subincrement and: 

tol i 1
0.8 /q E R +=             (27) 

considering an additional constraint defined as: 

0.1 2q≤ ≤              (28) 

which is imposed in order to prevent an excessive number of subincrements and an excessive growth of size during 

consecutive subincrements. Consequently, the size of the subincrements are limited according to: 
maxh = min (∆t, h, tn+1 - ti+1)           (29) 

The numerical algorithm to solve the nonlinear system of equilibrium equations may be summarized as follows: 

a) For a specific load subincrement h, determine the displacement solution using the Newton Raphson method (see 

Eq. 19). If the solution fails to converge set h = 0.25h and start over the iteration procedure. 
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b) After convergence, estimate the local truncation error using Eq. (25) and the tolerance error Etol. In addition, 

determine the dot product between the current and last displacement rate increments ( T

i i+1
.∆ ∆u u& & ) in order to 

identify limit points. 

c) If Ri+1 > Etol or T

i i+1
. 0∆ ∆ <u u& &  then the current subincrement has failed; estimate a smaller subincrement 

considering Eqs. (26), (27) and Eq. (28) and start over the iterative procedure (step a). If T

i i+1
. 0∆ ∆ <u u& & , set hnew 

= -hnew, where hnew is a new estimate for the load subincrement h. 

d) If Ri+1 < Etol and T

i i+1
. 0∆ ∆ >u u& & then the current subincrement is accepted and a new displacement field can be 

computed using the incremental solution obtained from the Newton-Raphson iterative procedure (step a). 

e) After the subincrement is accepted, estimate the size of the next subincrement taking into account Eqs. (26), 

(27) and the constraints defined by Eqs. (28) and (29). If the previous subincrement failed, set q = min (q, 1). 

f) If ti+1 = ti + hi is equal to tn+1 = ∆t + tn, then the integration of the current load step ∆t is completed; set ti = tn+1 

and proceed with the integration of the next load step (step a) until all the load steps are applied. 

When elastoplastic analysis is carried out, strain increments ∆ε are imposed at element level based on the 

incremental solution obtained from the equilibrium equation. On the other hand, stress increments are dependent on the 

material behavior. Therefore, a trial elastic stress increment is usually considered as an initial estimate for the new stress 

state. If this new stress state does not lead to plastic yielding, the corresponding stress increment is taken as true. 

However, if plastic yielding is observed, the following system of ordinary differential equations must be solved: 

epd

dT
= ∆D

σσσσ
εεεε              (30) 

d
B

dT

κ
λ= ∆              (31) 

with: 

0t t
T

h

∗ ∗−
=              (32) 

T e

f

T e

f g
A

λ∆ = ∆
+

a D

a D a
εεεε             (33) 

A
B

f κ
= −

∂ ∂
             (34) 

where T is a dimensionless time parameter, which is defined in the range 0 ≤ T ≤ 1, 
0

t∗  is the artificial time at the 

starting point of the load subincrement (h), t
*
 is the artificial time in a position within the load subincrement (h), B is a 

hardening parameter, dκ is the increment of the hardening parameter and f is the yield function. 

Once the elastic part of the stress increment ∆εεεε is obtained, the plastic part of the strain increment (∆εεεε′) is 

determined using: 

(1 )α′∆ = − ∆ε εε εε εε ε             (35) 

and the stress state at the onset of the plastic yielding σσσσyld is calculated from: 

0 0
( , ) 0ef α κ+ ∆ =Dσ εσ εσ εσ ε            (36) 

where α is a scalar to be determined considering the yielding condition expressed by Eq. (36). 

In order to define initial conditions for the system of equations described by Eqs. (30) and (31), the stress state σσσσ0 is 

updated to the stress state at the onset of the plastic yielding σσσσyld and the hardening parameter κ0 is considered to be at 

the start of the strain increment ∆εεεε′, where T = 0 and 
0

t t∗ ∗= . By using the explicit Euler method, a substepping 

technique, as proposed by Sloan et al. (2001), is applied over the strain increment ∆εεεε′ to find the stress state and the 

hardening parameter at the end of ∆εεεε′, where T = 1. Subincrements of ∆εεεε′ are defined according to the dimensionless 

time increment ∆T, which is calculated taking into account a local error measure obtained from the difference between a 

second order accurate modified Euler solution and a first order accurate Euler solution. Consequently, the size of the 

subincrements is automatically modified along the integration process. For a complete description of the numerical 

algorithm utilized in this work to integrate the constitutive equation, see Sloan et al. (2001). 

4. NUMERICAL APPLICATIONS 

4.1 Geometrically nonlinear examples 

In the present section, geometrically nonlinear analyses are carried out in order to investigate some numerical 

aspects related to the numerical algorithm presented in this work, where computational performance and accuracy are 

evaluated from the results obtained in the numerical simulations. Most of the simulations are also performed 

considering the linear hypothesis on the kinematical description of the continuum. Geometrical characteristics and 
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boundary conditions employed in the applications analyzed here are presented in Fig. 1 and the corresponding physical 

properties may be found in Table 1. 

(a) (b)  

(c)  

Figure 1. Geometrical characteristics and boundary conditions utilized in the geometrical nonlinear examples: (a) 

cantilever beam; (b) clamped beam; (c) clamped arch. 

Table 1. Load and physical properties adopted in the geometrical nonlinear examples. 

Mechanical properties 
Numerical applications 

Cantilever beam Clamped beam Clamped arch 

Young’s modulus – E [N/m2] 1.0x108 3.0x107 1.0x107 

Poisson’s ratio - νννν 0.00 0.00 0.25 

Load – P [N] 269.35 640.00 2.0x104 

A first analysis is carried out considering a cantilever beam submitted to a concentrated load applied conservatively 

at the free end. Results corresponding to vertical displacements at the free end are presented in Fig. 2a, where 

comparisons are performed using predictions obtained from a reference work (Duarte Filho, 2002) and predictions 

obtained with the numerical model proposed here. Different load factors (dimensionless loads obtained with respect to 

the total load P) were adopted to evaluate the influence of the load discretization over numerical results when nonlinear 

analyses are performed. One can verify that all responses obtained here agree very well with the numerical predictions 

obtained by Duarte Filho (2002), especially when the smaller load increments are considered. The linear response is 

also in accordance with the prediction obtained by Duarte Filho (2002). 

(a) Vertical displacements [m]

L
o

a
d

[N
]

0 2 4 6 8
0

50

100

150

200

250

300
dt = 0.07
dt = 0.05
dt = 0.03
dt = 0.01
Duarte Filho (2002)
Linear response

Vertical displacements [m]

L
o

a
d

[N
]

7.9 7.92 7.94 7.96 7.98 8

267

270

273

(b)
Vertical displacements (w) [m]

L
o

a
d

[N
]

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

600

700
dt = 0.1
dt = 0.2
dt = 0.3
Duarte Filho (2002)
Linear Response

Vertical displacements (w) [m]

L
o

a
d

[N
]

0.495 0.498 0.500 0.502 0.505
625

630

635

640

645

 

(c) Dimensionless vertical displacements (w/R)
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Figure 2. Displacement responses obtained in the geometrically nonlinear analyses: (a) cantilever beam; (b) clamped 

beam; (c) clamped arch. 

A second investigation is performed considering now a clamped beam with a point load applied at the mid span. The 

predictions obtained with the present algorithm are found in Fig 2b, which are again referenced to different load 

increments adopted in the load discretization. In accordance with comparisons shown previously, the numerical model 

demonstrates here a good accuracy when compared to numerical predictions obtained by Duarte Filho (2002). One can 

also verify that the present predictions approximate the reference results as the load factors are reduced. 

In order to observe the computational performance of the present model when problems with limit points are 

investigated, a geometrically nonlinear analysis is carried out considering a clamped arch submitted to a point load 

applied at the mid span. Vertical displacements measured at the location of the point load are presented in Fig. 2c, 
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where predictions obtained here are again compared with those obtained by Duarte Filho (2002). One can note that two 

limit points are found during the load application, which can be perfectly handled with the subincrementation procedure 

proposed in this work when ∆t = 0.01 is considered. 

Deformed configurations obtained during the geometrically nonlinear analyses performed for the clamped beam and 

the clamped arch are shown in Fig. 3, where the snap-back phenomenon can be easily identified for the clamped arch 

analysis (see Fig. 3b). The computational performance of the subincrementation procedure may be evaluated 

considering the number of Newton-Raphson iterations per load step obtained in the numerical analyses performed here, 

which is demonstrated in Fig. 4. It is observed that although the larger load steps present some difficulties to converge 

in the early stages of the numerical analysis, the number of iterations tend to stabilize for all the load steps analyzed as 

the load factor is increased. 
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Figure 3. Deformed configurations obtained during the load application: (a) cantilever beam analysis; (b) clamped arch 

analysis. 
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(c) Load factor
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Figure 4. Computational performance obtained by the present model during the geometrically nonlinear analyses: (a) 

cantilever beam; (b) clamped beam; (c) clamped arch. 

4.2 Physically nonlinear examples 

Some examples are analyzed in this section to observe the performance of the numerical algorithm proposed in this 

work for physically nonlinear applications. The same numerical aspects investigated in the previous analyses are 

revisited here. Geometrical characteristics and boundary conditions utilized in the numerical analyses performed in the 

present study are shown in Fig. 5 and the corresponding physical properties are specified in Table 2. 

Table 2. Load and physical properties adopted in the physically nonlinear examples. 

Mechanical properties 
Numerical applications 

Unit cube Cantilever beam Simply supported square plate 

Young’s modulus – E [N/m2] 1.2x107 1.0x107 3.0x1010 

Plastic modulus – ET [N/m2] 1.2x105 1.0x106 3.0x109 

Uniaxial yield stress - σσσσy [N/m2] 2.4x104 3.0x105 4.0x107 

Poisson’s ratio - νννν 0.0 0.3 0.3 

Load – P [N] 2.6x104 8.0x104 7.0x104 
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Figure 5. Geometrical characteristics and boundary conditions utilized in the physically nonlinear examples: (a) unit 

cube; (b) cantilever beam; (c) square plate. 

A unit cube under axial load is analyzed considering the von Mises yield criterion (see Eq. 15) and geometrically 

nonlinear behavior. In Fig. 6a, results obtained here with ∆t = 0.05 are compared to numerical predictions obtained by 

Schmidt (2006), where a perfect agreement is observed for vertical displacements measured at the top of the unit cube. 

A numerical analysis was also carried out considering the geometrically linear approach, which obtained the same 

accuracy when compared to the reference work. 
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(c) Vertical displacements (w) [m]
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Figure 6. Displacement responses obtained in the physically nonlinear analyses: (a) unit cube; (b) cantilever beam; (c) 

square plate. 

A cantilever beam is now analyzed considering a point load applied at the free end. The constitutive model assumes 

an elastoplastic behavior with the von Mises yield criterion and the kinematical description is performed using the 

geometrically nonlinear approach. In Fig. 6b, results corresponding to vertical displacements measured at the free end 

are presented, where predictions obtained with the numerical model proposed in this work and ∆t = 0.1 are compared to 

those obtained numerically by Schmidt (2006). One can verify that a good agreement is observed, although some 

differences can be identified in the plastic range, which may related to the sensitivity of the subincrementation 

procedure to parameters adopted in the numerical integration of the constitutive equation (see Sloan et al., 2001 and 

Schmidt, 2006). 
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Figure 7. Final configuration and stress field σσσσxx obtained for the cantilever beam analysis. 

A square plate with all borders simply supported is analyzed considering a concentrated load applied at the center 

point. An elastoplastic behavior is assumed taking into account the von Mises yield criterion. In addition, the 

geometrically nonlinear approach is considered for the kinematical description of the continuum. Results concerning the 

vertical displacements observed at the center point are shown in Fig. 6c, where predictions obtained here are again 
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compared to those obtained by Schmidt (2006). The present simulations were performed with ∆t = 0.01 and ∆t = 0.05, 

both presenting a good agreement with the reference work. 

The final configuration obtained in the cantilever beam analysis is shown in Fig. 7, where the stress field σσσσxx is also 

presented. The computational performance is evaluated here considering the number of Newton-Raphson iterations per 

load step obtained in the numerical analyses performed in this section, where different load steps were investigated. In 

Fig. 8, one can observe that convergence may be reached even with large load steps, since the numerical scheme 

adopted in the present paper is able to split the load steps into subincrements whenever it is necessary. 
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(c) Load factor
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Figure 8. Computational performance obtained by the present model during the physically nonlinear analyses: (a) unit 

cube; (b) cantilever beam; (c) square plate. 

5. CONCLUSIONS 

An efficient model for numerical investigations on Nonlinear Solid Mechanics was proposed in this work. The 

present algorithm presents important characteristics such as the one-point quadrature technique for analytical evaluation 

of matrices and vector at element level, a corotational formulation for the kinematical description of the continuum and 

subincrementation procedures for load application and integration of the constitutive equation, where coarse increments 

defined by the user are automatically adjusted throughout the numerical analysis. The predictions obtained here 

demonstrated that the present model was able to reproduce the reference results efficiently. In addition, it is important to 

notice that the subincrementation procedure was also able to deal with applications involving limit points, which usually 

lead to convergence problems during the iterative process for obtaining the equilibrium state. 
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