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Abstract. Parameter tuning is a complicated and laborious task. Many technigwesteen employed to solve this problem, most
of them based on optimization, with a deterministic or frequentsistie approach. Anyway, a reference pattern for comparison is
necessary, in order to determine how good a set of parameters idptieerexperimental data is often used as reference, what is
called model training. In case of a deterministic model of hdaythm dynamics, the experimental data is available from
electrocardiograms(ECG); however, for models which do not conglideheart rate variability, distortions in signal period will
appear if the model is trained directly from the ECG. To find the@piate set of parameters to simulate specific situations as
cardiopathies, a pattern generation by fuzzy models is proposed wdHis The fuzzy model works as a knowledge base, which
retains the main characteristics of each cardiac situat@gbling to state a metric for comparison.
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1. INTRODUCTION

When working with biological models, very often the defeation of parameter values is so complicated as, or
even more than, to determine the biological mechanisibld@antz, 1998). In the case of the electrocardiogramptis
very different; however the real signal is well knoamnd presents a relative good behavior. That makes possible t
think of a pattern to compare the results of differentlefs, or different sets of parameter in the same mbudéhat
sense, such a pattern would be very useful to train mqaaiéng the role of the goal to be achieved.

The purpose is not to state a model which reproducesititéidnal mechanism of a biological system (Savi, 2005),
instead is to develop a fuzzy model able to generagnal svhich follows the same pattern as the real sigrted point
is: this fuzzy system is not necessarily able toehthe same response as the real system or itsiaabiyiathematical
model if subjected to a different situation.

A fuzzy system needs to be trained too, then, a questises: why not to train directly the system? Indhse of
ECG signal, it is very easy to answer. First ofadlthe real signal is well know, with a charasterishape, it is easy to
identify relevant parts of the signal to state a firstgtype of the fuzzy system.

A second, but important issue, is that by means of fuzgig it is possible to deal with noisy signal withoosihg
its real shape. For the particular case of the elegtdiogram, where we have a frequency variation (QGzrea al,
1998) called heart rate variability (HRV) the ability fofzzy systems to deal with non precise informat®rvery
valuable. Actually, considering that the HRV is chaatidl very small, the fuzzy system will face it jugelia white
noise on the signal amplitude.

2. THE ECG SIGNAL

The electrocardiogram is a measure of the cardiatriel®l behavior. There are groups of cells in thethaale to
generate electric signal (Guyton & Hall, 1997,), which stimulate the cardiac muscle to contract, takinghtbart to
execute its function. Such groups of cells are calledalgpacemakers and are a total of three: the sina-atde (SA
node), the atrio-ventricular node (AV node) and thePiskinje complex (HP node). The synchronized work of those
nodes stimulates successively the different regionseo€aindiac muscle, coordinating the heart work and dictasng i
rate.

The combination of the electric fields generated byphaeemakers creates the heart electric signal, whinplotis
stationary, instead, it can be considered as amgtdipole (Koelliker & Mueller, 1855,). The dipole is represel in
Fig. 1 as an arrow of magnitufleand direction angle, where both are variable during heart activity.

But the electrocardiogram is actually the measured Isignth as many different measurement systems arebleil
different signals are obtained (Malmivuo & Plonsey, 199%isig&lly, leads are attached to the patient body amd th
electric potential difference between them is mezkufhe arrangement in focus here is the 3-leads sysiathdien,
1902), where a lead is attached to each wrist and tledhé is on the left leg, as shown in Fig. 1. Then, kbetree
potential difference between leads is measured, whheisame as to say that the magnitude of the pimjeof the
rotating dipole onto the line defined by two leads is snezd. Each of those projections is called a derivadind,in
this work, it will be considered the second derivatihi@t is, the projection along the line from the righistmo the left
leg. That derivative was chosen because it is the repstsentative for a wide variety of cardiopathies.
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Figure 1 — Three Leads System

The measured signal has some characteristic peaks armysvalhich are very important in determining
malfunctioning of the heart. Each of them is related specific step in heart beat cycle. Thereforentaki period of
the ECG, the peaks are P, R and S, as shown in Figlzha valleys are Q and S. As already mentionedHR¢
leads to a variation in the ECG period, then this tiermot strictly correct, but, what the fuzzy systeiti consider is
an average period.
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Figure 2 — Normal ECG period

There is a standard representation of the ECG, in doderake its interpretation easier, and universal (Dubin,
1996). The curve is plotted on a grid, where the cells sidessmm long. In the vertical scale, 5mm corresponds to
0.5mV, as in the horizontal scale, 5mm corresponds2® M Fig. 3, a sketch of a normal ECG is shown, litegai
each time interval which is of interest for the medi@lysis.
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Figure 3 — Standard ECG plot
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3. THEFUZZY SYSTEM

Now that the main characteristics to be captured fr@EBG are known, it is possible to think of statinfyzzy
inference system to reproduce the signal pattern. Congidthe extremely nonlinear nature of the signal, whatrs
more appropriate is to construct the curve in paatsng the representative value of each one to reconsdtr{ieing,
Sun & Mizutani, 1997).

It suggests that the appropriated structure for the fudeyence system (FIS) is the Takagi-Sugeno-Kang (TSK),
where the consequent parts of each rutean explicit functiorf; of the input, called output function. Many different
output functions could be used, but in order to simplify thoblpm, they will be taken as zero order polynomialg, tha
is, constant values, with the function input as the imi$teonsidered.

fit)=6 1)

There is no general rule to choose the order of thgubdiinction, but in general, a first order function terals t
generate smoother surfaces than a zero order doesydrowlgs last one can give a more precise represemtafi
edges and environments with abrupt changes, which is thettdwe ECG.

The first consideration to state the curve to be idywed is to consider the ECG as periodic; thereforejabieed
curve will be taken as a period of the electrocardiogieniods are defined as intervals limited by referenaggon
the signal, for example, the middle point between twrassiveR peaks. In order to eliminate the HRV, an average
period is calculated, then, each interval is linearblest to the average period, by stretching or folding it. Nine
input data for the TSK FIS is ready, which has itsgberal structure shown in Figure 3.

Figure 3 — General TSK fuzzy inference system

As the ECG is a time series, the input variabléme t(in seconds), and the output will be the amplituden(if). In
this case the input is scalar, and each rule wiletevonly membership function in its antecedent pagn;Tthe output
of the fuzzy system may be written as:

7=t ©)

Wherez is the real signal value and therefoieis an estimation of it. The; are the firing strength of each riile
The firing strengths are calculated as follows:
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W, = SUF(K, (t)..... 40 1)) ®

But in the case of a single input, with a single fuzayirseach rule antecedent, it is clear that the firingngth of
the rule becomes directly the membership functioof the corresponding fuzzy set. If zero-order output fonstiare
employed, then the output may be simplified to:

2:'—:ZWW (4)

whereW is the normalized firing strength of the correspondirdgi.
4. PARAMETER FITTING

Once the system structure is stated, now it is pestibhdjust the parameters of the system. It is impbtb stress
that, in spite of being a well behaved signal, the E€@enty of noise, what is problematic to most tifrfg methods
because they are based on the derivative of the sighal, makes necessary first to apply filtering tosigmal.

Optimization is employed, through the minimization af #rror between the estimated sig@aknd the measured
onez The optimization process is performed by applicatibthe Least Squares Estimatianethod (Morgado de
Gois, 2005). Consider a group fsamples (measurements) to start the optimizatidrdafine a cost function aiming
at the minimization of the error, whee= [z % ... zN]T, and the index refers just to the order in which the
measurements are taken.

1 Ay _ 1 ATT A
J=—0 -2 ==—0z-2|'z-2 >
N2 (5 -2 =5 de-2] de-2] ©)

Since a zero order function is used to find the estisZatapplying Eq. 4 to Eq. 5, it can be rewritten in therir
form from Eq. 6, wher® is called the design matrix.

AR
A Z W2 W2 e
s=pl)@=| 2|=| 't 2 |n% (6)
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where the upper index in W refers to the sample (measmtg¢mrder in the signal, whil® = [, ..., §]. Substituting
it back in Eg. 5 and finding the minimum, it is obtained:

=tz P dz-P() ] ™

0,3 =0= 0= (PE) PR))* P() =

Then, the set of optimal paramet@ss stated, and the FIS defined. Now, from any nofa@G it is possible to
train the system.

5. MODEL TUNING

Once the parameters of the fuzzy system are setthéidraining phase (based on the real signal), itssiple to
use its output as the goal to be achieved by a more refatige mathematical model of the physical phenomena
behind the ECG signal, from here on called just as enaditical model.

Since the signal generated by the fuzzy system doeaicamtither noise nor random frequency variation, it is
possible to use this FIS to create an objective funetrwhthen apply optimization methods to carry on thenpetier
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tuning of the mathematical model. If the output of thethramatical model iZ , then a appropriate objective function
is:

2(q,t) - 2(0,1) =0 (8)

whereq are the parameters of the mathematical model tahedt With this objective function, any optimization
methodology could be applied to the problem, even thosehwige derivatives of the objective, since it is expicit
available from Eq. 2.

6. RESULTS

A real ECG signal, obtained from the data bank Phygiaids employed. A normal ECG was taken because of its
very characteristic pattern, what makes easier toyré result of the FIS training. Besides, abnormal Eiifaals
have specific details which may be determinant forreecbdiagnose, what makes the evaluation of theitigaimuch
more complicated, depending on the analysis of specifitamathies (Moffa & Sanches, 2001). Since that is nttén
scope of this work, the real ECG from Fig. 4 was used.

ECG (rriv)
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Time (8]

Figure 4 — Real ECG signal

Next, the data from the real ECG is separated in tvg) adtaining set and a test set. No especial critesaused,
the time span of the ECG it was separated in twovakgr one corresponding to each set. Then, a fuzeyencée
system with TSK structure was trained. The FIS waspased of thirteen rules, with simple antecedents, heonly
fuzzy set in each antecedent, as shown by the repatiseraf the membership function®sff in Fig. 5. This number of
rules corresponds to the number of the fuzzy sets ihwtiie input crisp set was partitioned, according to the
topological characteristics of the real ECG signal.

Membership function plots
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Figure 5- Membership functions

After the training step, the set of parameters obtafaethe output functions of the fuzzy inference systeas
given by® = [0; 0.1; 0; -0.1; 1.1; -0.3; 0; 0.22; 0; 0.05; 0]. With this reguk possible to calculate the objective
function from Eq. 8 and then, to apply the optimization.

The model to be tuned is shown in Eq. 9 and it was fietgmted in (Gois & Savi, 2009). It comprehends a tétal o
third three parameters, therefore, the optimizatiorag separated in two steps: a first one executed bya dearch,
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and a second step for refinement, execute by geneticitatgorin this model, three coupled oscillators are used,;
representing the natural pacemakers of the heart eotesponds to their states. The ECG signal is gertebgtlinear
combination of them, representing the superpositighetlectric fields.

X =X

X, = =A% (% _WSA)(XI _WSAZ) =X (% +dsa) (X +€54) + PsaSIN(a ) +
+ kSA—AV(Xl - X;SMV )+ kSA—HP(Xi - XFZSPCHP)

X=X

X, = _a‘AVX4(X3 _WAvl)(Xs _WAVZ) - X3(X3 + dAV)(X3 + eAV) * Pav Sin(c‘)Avt) +
+Kay sl =X ) + Ky e (X = X5V )

X = %

Xs = —pXs (X5 _WHPl)(XS _WHPZ) = X5(% +dyp) (% + €4p) + Op SINEL) +
+Kp_sal(Xs = X) + Ko ay (X = X5)

After the optimization, the tuned mathematical modelegates the signal shown in Fig. 6, which is superieghts
the real ECG signal as shown in Fig. 7 for the sak®wiparison.

(9)
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Figura 6 — ECG signal simulated by the mathematical model
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Figure 7 — Comparison between Real and Simulated ECd signa

7. CONCLUSION

The results obtained by the mathematical model withdpigmal set of parameters show a good qualitative
agreement to the real sign, what indicates that theegtme is promising. It makes possible to obtain in tesatic
way the parameters of the system; what in a modelavitiial of third three parameters it is almost imfabsdo think
of doing manually.

In a first glance, the definition of the input memlbdgpsfunctions may seem a little complicated to do, reqgirin
specific knowledge of the signal or of the system. Acpualls not so; the presented membership function® waken
based only on the shape of the signal, identifying topoédgiharacteristics, nothing else. Anyway, simplentyidar
functions could be employed, in the same number of peakgadlegls of the average period shown in Fig. 2.
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