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Abstract. Parameter tuning is a complicated and laborious task. Many techniques have been employed to solve this problem, most 
of them based on optimization, with a deterministic or frequently heuristic approach. Anyway, a reference pattern for comparison is 
necessary, in order to determine how good a set of parameters is; therefore, experimental data is often used as reference, what is 
called model training. In case of a deterministic model of heart rhythm dynamics, the experimental data is available from 
electrocardiograms(ECG); however, for models which do not consider the heart rate variability, distortions in signal period will 
appear if the model is trained directly from the ECG. To find the appropriate set of parameters to simulate specific situations as 
cardiopathies, a pattern generation by fuzzy models is proposed in this work. The fuzzy model works as a knowledge base, which 
retains the main characteristics of each cardiac situation, enabling to state a metric for comparison. 
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1. INTRODUCTION  
 

When working with biological models, very often the determination of parameter values is so complicated as, or 
even more than, to determine the biological mechanism (Babloyantz, 1998). In the case of the electrocardiogram, is not 
very different; however the real signal is well known and presents a relative good behavior. That makes possible to 
think of a pattern to compare the results of different models, or different sets of parameter in the same model. In that 
sense, such a pattern would be very useful to train models, playing the role of the goal to be achieved. 

The purpose is not to state a model which reproduces the functional mechanism of a biological system (Savi, 2005), 
instead is to develop a fuzzy model able to generate a signal which follows the same pattern as the real signal. The point 
is: this fuzzy system is not necessarily able to have the same response as the real system or its analytical mathematical 
model if subjected to a different situation.      

A fuzzy system needs to be trained too, then, a question arises: why not to train directly the system? In the case of 
ECG signal, it is very easy to answer. First of all, as the real signal is well know, with a characteristic shape, it is easy to 
identify relevant parts of the signal to state a first prototype of the fuzzy system. 

A second, but important issue, is that by means of fuzzy logic it is possible to deal with noisy signal without losing 
its real shape. For the particular case of the electrocardiogram, where we have a frequency variation (Carvajal et al, 
1998) called heart rate variability (HRV) the ability of fuzzy systems to deal with non precise information is very 
valuable. Actually, considering that the HRV is chaotic and very small, the fuzzy system will face it just like a white 
noise on the signal amplitude.    

 
 
2. THE ECG SIGNAL 
 

The electrocardiogram is a measure of the cardiac electrical behavior. There are groups of cells in the heart able to 
generate electric signal (Guyton & Hall, 1997,), which will stimulate the cardiac muscle to contract, taking the heart to 
execute its function. Such groups of cells are called natural pacemakers and are a total of three: the sino-atrial node (SA 
node), the atrio-ventricular node (AV node) and the His-Purkinje complex (HP node). The synchronized work of those 
nodes stimulates successively the different regions of the cardiac muscle, coordinating the heart work and dictating its 
rate.  

The combination of the electric fields generated by the pacemakers creates the heart electric signal, which is not 
stationary, instead, it can be considered as a rotating dipole (Koelliker & Mueller, 1855,). The dipole is represented in 
Fig. 1 as an arrow of magnitude P and direction angle α, where both are variable during heart activity. 

But the electrocardiogram is actually the measured signal and, as many different measurement systems are available, 
different signals are obtained (Malmivuo & Plonsey, 1995). Basically, leads are attached to the patient body and the 
electric potential difference between them is measured. The arrangement in focus here is the 3-leads system (Einthoven, 
1902), where a lead is attached to each wrist and the third one is on the left leg, as shown in Fig. 1. Then, the electric 
potential difference between leads is measured, what is the same as to say that the magnitude of the projection of the 
rotating dipole onto the line defined by two leads is measured. Each of those projections is called a derivative, and in 
this work, it will be considered the second derivative, that is, the projection along the line from the right wrist to the left 
leg. That derivative was chosen because it is the most representative for a wide variety of cardiopathies. 
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Figure 1 – Three Leads System 

 
The measured signal has some characteristic peaks and valleys which are very important in determining 

malfunctioning of the heart. Each of them is related to a specific step in heart beat cycle. Therefore, taking a period of 
the ECG, the peaks are P, R and S, as shown in Fig.2, and the valleys are Q and S. As already mentioned, the HRV 
leads to a variation in the ECG period, then this term is not strictly correct, but, what the fuzzy system will consider is 
an average period. 
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Figure 2 – Normal ECG period 

 
There is a standard representation of the ECG, in order to make its interpretation easier, and universal (Dubin, 

1996). The curve is plotted on a grid, where the cells sides are 1mm long. In the vertical scale, 5mm corresponds to 
0.5mV, as in the horizontal scale, 5mm corresponds to 0.2s. In Fig. 3, a sketch of a normal ECG is shown, detailing 
each time interval which is of interest for the medical analysis.   

 

 
 

Figure 3 – Standard ECG plot 
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3. THE FUZZY SYSTEM 
 
Now that the main characteristics to be captured from the ECG are known, it is possible to think of stating a fuzzy 

inference system to reproduce the signal pattern. Considering the extremely nonlinear nature of the signal, what seems 
more appropriate is to construct the curve in parts, taking the representative value of each one to reconstruct it (Jang, 
Sun & Mizutani, 1997).  

It suggests that the appropriated structure for the fuzzy inference system (FIS) is the Takagi-Sugeno-Kang (TSK), 
where the consequent parts of each rule i is an explicit function fi of the input, called output function. Many different 
output functions could be used, but in order to simplify the problem, they will be taken as zero order polynomials, that 
is, constant values, with the function input as the instant t considered. 

 

ii tf θ=)(  (1) 

  
There is no general rule to choose the order of the output function, but in general, a first order function tends to 

generate smoother surfaces than a zero order does; however, this last one can give a more precise representation of 
edges and environments with abrupt changes, which is the case of the ECG.   

The first consideration to state the curve to be reproduced is to consider the ECG as periodic; therefore, the desired 
curve will be taken as a period of the electrocardiogram. Periods are defined as intervals limited by reference points on 
the signal, for example, the middle point between two successive R peaks. In order to eliminate the HRV, an average 
period is calculated, then, each interval is linearly scaled to the average period, by stretching or folding it. Now, the 
input data for the TSK FIS is ready, which has its the general structure shown in Figure 3. 

 

 
 

Figure 3 – General TSK fuzzy inference system 
 
As the ECG is a time series, the input variable is time (in seconds), and the output will be the amplitude (in mV). In 

this case the input is scalar, and each rule will have an only membership function in its antecedent part. Then, the output 
of the fuzzy system may be written as: 
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ẑ   (2) 

 
Where z is the real signal value and therefore, ẑ is an estimation of it. The wi are the firing strength of each rule i. 

The firing strengths are calculated as follows: 
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( ) ( )( )ttw inii µµ ,,sup 1 K=  (3) 

 
But in the case of a single input, with a single fuzzy set in each rule antecedent, it is clear that the firing strength of 

the rule becomes directly the membership function µi of the corresponding fuzzy set. If zero-order output functions are 
employed, then the output may be simplified to: 
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where Wi is the normalized firing strength of the corresponding rule i. 
 
4. PARAMETER FITTING 
 

Once the system structure is stated, now it is possible to adjust the parameters of the system. It is important to stress 
that, in spite of being a well behaved signal, the ECG is plenty of noise, what is problematic to most of fitting methods 
because they are based on the derivative of the signal, what makes necessary first to apply filtering to the signal. 

Optimization is employed, through the minimization of the error between the estimated signal ẑ  and the measured 
one z.  The optimization process is performed by application of the Least Squares Estimation method (Morgado de 
Gois, 2005). Consider a group of N samples (measurements) to start the optimization and define a cost function aiming 
at the minimization of the error, where z = [z1 z2 … zN]T, and the index refers just to the order in which the 
measurements are taken.  
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Since a zero order function is used to find the estimatesẑ , applying  Eq. 4 to Eq. 5, it can be rewritten in the matrix 

form from Eq. 6, where P is called the design matrix.  
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where the upper index in W refers to the sample (measurement) order in the signal, while Θ = [θ1, …, θn]. Substituting 
it back in Eq. 5 and finding the minimum, it is obtained: 
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(7) 

 
Then, the set of optimal parameters Θ is stated, and the FIS defined. Now, from any normal ECG it is possible to 

train the system.  
 

5. MODEL TUNING 
 
Once the parameters of the fuzzy system are set after the training phase (based on the real signal), it is possible to 

use its output as the goal to be achieved by a more representative mathematical model of the physical phenomena 
behind the ECG signal, from here on called just as mathematical model. 

 Since the signal generated by the fuzzy system does contain neither noise nor random frequency variation, it is 
possible to use this FIS to create an objective function and then apply optimization methods to carry on the parameter 
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tuning of the mathematical model. If the output of the mathematical model is z , then a appropriate objective function 
is: 

0),(ˆ),( =Θ− tztqz  (8) 
   

where q are the parameters of the mathematical model to be tuned.  With this objective function, any optimization 
methodology could be applied to the problem, even those which use derivatives of the objective, since it is explicitly 
available from Eq. 2. 
 
6. RESULTS 
    

A real ECG signal, obtained from the data bank PhysioNet was employed. A normal ECG was taken because of its 
very characteristic pattern, what makes easier to verify the result of the FIS training. Besides, abnormal ECG signals 
have specific details which may be determinant for a correct diagnose, what makes the evaluation of the training much 
more complicated, depending on the analysis of specific cardiopathies (Moffa & Sanches, 2001). Since that is not in the 
scope of this work, the real ECG from Fig. 4 was used.         
 

 
 

Figure 4 – Real ECG signal 
 

Next, the data from the real ECG is separated in two sets, a training set and a test set. No especial criteria was used, 
the time span of the ECG it was separated in two intervals, one corresponding to each set. Then, a fuzzy inference 
system with TSK structure was trained. The FIS was composed of thirteen rules, with simple antecedents, i.e., an only 
fuzzy set in each antecedent, as shown by the representation of the membership functions (mf) in Fig. 5. This number of 
rules corresponds to the number of the fuzzy sets in which the input crisp set was partitioned, according to the 
topological characteristics of the real ECG signal.  

 

 
 

Figure 5- Membership functions 
 

After the training step, the set of parameters obtained for the output functions of the fuzzy inference system was 
given by Θ = [0; 0.1; 0; -0.1; 1.1; -0.3; 0; 0.22; 0; 0.05; 0]. With this result it is possible to calculate the objective 
function from Eq. 8 and then, to apply the optimization. 

The model to be tuned is shown in Eq. 9 and it was first presented in (Gois & Savi, 2009). It comprehends a total of 
third three parameters, therefore, the optimization it was separated in two steps: a first one executed by a direct search, 
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and a second step for refinement, execute by genetic algorithm. In this model, three coupled oscillators are used; 
representing the natural pacemakers of the heart and x corresponds to their states. The ECG signal is generated by linear 
combination of them, representing the superposition of the electric fields.    
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(9) 

 
After the optimization, the tuned mathematical model generates the signal shown in Fig. 6, which is superimposed to 

the real ECG signal as shown in Fig. 7 for the sake of comparison. 
 
 

 
 

Figura 6 – ECG signal simulated by the mathematical model 
 

 
 

Figure 7 – Comparison between Real and Simulated ECG signal 
 
 
7. CONCLUSION 
 

The results obtained by the mathematical model with the optimal set of parameters show a good qualitative 
agreement to the real sign, what indicates that the procedure is promising. It makes possible to obtain in a systematic 
way the parameters of the system; what in a model with a total of third three parameters it is almost impossible to think 
of doing manually. 

In a first glance, the definition of the input membership functions may seem a little complicated to do, requiring 
specific knowledge of the signal or of the system. Actually it is not so; the presented membership functions were taken 
based only on the shape of the signal, identifying topological characteristics, nothing else. Anyway, simple triangular 
functions could be employed, in the same number of peaks and valleys of the average period shown in Fig. 2.    
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