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Abstract. In this work, the resonance problem in the artificial satellites motion is studied. The development of the
geopotential includes the zonal harmonics J20 and J40 and the tesseral harmonics J22 and J42. Through successive
Mathieu transformations, the order of dynamical system is reduced and the final system is solved by numerical integration.
In the dynamical model, six critical angles, associated to the tesseral harmonics J22 and J42, are studied together.
Numerical results show the time behavior of the semi-major axis, argument of pericentre and of the eccentricity.
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1. INTRODUCTION

Synchronous satellites in circular or elliptical orbits have been extensively used for navigation, communication and
military missions. This fact justifies the great attention that has been given in literature to the study of resonant orbits
characterizing the dynamics of these satellites since the 60’s (Blitzer, 1963; Ely and Howell, 1996; Garfinkel, 1965, 1966;
Gedeon et al., 1967; Gedeon, 1969; Jupp, 1969; Lane, 1988; Morando, 1963). For example, Molniya series satellites
used by the old Soviet Union for communication form a constellation of approximately 110 satellites, launched since
1965, which have highly eccentric orbits with periods of 12 hours. Another example of missions that use eccentric orbits,
inclined and synchronous, include satellites to investigate the solar magnetosphere, launched in the 90’s (Neto, 2006).

The dynamics of synchronous satellites is very complex. The tesseral harmonics of the geopotential produce multiple
resonances which interact resulting significantly nonlinear motions, when compared to non-resonant orbits. It has been
found that the orbital elements show relatively large oscillation amplitudes differing from neighboring trajectories, they
are in fact chaotic (Ely and Howell, 1996). It should also be noted that the characteristics of several missions involving
such orbits require that they are kept to a minimum fuel consumption. Geographic requirements determined by the
missions and spatial maneuvers of minimum cost demand precise control of the trajectories that are subjected to significant
nonlinearities during the satellite lifetime.

In this paper, the 2:1 resonance is considered; in other words, the satellite completes two revolutions while the Earth
carries one.

2. HAMILTONIAN AND MOTION EQUATIONS

In this section, a Hamiltonian describing the resonant problem is derived through sucessive Mathieu transformations.
Consider Eq. (1) to the Earth gravitational potential written in classical orbital elements (Osorio, 1973; Kaula, 1966)

V =
µ

2a
+

∞∑

l=2

l∑
m=0

l∑
p=0

−∞∑
q=+∞

µ

a

(ae

a

)l

JlmFlm(I)Glpq(e)cos(φlmpq(M, ω, Ω, Θ)). (1)

where µ is the Gaussian constant, µ=3.986009 x 1014 m3/s2, a, e, I , Ω, ω, M are the classical keplerian elements: a is
the semi-major axis, e is the eccentricity, I is the inclination of the orbit plane with the equator, Ω is the longitude of the
ascending node, ω is the argument of pericentre and M is the mean anomaly, respectively; ae is the Earth mean equatorial
radius, ae=6378.140 km, Jlm is the spherical harmonic coefficient of degree l and order m, Flmp(I) and Glpq(e) are
Kaula’s inclination and eccentricity functions, respectively. The argument φlmpq(M, ω, Ω,Θ) is defined by

φlmpq(M,ω, Ω, Θ) = qM + (l − 2p)ω + m(Ω−Θ− λlm) + (l −m)
π

2
.

where Θ is the Greenwich sidereal time and λlm is the corresponding reference longitude along the equator.
In order to describe the problem in Hamiltonian form, Delaunay canonical variables are introduced
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L =
√

µa G =
√

µa(1− e2) H =
√

µa(1− e2)cos(I)

l = M g = ω h = Ω. (2)

Using the canonical variables, one gets the Hamiltonian F̂ ,

F̂ =
µ2

2L2
+

∞∑

l=2

l∑
m=0

Rlm , (3)

with the disturbing potential Rlm given by

Rlm =
l∑

p=0

+∞∑
q=−∞

Blmpq(L,G, H)cos(φlmpq(l, g, h, Θ)) . (4)

The argument φlmpq is defined by

φlmpq(l, g, h, Θ) = ql + (l − 2p)g + m(h−Θ− λlm) + (l −m)
π

2
, (5)

and the coefficient Blmpq(L,G, H) by

Blmpq =
∞∑

l=2

l∑
m=0

l∑
p=0

−∞∑
q=+∞

µ2

L2

(µae

L2

)l

JlmFlmp(L,G,H)H−(l+1),(l−2p)
q (L, G). (6)

The Hamiltonian F̂ depends explicitly on the time through the Greenwich sidereal time Θ, where Θ = Ωet (Ωe is the
Earth’s angular velocity and t is the time). A new variable θ, conjugated to Θ, is introduced in order to extend the phase
space. In the extended phase space, the extended Hamiltonian Ĥ is given by

Ĥ = F̂ + ωeθ. (7)

For resonant orbits, it is convenient to use a new set of canonical variables. Consider the canonical transformation of
variables defined by the following relations

X = L Y = G− L Z = H −G Θ = Θ

x = l + g + h y = g + h z = h θ = θ , (8)

where X, Y, Z, Θ, x, y, z, θ are the modified Delaunay variables.
The new Hamiltonian Ĥ ′, resulting from the canonical transformation defined by Eqn (8), is given by

Ĥ ′ =
µ2

2X2
+ ωeθ +

∞∑

l=2

l∑
m=0

R′lm , (9)

where the disturbing potential R
′
lm is given by

R
′
lm =

l∑
p=0

+∞∑
q=−∞

B
′
lmpq(X, Y, Z)cos(φlmpq(x, y, z, Θ)). (10)
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Consider the resonance to be studied in this work; that is, the commensurability between the Earth rotation angular
velocity Ωe and the mean motion n. This commensurability can be expressed as

qn−mωe
∼= 0 (11)

considering q and m as integers. The commensurability of the resonance studied, q/m, is defined by α. When this
commensurability ocurrs, small divisors, associated to the tesseral harmonics, arise in the integration of the equations of
motion (Lane, 1988). These terms are called resonants.

The short and long period terms can be eliminated from the Hamiltonian Ĥ ′ by applying an averaging method. A
reduced Hamiltonian Ĥr is obtained from the Hamiltonian Ĥ ′ when only secular and resonant terms are considered. Sev-
eral authors, Lima Jr. (1996), Grosso (1989), Ely and Howell (1996) and Neto (2006) also use this simplified Hamiltonian
to study the resonance. The reduced Hamiltonian Ĥr is given by

Ĥr =
µ2

2X2
+ ωeθ +

∞∑

j=1

B
′
2j,0,j,0(X, Y, Z) +

+
∞∑

l=2

l∑
m=2

l∑
p=0

B
′
lmp(αm)(X,Y, Z)cos(φlmp(αm)(x, y, z, Θ)). (12)

The canonical system of differential equations governed by Ĥr has the first integral

(
1− 1

α

)
X + Y + Z = C1 (13)

where C1 is an integration constant.
Using this first integral, a Mathieu transformation

(X, Y, Z, Θ, x, y, z, θ) → (X1, Y1, Z1, Θ1, x1, y1, z1, θ1)

can be defined.
This transformation is given by the following equations

X1 = X Y1 = Y Z1 =
(

1− 1
α

)
X + Y + Z Θ1 = Θ

x1 = x−
(

1− 1
α

)
z y1 = y − z z1 = z θ1 = θ. (14)

The subscript 1 denotes the new set of canonical variables. Note that Z1=C1 and the z1 is an ignorable variable. So, the
order of the dynamical system is reduced in one degree of freedom.

Substituting the new set of canonical variables, X1, Y1, Z1,Θ1, x1, y1, z1, θ1, in the reduced Hamiltonian given by
Eqn. (12), one gets the resonant Hamiltonian. The word "resonant" is used to denote the Hamiltonian Ĥ1,rs which is
valid for any resonance. The periodic terms in this Hamiltonian are resonant terms. The Hamiltonian Ĥ1,rs is given by

Ĥ1,rs =
µ2

2X2
1

+ ωeθ1 +
∞∑

j=1

B1,2j,0,j,0(X1, Y1, Z1) +

+
∞∑

l=2

l∑
m=2

l∑
p=0

B1,lmp,(αm)(X1, Y1, Z1)cos(φ1,lmp(αm)(x1, y1, z1, Θ1)). (15)

The Hamiltonian Ĥ1,rs has all resonant frequencies, relative to the commensurability α, where the φ1,lmp(αm) argu-
ment is given by

φ1,lmp(αm) = m(αx1 −Θ1) + (l − 2p− αm)y1 − φ1,lmp(αm)0 , (16)
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with

φ1,lmp(αm)0 = mλlm − (l −m)
π

2
. (17)

The secular and resonant terms are given, respectively, by B1,2j,0,j,0(X1, Y1, Z1) and B1,lmp(αm)(X1, Y1, Z1).
Each one of the frequencies contained in dx1

dt , dy1
dt , dΘ1

dt is related, through the coefficients l, m, to a tesseral harmonic
Jlm. By varying the coefficients l, m, p and keeping q/m fixed, one find, all frequencies dφ1,lmp(αm)

dt concerning to a
specified resonance.

Now considering, j=1,2, l=2,4, m=2, α = 1/2 and p=0,1,2,3, from Ĥ1,rs, one gets

Ĥ1 =
µ2

2X2
1

+ ωeθ1 + B1,2010(X1, Y1, C1) + B1,4020(X1, Y1, C1) +

+B1,2201(X1, Y1, C1)cos(x1 − 2Θ1 + y1 − 2λ22) +
+B1,2211(X1, Y1, C1)cos(x1 − 2Θ1 − y1 − 2λ22) +
+B1,2221(X1, Y1, C1)cos(x1 − 2Θ1 − 3y1 − 2λ22) +
+B1,4211(X1, Y1, C1)cos(x1 − 2Θ1 + y1 − 2λ42 + π) +
+B1,4221(X1, Y1, C1)cos(x1 − 2Θ1 − y1 − 2λ42 + π) +
+B1,4231(X1, Y1, C1)cos(x1 − 2Θ1 − 3y1 − 2λ42 + π). (18)

A new transformation is considered

X ′
1 = X1 Y ′

1 = Y1 Θ′1 = −θ1

x′1 = x1 y′1 = y1 θ′1 = Θ1. (19)

From Equations (18) and (19) the Hamiltonian Ĥ ′
1 is obtained

Ĥ ′
1 =

µ2

2X ′2
1

− ωeΘ′1 + B1,2010(X ′
1, Y

′
1 , C1) + B1,4020(X ′

1, Y
′
1 , C1) +

+B1,2201(X ′
1, Y

′
1 , C1)cos(x′1 − 2θ′1 + y′1 − 2λ22) +

+B1,2211(X ′
1, Y

′
1 , C1)cos(x′1 − 2θ′1 − y′1 − 2λ22) +

+B1,2221(X ′
1, Y

′
1 , C1)cos(x′1 − 2θ′1 − 3y′1 − 2λ22) +

+B1,4211(X ′
1, Y

′
1 , C1)cos(x′1 − 2θ′1 + y′1 − 2λ42 + π) +

+B1,4221(X ′
1, Y

′
1 , C1)cos(x′1 − 2θ′1 − y′1 − 2λ42 + π) +

+B1,4231(X ′
1, Y

′
1 , C1)cos(x′1 − 2θ′1 − 3y′1 − 2λ42 + π). (20)

Finally, a last transformation of variables is done,

X4 = X ′
1 Y4 = Y ′

1 Θ4 = −Θ′1 + 2X ′
1

x4 = x′1 − 2θ′1 y4 = y′1 θ4 = θ′1. (21)

So, the Hamiltonian H4 is found, considering the Equations (20) and (21)

H4 =
µ2

2X2
4

− ωe(Θ4 − 2X4) + B4,2010(X4, Y4, C1) + B4,4020(X4, Y4, C1) +

+B4,2201(X4, Y4, C1)cos(x4 + y4 − 2λ22) +
+B4,2211(X4, Y4, C1)cos(x4 − y4 − 2λ22) +
+B4,2221(X4, Y4, C1)cos(x4 − 3y4 − 2λ22) +
+B4,4211(X4, Y4, C1)cos(x4 + y4 − 2λ42 + π) +
+B4,4221(X4, Y4, C1)cos(x4 − y4 − 2λ42 + π) +
+B4,4231(X4, Y4, C1)cos(x4 − 3y4 − 2λ42 + π), (22)
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with θ4 ignorable and ωeΘ4 constant. Since the term ωeΘ4 is constant, it plays no role in the equations of motion and a
new Hamiltonian can be introduced,

Ĥ4 = H4 + ωeΘ4,

with Ĥ4 given by

Ĥ4 =
µ2

2X2
4

+ 2ωeX4 + B4,2010(X4, Y4, C1) + B4,4020(X4, Y4, C1) +

+B4,2201(X4, Y4, C1)cos(x4 + y4 − 2λ22) +
+B4,2211(X4, Y4, C1)cos(x4 − y4 − 2λ22) +
+B4,2221(X4, Y4, C1)cos(x4 − 3y4 − 2λ22) +
+B4,4211(X4, Y4, C1)cos(x4 + y4 − 2λ42 + π) +
+B4,4221(X4, Y4, C1)cos(x4 − y4 − 2λ42 + π) +
+B4,4231(X4, Y4, C1)cos(x4 − 3y4 − 2λ42 + π). (23)

The dynamical system described by Ĥ4,

d(X4, Y4)
dt

=
∂Ĥ4

∂(x4, y4)
d(x4, y4)

dt
= − ∂Ĥ4

∂(X4, Y4)
, (24)

is given explicitly by

dX4

dt
= −B4,2201(X4, Y4, C1)sin(x4 + y4 − 2λ22)−

−B4,2211(X4, Y4, C1)sin(x4 − y4 − 2λ22)−
−B4,2221(X4, Y4, C1)sin(x4 − 3y4 − 2λ22)−
−B4,4211(X4, Y4, C1)sin(x4 + y4 − 2λ42 + π)−
−B4,4221(X4, Y4, C1)sin(x4 − y4 − 2λ42 + π)−
−B4,4231(X4, Y4, C1)sin(x4 − 3y4 − 2λ42 + π), (25)

dY4

dt
= −B4,2201(X4, Y4, C1)sin(x4 + y4 − 2λ22) +

+B4,2211(X4, Y4, C1)sin(x4 − y4 − 2λ22) +
+3B4,2221(X4, Y4, C1)sin(x4 − 3y4 − 2λ22)−
−B4,4211(X4, Y4, C1)sin(x4 + y4 − 2λ42 + π) +
+B4,4221(X4, Y4, C1)sin(x4 − y4 − 2λ42 + π) +
+3B4,4231(X4, Y4, C1)sin(x4 − 3y4 − 2λ42 + π), (26)
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dx4

dt
=

µ2

X3
4

− 2ωe − ∂B4,2010(X4, Y4, C1)
∂X4

− ∂B4,4020(X4, Y4, C1)
∂X4

−

−∂B4,2201(X4, Y4, C1)
∂X4

cos(x4 + y4 − 2λ22)−

−∂B4,2211(X4, Y4, C1)
∂X4

cos(x4 − y4 − 2λ22)−

−∂B4,2221(X4, Y4, C1)
∂X4

cos(x4 − 3y4 − 2λ22)−

−∂B4,4211(X4, Y4, C1)
∂X4

cos(x4 + y4 − 2λ42 + π)−

−∂B4,4221(X4, Y4, C1)
∂X4

cos(x4 − y4 − 2λ42 + π)−

−∂B4,4231(X4, Y4, C1)
∂X4

cos(x4 − 3y4 − 2λ42 + π), (27)

dy4

dt
= −∂B4,2010(X4, Y4, C1)

∂Y4
− ∂B4,4020(X4, Y4, C1)

∂Y4
−

−∂B4,2201(X4, Y4, C1)
∂Y4

cos(x4 + y4 − 2λ22)−

−∂B4,2211(X4, Y4, C1)
∂Y4

cos(x4 − y4 − 2λ22)−

−∂B4,2221(X4, Y4, C1)
∂Y4

cos(x4 − 3y4 − 2λ22)−

−∂B4,4211(X4, Y4, C1)
∂Y4

cos(x4 + y4 − 2λ42 + π)−

−∂B4,4221(X4, Y4, C1)
∂Y4

cos(x4 − y4 − 2λ42 + π)−

−∂B4,4231(X4, Y4, C1)
∂Y4

cos(x4 − 3y4 − 2λ42 + π). (28)

The B4,2010, B4,4020, B4,2201, B4,2211, B4,2221, B4,4211, B4,4221 and B4,4231 terms are given by

B4,2010 =
µ4

X6
4

ae
2J20

(
−3

4
(C1 + 2 X4)

2

(X4 + Y4)
2 +

1
4

)(
1 +

3
2
−Y4

2 − 2 X4Y4

X4
2

)
, (29)

B4,4020 =
µ6

X10
4

ae
4J40


105

64

(
1− (C1 + 2 X4)

2

(X4 + Y4)
2

)2

− 3
2

+
15
8

(C1 + 2 X4)
2

(X4 + Y4)
2




(
1 + 5

−Y4
2 − 2 X4Y4

X4
2

)
, (30)

B4,2201 =
21

8X7
4

µ4ae
2J22

(
1 +

C1 + 2 X4

X4 + Y4

)2 √
−Y4

2 − 2 X4Y4, (31)

B4,2211 =
3

2X7
4

µ4ae
2J22

(
3
2
− 3

2
(C1 + 2 X4)

2

(X4 + Y4)
2

)√
−Y4

2 − 2 X4Y4, (32)

B4,2221 = − 3
8X7

4

µ4ae
2J22

(
1− C1 + 2 X4

X4 + Y4

)2 √
−Y4

2 − 2 X4Y4, (33)
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B4,4211 =
9

2X11
4

µ6ae
4J42

(35
27

(
1− (C1 + 2 X4)

2

(X4 + Y4)
2

)
(C1 + 2 X4)

(
1 +

C1 + 2 X4

X4 + Y4

)
(X4 + Y4)

−1 −

−15
8

(
1 +

C1 + 2 X4

X4 + Y4

)2 )√
−Y4

2 − 2 X4Y4, (34)

B4,4221 =
5

2X11
4

µ6ae
4J42

(105
16

(
1− (C1 + 2 X4)

2

(X4 + Y4)
2

)(
1− 3

(C1 + 2 X4)
2

(X4 + Y4)
2

)
+

15
4
−

−15
4

(C1 + 2 X4)
2

(X4 + Y4)
2

)√
−Y4

2 − 2 X4Y4, (35)

B4,4231 =
µ6

X10
4

ae
4J42

(
− 35

27

(
1− (C1 + 2 X4)

2

(X4 + Y4)
2

)
(C1 + 2 X4)

(
1− C1 + 2 X4

X4 + Y4

)
(X4 + Y4)

−1 −

−15
8

(
1− C1 + 2 X4

X4 + Y4

)2 ) (
1
2

√
−Y4

2 − 2 X4Y4

X4
+

33
16

−Y4
2 − 2 X4Y4

X4
2

)
. (36)

The zonal harmonics used in the Eqs. (29) and (30) are J20 = 1.0826 × 10−3 and J40 = −1.6204 × 10−6 and the
tesseral harmonics used in the Eqs. (31) to (36) are J22 = 1.8154× 10−6 and J42 = 1.6765× 10−7.

The term C1 used in the Eqs. (29) to (36) is given by

C1 =
√

µa(
√

1− e2cos(I)− 2). (37)

In the numerical integration of the Eqs. (25) to (28) have been used as initial conditions, the following conditions

X4 =
√

µa Y4 =
√

µa[(1− e2)1/2 − 1]

x4 = M + ω + 2Ω− 2Θ y4 = ω (38)

In the next section are shown some results of the numerical integration of the Eqs. (25) to (28).
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3. RESULTS

Figures 1 to 4 show the time behavior of the semi-major axis, x4 and y4 angles and of the eccentricity, according to
the numerical integration of the motion equations, (25) to (28). The initial conditions, in the Figs. 1 to 4, for inclination is
550, and eccentricity is 0.001. The initial values of the x4 and y4 angles are 0o and 0o, respectively, and the initial values
of the semi-major axis are shown in the figures.
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Figure 1. a versus t, considering six resonant angles together; φ2201, φ2211 and φ2221 associated to J22 and φ4211, φ4221 and φ4231

associated to J42. The initial conditions for inclination and eccentricity are I = 55o and e=0.001, respectively.
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Figure 2. x4 versus t, considering six resonant angles together; φ2201, φ2211 and φ2221 associated to J22 and φ4211, φ4221 and φ4231

associated to J42. The initial conditions for inclination and eccentricity are I = 55o and e=0.001, respectively.
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Figure 3. y4 versus t, considering six resonant angles together; φ2201, φ2211 and φ2221 associated to J22 and φ4211, φ4221 and φ4231

associated to J42. The initial conditions for inclination and eccentricity are I = 55o and e=0.001, respectively.
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Figure 4. e versus t, considering six resonant angles together; φ2201, φ2211 and φ2221 associated to J22 and φ4211, φ4221 and φ4231

associated to J42. The initial conditions for inclination and eccentricity are I = 55o and e=0.001, respectively.

4. CONCLUSIONS

In this work, the dynamical behavior of six critical angles associated to the 2:1 resonance problem in the artificial
satellites motion have been investigated.

The results show the time behavior of the semi-major axis, x4 and y4 angles and of the eccentricity. In the numerical
integration, the initial conditions used are 550 for inclination and 0.001 for eccentricity. The initial values of the x4 and
y4 angles are 0o and 0o, respectively. The six critical angles studied together are φ2201, φ2211 and φ2221 associated to J22

and φ4211, φ4221 and φ4231 associated to J42.
Inside the region where the resonances are found, the motion can be chaotic, because it shows sensibility to initial

conditions.
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