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Abstract. The aim of this paper is to study the energy pumping (the irreversible energy transfer from one structure, linear,
to another structure, nonlinear) robustness considering the uncertainties of the parameters of a two DOF mass-spring-
damper, composed of two subsystems, coupled by a linear spring: one linear subsystem, the primary structure, and one
nonlinear subsystem, the so-called NES (non-linear energy sink). Three parameters of the system will be considered
as uncertain: the nonlinear stiffness, the damper from the nonlinear system and the damper from the linear subsystem.
Random variables are associated to the uncertain parameters and probability density functions are constructed for the
random variables applying the Maximum Entropy Principle. A sensitivity analysis is then performed, considering different
levels of dispersion, and conclusions are obtained about the influence of the uncertain parameters in the robustness of the
system.
Keywords: Energy pumping, uncertainties, modelling.

1. INTRODUCTION

Energy pumping (EP) refers to a mechanism where energy is transferred in a one-way irreversible fashion from a
source to a receiver. EP occurs in a wide range of both physical phenomena and engineering applications. In the context
of passive vibration control of mechanical systems, it has been used to develop a new concept of nonlinear dynamic
absorber. In this case, the energy pumping occurs from the main, or primary, structure, which needs to be protected, to
the nonlinear absorber coupled with it. The nonlinear absorber, also named Nonlinear Energy Sink (NES), consists of a
mass with a nonlinear spring. This concept involves nonlinear energy interactions which occur due to internal resonances
making possible irreversible nonlinear energy transfers from the primary system to the attachment. The nonlinear energy
pumping was first described in (Gendelman et al., 2001; Vakakis and Gendelman, 2001). Comparing the NES with
the corresponding linear dynamic absorber (also known as Frahm absorber or Helmholtz resonator), some interesting
characteristics can be highlighted. The nonlinear absorbers operate in a large frequency band and not only with frequencies
near the natural frequency of the primary system. Since the NES is nonlinear, these systems have no natural frequencies
and they are effective for a large range of frequencies, while the linear absorbers attenuate well only one frequency. A
complete description of the energy pumping phenomenon can be found in (Vakakis et al., 2008).

Energy pumping phenomenon has been studied extensively in deterministic frameworks. However, very few studies
have been devoted to analyse it in stochastic cases (Schmidt and Lamarque, 2009; Sapsis et al., 2010). In this paper, un-
certainties are taken into account to discuss the robustness of energy pumping. Some parameters of the model considered
are taken as uncertain, random variables are associated to them and the corresponding probability density functions are
constructed.

This paper is organized as follows: Section 2. presents the deterministic model which will be used to study the energy
pumping phenomenon. Section 3. presents the parameters which will be considered uncertain and the methodology is
applied to perform a stochastic analysis related to the robustness of the energy pumping. Finally, in Sec. 4. conclusions
are outlined.

2. The deterministic model used

The system used to illustrate the energy pumping phenomenon and to discuss its robustness, taking into account
uncertainties, has two-degrees-of-freedom and its sketch is shown in Fig. 1.

The system is composed of two subsystems (mass-spring-damper), coupled by a linear stiffness. The first subsystem,
corresponding to the linear part (or primary system), is composed of the mass m1, the linear spring k1 and the linear
damping c1. The second subsystem, corresponding to the NES, is composed of the mass m2, the cubic spring k2 and
the linear damping c2. A linear spring γ couples the two subsystems. This configuration is referred as the grounded
configuration because the NES is connected to the ground. The equations of motion are given by Eq.1:

{
m1ẍ1 + c1ẋ1 + k1x1 + γ(x1 − x2) = 0
m2ẍ2 + c2ẋ2 + k2x

3
2 + γ(x2 − x1) = 0 (1)

where x1(t) and x2(t) denote the displacements of the primary system and the NES, respectively.
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Figure 1. Energy pumping model.

The basic values of the parameters which will be used in simulations are: m1 = 1000 kg, m2 = 1000 kg, k1 =
1000N/m, k2 = 150N/m3, c1 = 25Ns/m, c2 = 75Ns/m and γ = 250N/m. Only free responses associated
to impulsive excitation of the primary system will be analyzed, which corresponds to the following initial conditions:
x1 = 0, x2 = 0, ẋ1 =

√
2h/m1 and ẋ2 = 0, where h corresponds to the initial energy given to the system.

Energy pumping occurs when the value of the initial injected energy is above a specific value. Energy pumping is
noted, especially at early times of the response, when the energy of the system is relatively high and the non-linear effects
are profound. Figure 2 shows the displacement of the masses m1 and m2 considering two simulations, one of them
considering low level of initial energy (h = 5) (Fig. 2 (a) and (b)), no energy pumping occurs, and the other considering
high level of initial energy (h = 14) (Fig. 2 (c) and (d)), energy pumping occurs. The plots corresponding to the case
when there is no coupling are also shown with dotted lines.

Figure 2. (i) h = 5 (no energy pumping occurs) (a) Displacement x1(t) of the linear oscillator: dotted line denotes the
case without coupling (γ = 0) and the solid line denotes the case with coupling (γ = 250) and (b) Displacement x2(t)
of the nonlinear oscillator. (ii) h = 14 (energy pumping occurs) (c) Displacement x1(t) of the linear oscillator and (d)

Displacement x2(t) of the nonlinear oscillator.

Now, the initial energy is considered too high. Two cases are discussed: h = 5 and h = 100. In both cases the energy
pumping do not occurs. The corresponding plots are shown in Fig. 3.

In this case, the energy pumping is not observed anymore. Then, one can say that the level cannot be increased
indiscriminately in order to obtain better energy pumping performance, there is an optimum value to it. However, the
energy pumping phenomenon has been presented here by using plots.

A natural question which appears is how the energy pumping can be measured. An idea is to measure the energy
(stored and dissipated) related to each one of the oscillators.

A measure considered here will be called Total Energy and it is composed of the energy stored and the energy dissi-
pated in each mass.

The total energy related to the linear oscillator will be denoted by ET1 and it will be given by Eq. 2:

ET1 =
1
2
m1ẋ

2
1 +

1
2
k1x

2
1 + c1

∫ t

0

ẋ2
1(t)dt . (2)
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Figure 3. (a) Displacement x1(t) of the linear oscillator (h = 5): dotted line denotes the case without coupling (γ = 0)
and the solid line denotes the case with coupling (γ = 250). (b) Displacement x2(t) of the nonlinear oscillator (h = 5).
(c) Displacement x1(t) of the linear oscillator (h = 100). (d) Displacement x2(t) of the nonlinear oscillator (h = 100).

The total energy related to the nonlinear oscillator will be denoted by ET2 and it will be given by Eq. 3:

ET2 =
1
2
m2ẋ

2
2 +

1
2
k2
x4

4
+ c2

∫ t

0

ẋ2
2(t)dt (3)

It is important to say that the term related to the energy stored by the coupling stiffness is not considered because it
should be present in both equations and no to add it will be cause the same effect in terms of energy pumping measure.

Three different values of the initial energy are considered for the simulations h = 5, h = 14 and h = 100 and the
corresponding plots are shown in Fig. 4.

Figure 4. Total energy related to the linear and to the nonlinear system, considering three different cases for the initial
energy given by h. ET1 is represented by the dotted line and ET2 by the solid line. (a) h = 5, no energy pumping. (b)

h = 14 energy pumping occurs. (c) h = 100, no energy pumping.

It is not enough that the nonlinear oscillator move itself to say that the energy pumping is ocurring. To characterize the
energy pumping phenomenon, it is important to observe that the displacement of the linear mass is largerly diminished
whereas the displacement of the nonlinear mass is largerly increased, even during a short period of time. Considering the
values of ET1 and ET2, it can be noted that when no energy pumping occurs, the value of ET1 is greater than the value
of ET2, during all the time, which does not happen when the energy pumping phenomenon is present, as shown in Fig. 4

(b). Perhaps, a simpler way to discuss the relation between the energies (ET1 and ET2) is to evaluate the ratio
ET2

ET1
,
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which corresponding plots are shown in Fig. 5.

Figure 5. Ratio between energies ET2
ET1

, considering three different cases for the initial energy. (a) h = 5, no energy
pumping. (b) h = 14 energy pumping occurs. (c) h = 100, no energy pumping.

It can be observed that in Fig. 5, cases (a) and (c) the graph is always below the value 1, case where no energy pumping
occurs, and in Fig. 5, case (b), the graph crosses the value 1.

Thus, verifying the robustness of the energy pumping, taking into account the uncertainties in some parameters, seems
to be a good idea.

Considering a deterministic system, it was possible to discuss the principles of the energy pumping. However, the main
objective here is to discuss the robustness of energy pumping taking into account the uncertainties of some parameters of
the system. Then, the concepts discussed will be used when the system is not deterministic anymore, but when parameters
are substituted by random variables, in order to take into account uncertainties of the parameters.

3. Energy pumping robustness

3.1 General considerations

The energy pumping phenomenon happens due to a resonance 1:1 (the two structures oscillate at the same frequency),
that is, a resonance state is produced between the nonlinear oscillator with one linear mode and then the energy is trans-
ferred to the nonlinear system in a irreversible way.

Hence, it is important to know if the energy pumping can be produced even when the parameters are uncertain, in
order to apply the theory to real structures, where the nonlinear structure annexed does not reflect perfectly the theoretical
conception and the problems related to the nonlinear identification appear.

The aim of this section is to study the energy pumping when uncertainties are present; that is, when the parameters
are not well known. For example, the damping (in general, damping is not well known) plays an important role in the
development of the energy pumping phenomenon. As the nonlinear system does not reflect perfectly the concepts and the
problems related to the nonlinear identification appear, the uncertainties stay inside the nonlinearities Gourdon (2006).

3.2 Stochastic modeling

Herein, three system parameters will be considered as uncertain: (i) k2, the nonlinear stiffness, (ii) c1, the damping
corresponding to the linear system, and (iii) c2 the damping corresponding to the nonlinear system. Random variables K,
C1 and C2 will be associated to the uncertain parameters and probability density functions constructed to these random
variables using the Maximum Entropy Principle, which states that out of all probability density distributions consistent
with a given set of available information, the one with the maximum uncertainty (entropy) is chosen.

Let X be a random variable. The entropy associated to X is defined by Eq. 4:

S(pX) = −
∫ +∞

−∞
pX(x)`n(pX(x))dx. (4)

The goal is to maximize S under the constraints defined by some available information on the random variable X .
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3.3 Stochastic solver for the uncertain system

The stochastic system is constructed from the corresponding deterministic one substituting k2, c1 or c2 by the random
variable K, C1 or C2, respectively. The stochastic solver used is based on the Monte Carlo method.

Each random variable will be substituted separately by the corresponding uncertain parameter in the determinist sys-
tem.

Let X be each one of the random variables K, C1 or C2. The following steps will be performed for each random
variable.

(1) A probability density function is constructed using the Maximum Entropy Principle.

(2) Independent realizations X(θ) of the random variable X are constructed using the associated probability density
function obtained in step (1). For each realization X(θ), the system of differential equation given by Eq. 1 is solved and
the stochastic processes X1(t) and X2(t), associated to the displacements x1(t) and x2(t) of the masses m1 and m2, are
obtained.

(3) Plots of the realizations X1(t, θ) and X2(t, θ) are constructed and also their mean value and standard deviation.

(4) Confidence intervals corresponding to the ratio
ET2

ET1
are plotted considering different values for the dispersion

coefficient. The confidence interval associated with a specific probability level is constructed using quantiles ?Cataldo
et al. (2009). Herein, the value used for the confidence interval is 0.95.

3.3.1 Parameter k2 chosen as uncertain

The first parameter to be considered as uncertain is the nonlinear stiffness k2. The random variable K is associated to
this parameter and the following information is considered as available: (1) the support of the probability density function
is ]0,+∞[, (2) the mean value which is known, E[K] = K and (3) the condition E{`n(K)} < +∞ which implies that
zero is a repulsive value.

The probability density function pK has then to verify the following constraint equations (Soize, 2001; Cataldo et al.,
2009):∫ +∞

−∞
pK(k)dk = 1 ,

∫ +∞

−∞
kpK(k)dk = K ,

∫ +∞

−∞
`n(K)pK(k)dk < +∞ (5)

Applying the Maximum Entropy Principle yields the following probability density function for K:

pK(k) = 1]0,+∞[(k)
1
K

(
1
δ2K

) 1
δ2
K × 1

Γ (1/δ2K)

(
q

K

) 1
δ2
K

−1

exp

(
− k

δ2KK

)
, (6)

where δK =
σK

K
is the coefficient of dispersion of the random variable K such that δK <

1√
2

and σK is the standard

deviation of K. It can be verified that K is a second-order random variable and that E{1/K2} < +∞.
Figure 6 shows the realizations of the displacement of the two masses for δK = 0.05.
It can be noted that the energy pumping phenomenon is produced and the energy pumping is effective for all the

realizations (see Fig. 6 (top)). The mean values of x1(t) and x2(t) are characterized by two different behaviors. In the
initial phase (0 < t < 15), the mean displacements of the two oscillators are almost in-phase, the oscillation amplitude of the
mean displacement of the NES is large and the decay of the primary system amplitude is linear and very fast compared
with the single mass-spring-damper system . This behavior recalls the energy pumping condition, characterized by an
irreversible transfer of energy from the primary system to the nonlinear subsystem (energy localization in the NES),
where it is dissipated. In the second phase (t > 15), the behavior of the two oscillators is similar to that of the weakly
excited case, showing out-of-phase displacements. Note that in this case, the standard deviations of x1(t) and x2(t) are
small, although near t = 20s their values are higher.

It is interesting to analyze the confidence interval of the energy ratio (ET2/ET1) when the dispersion coefficient varies
(Fig. 7).

When the dispersion coefficient has a low value (0.05) it can be noted that all the realizations cross the value 1,
approximately after the first 15 seconds, and remain above the value 1 during all the time indicating that the energy
pumping occurs. Increasing the dispersion coefficient, just a little (0.1), it can be observed that the confidence interval
is larger and some realizations remain under the value 1 during all the time, indicating that the energy pumping does not
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Figure 6. Numerical results for K = 150 and δK = 0.05. (a) Realizations of the displacement of the mass. (b) Mean
value of the realizations. (c) Standard deviation of the realizations. Left: nonlinear system. Right: linear system.

Figure 7. Confidence interval related to the energy ratio for different values of the dispersion coefficient. (a) δK = 0.05.
(b) δK = 0.1. (c) δK = 0.2. (d) δK = 0.3

occur anymore. Increasing a little bit more the dispersion coefficient (0.2 and 0.3) more realizations appear under the
value 1.

3.3.2 Parameter c1 chosen as uncertain

The next parameter consider as uncertain is the linear damping c1 and the random variable C1 is assigned to it.
The available information is the same as considered for K and, consequently, using the Maximum Entropy Principle,
the corresponding probability density function constructed will have the same expression as the one constructed for K
(Eq. 6), substituting K by C1.

Figure 8 shows the realizations of the displacement of each mass and the corresponding mean value and standard
deviation, considering δC1 = 0.5 as the level of dispersion.

In this case, it can be observed that the energy pumping occur for all of the realizations and the standard deviation has a
very low value, indicating that the system is very robust for this level of uncertainty for C1. Then, to enable a comparison,
the level of uncertainty is increased up to 0.3 and the realizations obtained are shown in Fig. 9 . The corresponding mean
value and standard deviation are shown as well.

With this level of uncertainty, it is not difficult to observe that the standard deviation has its value increased with a
significant value, but it is not so clear to verify if the energy pumping occurs or not for all the realizations. The confidence
interval for the realizations of the energy ratio is plotted for different values of the dispersion coefficient and the results



Proceedings of COBEM 2011
Copyright c© 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

Figure 8. Numerical results for C1 = 25 and δC1 = 0.05. (a) Realizations of the displacement of the mass. (b) Mean
value of the realizations. (c) Standard deviation of the realizations. Left: nonlinear system. Right: linear system.

Figure 9. Numerical results for C1 = 25 and δC1 = 0.3. (a) Realizations of the displacement of the mass. (b) Mean value
of the realizations. (c) Standard deviation of the realizations. Left: nonlinear system. Right: linear system.

are shown in Fig. 10.
In this case, the confidence interval seem to be considerable large only when the dispersion coefficient value is 0.3

and maybe in this case the energy pumping cannot occur for some realizations, indicating that the system is very robust
in relation to variations of the uncertain parameter c1.

3.3.3 Parameter c2 chosen as uncertain

The next parameter to be considered as uncertain is the linear damping c1 associated to the nonlinear subsystem, and
the random variable C2 is assigned to it. The available information is the same as considered for C1 and, consequently,
using the Maximum Entropy Principle, the corresponding probability density function constructed will have the same
expression as the one constructed for K (Eq. 6), substituting K by C2.

Figure 11 shows the realizations of the displacement of each mass and the corresponding mean value and standard
deviation, considering δC2 = 0.5 as the level of dispersion.

The system appear also to be robust to this level of variations of C2, as it happened to C1, but even at this low level
of dispersion it is possible to observe that the standard deviation has a value a little bit larger, when compared with C1.
The level of uncertainty is then increased and the results are shown in Fig. 12. In this case, it is not difficult to observe
that the standard deviation has a value much larger then the one obtained for C1 and that for some realizations the energy
pumping does not occur.
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Figure 10. Confidence interval related to the energy ratio for different values of the dispersion coefficient. (a) δC1 = 0.05.
(b) δC1 = 0.1. (c) δC1 = 0.2. (d) δC1 = 0.3

Figure 11. Numerical results for C2 = 75 and δC2 = 0.05. (a) Realizations of the displacement of the mass. (b) Mean
value of the realizations. (c) Standard deviation of the realizations. Left: nonlinear system. Right: linear system.

Figure 13 shows the confidence interval related to the energy ratio for different values of the dispersion coefficient
δC2 .

One can say that the system is still robust considering the uncertainties of this parameter, but less robust when com-
pared with values obtained when the random variable C1 is considered.

4. CONCLUSIONS

This paper analyzes energy pumping using a system composed of two subsystems, one linear and another nonlinear, to
discuss the energy pumping phenomenon. The main objective was to take into account uncertainties in some parameters
of the system and to analyze the robustness of the energy pumping.

Three parameters were considered as uncertain: the coupling stiffness and the two dampers of the linear and the
nonlinear subsystems. Probability density functions were assigned to random variables, related to these parameters.

The main conclusions obtained were that the system is more robust when uncertainties related to the dampers are taken
into account, because with a greater level of dispersion in this parameter, the energy pumping phenomenon could still be
observed. For the same level of dispersion, the effects of the three random variables were compared and the system results
were more sensitive to variations of the random variable associated to the stiffness coupling.

The displacements of the linear subsystem are less sensitive to the variations of the uncertain parameter than the
displacements of the nonlinear subsystem.
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Figure 12. Numerical results for C2 = 75 and δC2 = 0.3. (a) Realizations of the displacement of the mass. (b) Mean
value of the realizations. (c) Standard deviation of the realizations. Left: nonlinear system. Right: linear system.

Figure 13. Confidence interval related to the energy ratio for different values of the dispersion coefficient. (a) δC2 = 0.05.
(b) δC2 = 0.1. (c) δC2 = 0.2. (d) δC2 = 0.3

An idea for a future study is to consider other parameters as uncertain and employ other methodologies to take it into
account. Other quantities can also be analyzed, for example, the energy variation of the system.
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