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Abstract. This paper investigates procedures for testing vibration of small beams and plates in laboratory under the 
hypothesis of a stationary surrounding fluid. They are used for experimental characterization of the influence of fluid 
on the structural dynamic responses. It is also proposed a simplified procedure for modeling the influence of the fluid 
on the dynamic behavior, based on an updating procedure of finite element models. The test items are fixed on the side 
of a box of carbon steel, designed for this purpose, where the experimental tests are carried out with impact excitation. 
They are tested without and with fluid interaction. Numerical simulations of finite element models of these structures 
are generated in order to obtain temporal and harmonic responses for the two conditions. All sets of responses are 
compared and a procedure is used to update models by the correction parameters of mass and / or stiffness from the 
minimization of differences between the numerical and experimental eigensolutions. The results lead to global 
correction factors that allow to characterize the influence of the fluid in the modeling of the structures. The study 
highlights the computational advantage obtained in terms of processing, objectivity (given the fact that commercial 
software simulation of fluid does not deal with structural dynamics) and in improving the predictive ability of finite 
element models. 
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1. INTRODUCTION 
 

The need to model the problems involving more than one physical domain with quality and accuracy, also called 
coupled problems, has become a frequent reality. Even with powerful tools and sophisticated computational modeling 
methods, solving problems involving interactions between different physical domains is a very complex task. Among 
these, the problems of fluid interaction with structures are placed among the most challenging ones, frequently 
involving practical applications, like oil exploration in deep water, pipelines, cables and moorings at the seabed. 

It is understood by Fluid Structure Interaction (FSI) any situation in which there is some kind of fluid acting 
internally or externally with any movable or elastically deformable structure, affecting or influencing, directly or 
indirectly the movement of the latter (BUNGARTZ; SCHÄFER, 2006). The FSI problems do not fit in the classical 
problems of fluid mechanics because the obstacles are considered rigid (non-deformable barriers) and the focus is the 
study of Fluid Dynamics, even if they are affected by the presence of solid bodies. Similarly, the FSI does not fit the 
classic study of Strength of Materials and Structural Dynamics, where the static and dynamic are formulated 
independently of the surrounding fluid. 

Solving techniques based on numerical methods have been used as an important tool in different areas, either in 
science or in engineering. The models and methods can provide reliable answers which can be quite close to 
experimental observations. Numerically, the problems of FSI are treated based on two main lines of research: 

 
• One line establishes physical domains occupied by the structure and by the fluid when there is flow, or by the 
formulation based on added mass when the fluid is at rest. 
• Another line establishes a fictitious domain for the structure, where the problems are formulated based on the 
principles of immersed boundary. 
 
The physical domain approach separates the problem into three subsystems: the fluid, structure and boundary. This 

approach assumes the need for "communication between domains" since the equations governing the two areas have 
different reference systems. The principle is to make the temporal evolution of the problem until a local convergence in 
one area and then pass the variables to the other domain through the conditions of engagement. This line of approach is 
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widely used because it takes into account the mutual effects between the two subdomains. This concept is also called 
two-way coupling. (CASADEI; Halleux, 1995) (KVAMSDAL et al., 1999a), (KVAMSDAL et al., 1999b), 
(PADOVESE, 2001), (WADHAM-GAGNON et al., 2007). 

Another simplified way of analyzing the problems of FSI is to obtain the response of the fluid assuming a rigid 
structure and then the response of the structure considering the pressure interface acting as the external load. This 
concept is called one-way (TEIXEIRA, 2001). However, this unbound procedure can lead to very large errors if the 
hypothesis of stationarity for the fluid is not fulfilled. 

The method of added mass (defined as "one way") is interesting because it allows the investigation of the dynamics 
of the structure without determining the fluid motion and hence reducing the computational cost. Added mass is usually 
calculated assuming a perfectly static fluid with low amplitudes in structural movement so as not to induce motion in 
the fluid. Historically, Meyerhoff (1970, apud ERGIN; UGURLU, 2003) calculated the added mass to thin bars in an 
infinite fluid and described the potential flow around the bar. Liang (2001 apud ERGIN; UGURLU, 2003) adopted an 
empirical formula for added mass to determine the frequency and modes of submerged bars, comparing with numerical 
predictions (CONCA et al., 1997). 

In the context describe above, the present paper aims at proposing and performing test procedures of vibration on 
small submerged structures in laboratory for the experimental characterization of the influence of fluid on the structural 
dynamic response (time, harmonic and modal responses). Moreover, it intends to perform the assessment of a simplified 
procedure for modeling the influence of fluid on the structural dynamic behavior based on a updating procedure of 
finite element models. 

 
2. MODELING OF FLUID STRUCTURE INTERACTION 

 
Axisa (2001) says that for a vibrating structure under the action of an incompressible fluid, the inertial effect is 

immediately noticeable. The movement of the walls of the structure against a certain mass of fluid promotes the 
increase of the kinetic energy of the coupled system. This effect is due to the mass of the fluid which adds inertia to the 
system. However, depending of the geometry, of the deformable conditions and vibration conditions, the mass effect 
may be larger or smaller than the actual physical mass of the fluid on the structure. 

 
2.1 Inertial effects 

 
As a first step towards establishing the mathematical basis for the formulation of the problem, the equations of 

motion for structural dynamics are written in the general form: 
 

      [ ] { } [ ] { } [ ] { } { ( )}E E E E E E EM x t C x t K x t f t     (1) 

 

where [ ]E NxNM R  is the symmetric mass matrix, positive definite, [ ] and [ ]E E NxNK C R  are the 

symmetric stiffness and damping matrices and they can be positive or semi-positive definite, { ( )}E Nx t R  is the 

vector of responses and { ( )}E Nf t R  is the vector of excitations or loads by external forces by the fluid, acting on 

surface structure. The superscript ( ) E  makes reference to structure and the superscript ( ) F  will be referred to the fluid. 
Under the premise of inviscid and incompressible fluid, the Euler’s equations which are a peculiarity of the Navier 

and Stokes’s equations are used: 
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being V


 the velocity vector,   the fluid density and P the pressure. 

In the case of small oscillations of the fluid, the following conditions of engagement can be specified: 
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S

P  (6) 

 

being n


 the unit vector in the normal direction of the interface; 


 denotes the border region and 
S

 denotes the free 

surface. 
Equation (4) indicates that the force variation due to fluid pressure on the wet wall is proportional to the 

acceleration imposed by the structure, while Equation (5) indicates that the fluid velocity, normal to the wet wall is 
equal to the normal speed of the structure at the same point, Equation (6) states that the pressure at the free surface is 
zero. 

By introducing the condition given by Eq. (4) into Eq (1) and performing the spatial discretization, we obtain the 
equation of structural dynamics under the influence of fluid pressure field. 
 

      ([ ] [ ] ){ } [ ] { } [ ] { } 0E F E E E E EM m x t C x t K x t      (7) 

 
Under the simplified conditions adopted and under the appropriate boundary conditions, this expression illustrates 

the effect of added mass due to fluid in the mass matrix of the structure. 
 

3. FINITE ELEMENT MODEL UPDATING 
 

We must consider that the modeling of complex problems involve many uncertainties, which may affect the 
predictive ability of models. Indeed, in many circumstances, the values of physical and geometrical parameters of the 
system are unknown or poorly estimated; in fact, the model may involve simplifications of the real behavior. Among 
the technics used for the adjustments of finite element models, those based on corrections in the values of physical and 
geometrical parameters are considered as being among the most robust and efficient (FRISWELL; MOTHERSHEAD, 
1995). 

Essentially, the techniques of parametric correction involve hybrid numerical-experimental procedures and can be 
implemented in accordance with the following steps:  

 
1) Perform a vibration test on the actual structure and extracting a set of dynamic features that will be used in the 

updating procedure. 
2) Division of the model in areas to which are assigned correction factors for mass and/or stiffness and/or damping 

to be determined. 
3) Formulation of an optimization problem in which the objective function represents the difference between the 

experimental dynamic features and their counterparts provided by the corresponding finite element model; the design 
variables are the values of the correction parameters. 

4) Resolution of the optimization problem to determine the optimal values of correction parameters. 
 

To take into account the fact that the experimental data are inevitably contaminated by measurement error, the 
parametric identification can be conducted in a probabilistic context. Moreover, the adjustment procedures operate on 
two distinct sets of data with specific techniques for comparison and compatibilization. The following presents the 
fundamentals the formulation of a adjustment technique based on eigensolutions (natural frequencies and natural modes 
of vibration) (FRISWELL; MOTHERSHEAD, 1995). 

The adjustment consists basically in to establishing: 
 

 ][][][ )0( MMM   (8) 

 ][][][ )0( KKK   (9) 

 ][][][ )0( CCC   (10) 

 
where: 
 

• ][],[],[ CKM  are, respectively, the matrices of mass, stiffness and damping of the model updated. 

• ][],[],[ )0()0()0( CKM are, respectively, the matrices of mass, stiffness and damping of the original model. 

• ][],[],[ CKM   are, respectively, the correction matrices of mass, damping and stiffness. 

 
The problem consists in determining the correction matrices which reproduce, to the maximum accuracy, the 

dynamic responses observed experimentally. Assuming that the finite element model is undamped, the adjustment will 
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be made on the matrices of mass and stiffness, based on values of natural frequencies obtained experimentally. It is also 
assumed that the finite element model has been conceived as the combination of n_r regions (called macro elements) to 
which are associated mass and stiffness correction parameters. Thus we can write: 
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where  iM ,  iK  are respectively the mass and stiffness matrices associated with the i-th region of the global finite 

element model. 
After parameterization of the modeling errors, we must determine the set of values of correction parameters. To 

formulate the problem mathematically, we use linearized Taylor series which allow relating the two data sets as 
follows: 
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where the superscript )( e  and )(m  designate, respectively, the experimental eigensolutions and those associated to the 
finite element model. 

Deriving the equation that expresses the eigenvalue problem and normalization of the eigenvectors associated with 
the finite element model, we get the following expressions for the derivatives of eigenvalues with respect to the 
correction parameters (RADE, 1994): 
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Since we have determined the partial derivatives of eigenvalues with respect to correction parameters and having (p) 

experimental eigenvalues, from Eq. (15) we can form the following set of equations 
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or 
 

     S   (19) 
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where  S  is known as the sensitivity matrix of eigenvalues and    is the vector formed by the increments of the 

parameters. 
In principle, the resolution of this system of equations enables to determine the increments of the parameters that 

should be applied to the initial model. Because the matrix is generally not square, we use the resolution by the method 
of least squares. 
 

           
1T T
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
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However, this solution does not directly provide satisfactory results, since the linearization performed in Eq. (15) 

may not be applicable in cases where the corrections are not infinitesimal. Thus, an iterative resolution scheme must be 
used which, starting from the initial model, successive increments are calculated in such a way that at each iteration the 
sensitivity matrix and the eigenvectors calculated by the finite element model are updated in accordance with: 
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where i indicates the i-th iteration. A convergence criterion based on the amplitude of the vector of increments of 
parameters is used to stop the iterative procedure. 

Equation (21) expresses the weighting of all measures in an equivalent manner. However, there may be differences 
in reliability levels that are attributed to the different measures. This difference in reliability can be considered in the 

minimization process by a diagonal matrix  sW , positive definite, which allows to account for the degree of 

confidence or uncertainty to the measured data. Reliable results have small variances, hence, larger weight in the 

diagonal elements of the array  sW . Thus the equation (21) can be rewritten, incorporating the variation of weights: 
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In most practical cases, the number of parameters needed to update is greater than the number of data acquired 

experimentally. It happens because some parameters are better estimated than others. These factors make their solution 

very sensitive to errors in the data. So it is performed an additional ponderation on the parameters, by a matrix  W  

for the regularization of the problem. The weight matrix  W  is a diagonal matrix element usually chosen as the 

variances of the parameters. Equation (23) shall be written as: 
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Alternatively, may improve the conditioning of the equations using an initial estimate of unknown parameters. 
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where  0  is the vector of initial estimates of parameters. 

Infantes (2000) comments that the analytical and experimental natural frequencies need to refer to the same mode. 
Sorting them in ascending order according to the values of natural frequencies may not be suitable. The use of criteria 
such as MAC (Modal Assurance Criterion), between the experimental and analytical modes ensures the 
correspondence. 
 
4. METHODOLOGY OF EXPERIMENTAL TESTS 
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A box of carbon steel was constructed with internal dimensions of 550 mm x 450 mm x 410 mm, using commercial 
plate of ½" of thickness at the base and one side (see Figure 1). To provide better visualization of the experiment, two 
glass sheets were mounted on opposite sides. For closing of the box, it was mounted a plate of ¼ "on the side opposite 
the steel ½" of thick. 

Performing the function of the beam, it was used a steel bar with free dimensions: 376.0 mm x 30.5 mm x 4.7625 
mm (3/16"), clamped on one side of the box, as shown in Figure 1. As instrumentation, a piezoelectric accelerometer 
was set at the free end. The beam condition was evaluated in dry and submerged conditions with 180 mm of water on 
the upper surface and 190 mm in the lower face. The test consisted of successive applications and measurement of 
impulsive forces on five points distributed on its upper surface, and the response at the point where the accelerometer 
was positioned. At each point were performed 15 impacts to obtain the average for the FRF. 

 

 
 

Figure 1 - Steel beam clamped with fixed instrumentation in the box. 
 

We used a steel plate with free dimensions: 376.0 mm x 200.0 mm x 3.175 mm (1/8”), clamped on the side of the 
box. Also set up an accelerometer in one corner of the free end of the plate in dry and submerged conditions with 180 
mm of water on the upper surface and 190 mm in the lower face. The test consisted of impulsive forces at 25 points on 
its upper surface. At each point were performed 15 impacts to obtain the average for the FRF. 

For both structures, the tests were performed as follows: 
 
1) Dry condition, using impact hammer in the original configuration, shown in Figure 2-a 
2) On the submerged condition, using impact hammer with extended tip (Fig. 2-b) 
 

  
(a) (b) 

 
Figure 2 - Tests performed: (a) without fluid and with normal hammer. 

(b) with fluid, using hammer with extended tip. 
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5. RESULTS AND DISCUSSION 
 

5.1 Beam without fluid 
 
The dynamic behavior of the beam is compared to equivalent numerical models for validation and implementation 

of the methodology of the model updating. The numerical models were generated in ANSYS software, using 10 
elements type Beam3 with modal and harmonic analyses in the range 0 to 500 Hz. It was also implemented a finite 
element model in MATLAB with 10 unidimensional elements. The natural frequencies and damping factors were 
identified from the experimental FRFs using MODAN - Modal Analisys Software, version 3, developed by the 
Laboratoire de Mécanique Appliquée, Université de Franche-Comté, in Besançon - France. This is an interactive 
program for modal identification, developed in MATLAB that allows the extraction of eigenvalues, eigenvectors and 
modal damping factors from frequency response functions. The model in ANSYS was updated using the program 
AESOP or Analytical or Experimental Structural Optimization Platform, version 5, also of the Université de Franche-
Comté, France. It is also a program developed in MATLAB for simulation, comparison of responses, localization of 
modeling errors, model updating, sensitivity analysis, statistics and manipulation of FRFs. 

After the tests with the dry structure, differences were observed between the natural frequencies of the numerical 
model and their experimental counterparts. Using the technique of adjustment describe in Section 3, we obtained the 
global factor for the correction of the bending stiffness 0.7498 * EI for the model in ANSYS and 0.7604 * EI for the 
model developed in MATLAB. Table 1 consolidates the data obtained before and after the model updating. 

 
Table 1 - Comparison of results: experimental, without and with update using the global stiffness 

 
 Natural frequencies (Hz) / error (%)

MODE Experim ANSYS/AESOP MATLAB 
Without  With Update Without  With Update 

1º 24,47 28,30/15,65 24,50/0,13 28,15/15,04 24,54/0,29 
2º 153,96 177,31/15,17 153,54/-0,27 176,39/14,57 153,82/-0,09 
3º 429,15 496,32/15,65 429,78/0,15 494,05/15,12 430,81/0,39 

 
The differences observed between the results with AESOP/ANSYS and MATLAB are attributed to the choice of 

objective function, weighting of the modes and characteristics inherent of the numerical optimization. 
For further evaluation, the amplitudes of FRFs obtained experimentally with the corresponding generated by 

harmonic analysis in ANSYS from the fitted model using the program AESOP are compared in Figure 3. The modal 
damping factors identified experimentally were introduced in the updated finite element model. 

 

 
 

Figure 3 -FRF for the dry beam 
 

5.2 Beam in interaction with fluid 
 
Similar testing and updating procedures were used for the submerged structure. The best results were obtained by 

making a direct correction from the original model, avoiding the previous correction by stiffness, using the global mass 
correction factor for all elements of the model. They were obtained *166,2  for the model in ANSYS and *076,2  

for the model in MATLAB. Table 2 consolidates the data obtained before and after model updating. 
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Table 2 - Comparison of results: Experimental, without and with update  
using the global mass on submerged beam 

 
 Natural frequencies (Hz) / error (%)

MODE Experim ANSYS/AESOP MATLAB 
Without  With Update Without  With Update 

1º 19,17 28,30/15,65 19,23/+0,31 28,15/46,84 19,14/-0,16 
2º 119,80 177,31/15,17 120,48/+0,57 176,39/47,24 120,05/0,21 
3º 337,86 496,32/15,65 337,24/-0,17 494,05/46,23 337,07/-0,23 

 
The amplitudes of FRFs obtained experimentally with the corresponding generated by harmonic analysis in 

ANSYS from the adjusted model are compared in Figure 4. 
 

 
 

Figure 4 - FRF for the submerged beam 
 
In Figure 4 it can be seen that the experimental curve present some noise which can be due to fluid motion induced 

by the structure. It should also be pointed-out that the excitation of the structure under water, along with the 
instrumentation that was available, was one of the difficulties encountered in performing this work. 

 
5.3 Plate without fluid 

 
A numerical model was generated with 760 Shell63 elements in ANSYS, with modal and harmonic analyses 

performed in the range 0 to 1000 Hz. The natural frequencies and damping factors were also identified using MODAN 
and updating was made using AESOP/ANSYS. 

The differences between the natural frequencies of the numerical model and the experimental data were minimized 
using the updating technique using the global correction factor of 0.782 * EI for the bending stiffness on the model in 
ANSYS. Table 3 consolidates the data before and after the model updating. 

 
Table 3 - Comparison of results: experimental, without and with update 

using the global stiffness on plate without fluid 
 

 Natural frequencies (Hz) / error (%) / MAC(%) 
MODE Experim. Before Updating After Updating 

1º 16,76 19,26/+14,92/ 99,8 17,03/+1,61/ 99,8 
2º 70,69 78,61/+11,20/ 99,4 69,51/-1,67/ 99,4 
3º 104,91 119,99/+14,37/ 98,8 106,11/+1,14/ 98,8 
4º 229,96 257,71/+12,07/ 99,4 227,90/-0,90/ 99,4 
5º 296,64 336,29/+13,37/ 97,8 297,39/+0,25/ 97,8 
6º 425,51 464,91/+9,26/ 72,3 411,13/-3,38/ 72,3 
7º 446,90 500,95/+12,09/ 69,3 443,00/-0,87/ 69,3 
8º 574,19 --- NU 
9º 591,14 675,88/+14,34/ 65,8 597,70/+1,11/ 65,8 

10º 731,06 835,91/+14,34/ 96,1 739,22/+1,12/ 96,1 
11º 843,22 936,94/+11,11/ 89,6 828,56/-1,74/ 89,6 
13º 951,13 1107,68/+16,46/ 92,9 979,55/+2,99/ 92,9 

NU = Not Updated 
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Figure 5 enables to compare the amplitudes of FRFs obtained experimentally and the corresponding generated by 
harmonic analysis performed in ANSYS from the updated model using the program AESOP.  

 

 
 

Figure 5 - FRF for the dry plate (range of 0 to 400 Hz) 
 
The FRFs of the updated model are compared with the experimental FRF's showing similarities in the appearance 

of curves. It is observed that the correlation between numerical and experimental methods was better from 0 to 400 Hz. 
 

5.4 Plate in interaction with fluid 
 
Similar procedure was applied to the submerged plate. The best updating results were obtained by direct correction 

of the model without correction for the stiffness and using the global factor to the mass. It was obtained a factor of 
*40,4 . Table 4 consolidates the data obtained before and after adjustment models. Figure 6 enables to compare the 

amplitudes of FRFs obtained experimentally and the corresponding generated by harmonic analysis performed in 
ANSYS from the updated model. 

 
 

Table 4 - Comparison of results: Experimental, with and without adjustment 
of the global mass on plate submerged 

 
 Natural frequencies (Hz) / error (%) / MAC(%) 

MODE Experim. Before Updating After Updating 
1º 7,27 19,26/+164,92/ 95,1 9,28/+27,65/ 95,1 
2º 39,61 78,61/+98,46/ 84,8 37,89/-4,34/ 84,8 
3º 48,60 119,99/+146,89/ 71,9 57,83/+18,99/ 71,9 
4º 132,58 257,71/+94,38/ 86,2 124,22/-6,31/ 86,2 
5º 146,44 336,29/+129,64/ 83,0 162,09/+10,69/ 83,0 
6º 262,12 464,91/+77,37/ 74,0 224,09/-14,51/ 74,0 
7º 268,27 500,95/+86,73/ 77,5 241,46/-9,99/ 77,5 
8º 310,61 --- N.U. 
9º 367,30 675,88/+84,01/ 54,2 N.U. 
10º 446,70 835,91/+87,13/ --- N.U. 
11º 531,26 936,94/+76,36/ 56,2 N.U. 
13º 539,65 1107,68/+105,26/ --- N.U. 

N.U. = Not Updated 
 

 
 

Figure 6 - FRF for the submerged plate (range of 0 to 400 Hz) 
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As can be seen, the values of the natural frequencies of the plate decrease due to the fluid added mass, which limits 
the number of modes available for adjustment, as indicated by the MAC criterion (Tab. 4). At this point, questions arise 
about the influence of the excitation system on the contamination of the experimental response, as discussed earlier for 
the beam. In the presentation of the FRFs there were residual differences between modal frequencies obtained by 
updating. However, there were also certain similarities between the appearance of amplitude curves, the peaks of the 
natural frequencies and the presence of anti-resonances, despite the apparent noise. 

 
6. CONCLUSIONS  

 
The simplified modeling methodology proposed in this work has shown to have potential for characterization of the 

structural behavior of a structure surrounded by a static fluid, requiring, however, some improvement. As proposals to 
continue the study reported here, we suggest: a) investigations of the means of acquiring data for the dynamics of 
submerged structures in terms of excitation, instrumentation, and reliability; b)study of  the acceptable limits for the 
static condition of the fluid; c) use of updating techniques based on FRFs that preclude the step of identifying modal 
parameters; d) inclusion in the numerical models and adjustment procedures the effect of damping induced by fluid 
viscosity, which induces the decay of responses observed for submerged structures. 
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