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Abstract. Electrical Impedance Tomography is a non invasive medical imaging technique used to infer living tissue im-

peditivity from surface electrical measurements. Mathematically this is an ill–posed non–linear inverse problem. An

anatomical atlas based on the impeditivity of the tissue can be used as a regularization method for solving the inverse

problem. Computed Tomography images (CT-Scan) and in vivo measurements of tissue impeditivity of swine thorax per-

formed by our group and from published data were used. The CT-scan images must be segmented so that the electrical

properties of each tissue can be used to obtain images. This work utilizes the real part of the impeditivity, the resistivity,

only. The process of mapping, segmenting and converting CT-Scan images into gray scale resistivity images is docu-

mented. These resistivity distribution images are then used to estimate the statistics of the probabilistic model of clinically

probable images, also called anatomical atlas.
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1. INTRODUCTION

Electrical Impedance Tomography (EIT) is used to estimate the impeditivity distribution within a domain. The es-

timation process uses a set of electrical potential measurements acquired from its boundary trough a certain number of

electrodes when low-power high-frequency electrical currents is imposed through through the same set of electrodes. EIT

has many applications like hemorrhage detection, breast cancer detection, visualization of multiphase flow, crack detec-

tion on mechanical components and trees monitoring, for instance Holder (2005); Kerner et al. (2002); Kim et al. (2007).

In general, EIT focus on estimating the impeditivity distribution, that is, a complex valued function within a domain.

In cases which the imaginary component can be omitted, EIT is used to estimate the resistivity distribution. This work

investigates EIT for resistivity distributions.

Kaipio and Somersalo (2004) presents the theoretical background to solve a EIT inverse problem using Baye’s theorem

of conditional probabilities. In this framework, the inverse problem is conceived as the problem of finding the conditional

probability distribution of the resistivity distribution, given the measurements and some prior information concerning the

problem. It can be written as Eq. (1),

π(ρ | v, c) ∝ π(ρ)π(v|ρ, c) (1)

where π(ρ | v, c) is the conditional probability density function of occurrence of the resistivity distribution ρ, given the

electrical potential distribution v and the current injection distribution c, π(ρ) is the prior probability density function

of occurrence of the resistivity distribution in certain population and π(v | ρ, c) is the conditional probability density

function of occurrence of the electric potential distribution v given the resistivity distribution and the current injection

distribution. The last is also called the likelihood function. The prior probability density function π(ρ) can be interpreted

as a probabilistic description of the solution space of the inverse problem and may be estimated from sampled data.

Most of the swine chest tissue impeditivity data present in the literature was measured in vitro (Gabriel et al., 1996).

Therefore they do not reflect the variations of these properties caused by ventilation or blood perfusion. These variations

must be measured in vivo, with appropriate electronics and probes. The probes must avoid large hemorrhages where they

are inserted otherwise the excess of blood would affect the tissue impeditivity measurement. Previous works on probe

configurations suggest the use of four electrodes, two of these used for current injection and the other two for electrical
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potential measurements, avoiding the measurement errors caused by the contact impedance between the tissue and the

electrode, see Tsai et al. (2000); Steendijk et al. (1993); Paulson et al. (2004); Kinouchi et al. (1997).

Several priors can be used in EIT. The non–negativeness prior is used when the resistivity is known to be not nega-

tive (de Lima et al., 2007). Smoothness priors are used when the resistivity distribution is known to have smooth spatial

distribution, for these cases, Gaussian low pass filters are frequently used (Adler and Guardo, 1996). The (minimal) total

variation prior is used when the resistivity distribution is known to have a few, yet abrupt spatial variations (Borsic et al.,

2010).

Beside these priors, anatomy based priors have the characteristic of being smooth where the variations are expected

to be smooth and sharp where the variations are expected to be sharp. They carry on the information about the statistics

of the resistivity distribution within a certain population. Therefore, the use of anatomy based priors should improve

the spatial resolution and the resistivity resolution since they convey different the smoothness information for different

regions of the domain of interest Ω. Additionally, an anatomy based prior can be estimated using a sampling methodology

and does not require the search for a regularization parameter.

The mathematical feasibility of anatomy-based priors was shown for Sobolev spaces H1(Ω) (the space of piecewise

linear functions), since in space H0(Ω) (the space of piecewise constant functions) the computation of directional deriva-

tives of the electrical property are cumbersome (Kaipio et al., 1998).

The present work describes the development of anatomy and physiology based prior for lung monitoring of swine

chests. Continuous monitoring of the human chest, as an assistance for protective lung ventilation protocol, is the long

term objective of the present work. The experience gathered developing the prior for swine chests may be used for

developing a human chest prior in the future, without using in vivo measurements. The benefits of such prior is shown

through a numerical example.

1.1 Objectives and methodology

The main objective of the present work is to estimate a prior probability density function of swine chest tissues

resistivity distribution for EIT. Additionally, the CT-Scan image segmentation process is described and in vivo tissue

resistivity information, presented in a companion paper, is added in order to compute such probability density function.

The methodology is divided in two major tasks, segmentation of anatomical structures from a data bank of swine chest

CT-Scan images and the estimation of the anatomy based prior statistics.

1.2 Bank of CT-scans images from pig thorax

Thirty nine swine chest CT-Scan data sets from 25 different animals from Pneumology Laboratory of Faculty of

Medicine of University of São Paulo were used in this study. There are more sets than animals because some of them

were scanned in two or more lung conditions. The 8th thoracic vertebrae were used to align all data sets. Examples of

CT-Scan images can be viewed in Fig. 1 . By a CT-Scan set we mean a set of images of the same animal thorax, at

different transversal planes within 100 mm, centered at 8th thoracic vertebrae. Each CT-Scan image represent a slice with

thickness of 1.0 mm or 1.6 mm, depending on the CT-Scan equipment.

(a) (b) (c)

(d) (e) (f)

Figure 1. CT-scan samples from swine thoraxes at the 8th thoracic vertebrae for six different animals
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Due to the relatively small number of animals, an artificial number of swine CT-Scan was generated following these

steps:

1. All images of each set were classified in five groups, in correspondence to its position. Group A if the image plane

is situated within the interval [−50,−30[ (in millimeters, relative to the 8th thoracic vertebrae), group B within

[−30,−10[, group C within [−10, 10[, group D within [10, 30[ and group E within [30, 50]. Figure 2 shows the

elements of Group C for a given swine;

Figure 2. CT–scan slices of Group A

2. One element of each group is selected. It is considered that such five-element subset represents a CT-Scan of a

different virtual swine. Each image of this set represents now a 20-millimetre slice of the thorax on transversal

plane. A subset can be seen in (Fig. 3);

(a) Element from

group A.

(b) Element from

group B.

(c) Element from

group C.

(d) Element from

group D.

(e) Element from

group E.

Figure 3. CT-Scan set of a virtual swine (256x327x5 pixels).

3. This process is repeated for all 39 CT-scans.
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Proceeding this way, a total of 660 3–dimensional images were segmented. Although this procedure introduces a

artificial correlation between images, these are different enough and this approximation can be used. This procedure helps

to increase the covariance matrix rank.

1.3 Determination of a common domain

In order to register 660 images from different subjects, in different conditions and at different heights related to 8th

vertebrae, it is necessary to map all images to a common domain. The advantages of this procedure are

1. Eliminate the external undesired artifacts observed around the thorax image, i.e., the surgical blankets (bright arcs at

the bottom of the image), animal’s inferior limbs (one or two small blobs over the thorax) and the artificial circular

envelope caused by the CT image windowing algorithm;

2. Measure the images obtained in the previous step according to a proper metric in order to scale them to a common

size;

3. Identify the parameters of an affine transformation to properly scale, translate and rotate all the images generated;

4. Construct the average contour based on the contours of all images generated in step 3.

Once pixel values in CT-scan images are tissue dependent, undesirable artifacts can be removed with a thresholding

algorithm at chosen levels. This is followed by a chain of morphological operators (Serra, 1989) properly designed to

separate the region delimited by the regularized chest contour from the remaining artifacts. Figure 4 illustrates three

steps of this morphological–based artifacts removal algorithm. After thresholding the original image Fig. 1(a) into gray

level Fig. 4(a) , the black regions inside the white zones are removed with a "fill-holes" algorithm Haralick and Shapiro

(1991). As a result, a group of genus-0 objects emerge Fig. 4(b) . Finally, an opening operation using a circle of radius 45

pixels as the structuring element removes all the smaller and thinner objects around the main one, without promoting any

significant change in its shape Fig. 4(c) .

(a) (b) (c)

Figure 4. (a) Application of thresholding. (b) Application of ’fill-holes’ algorithm. (c) Application of opening operation.

The next step is to scale all images to the same dimension based on some anatomical landmark. Two anatomical

landmarks where considered, (i) the bounding box of skin contour and (ii) the bounding box defined by right and left ribs,

sternum bone and the spinous process of 8th vertebra. The later was chosen due to the greater variability associated of

skin contours. Figure 5 shows the process of scaling Fig. 1(a) .

(a) (b)

Figure 5. Scaling based on the mean size of the rib cage. (a) Before scaling. (b) After scaling.

The average contour is generated by selecting pixels present in more than 50% of segmented images. This can be

determined by computing the mean contour image of all subjects and selection only those with more than 50% of the

maximum value of this mean image. The mean image and the average contour can be seen in Fig. 6 .
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(a) (b)

Figure 6. (a) Mean contour image; (b) Average contour.

1.4 Tissue image segmentation

Three different tissues – bones, lungs and other tissues – were identified according to their brightness characteristics

(Fig. 7 ). It is classified as ’other tissues’ everything else that is not bone or lung. The segmentation is done with a manual

thresholding followed by a chain of morphological operators, to eliminate undesirable artifacts and regularize boundaries.

(a) (b) (c)

(d) (e) (f)

Figure 7. Figures 1a to 1f after segmentation: bones (white), other tissues (dark gray) and lungs (light gray)

1.5 Impeditivity measurements

For the present work, three tissues were considered, namely, lungs, bones and other tissues. Here we consider ’other

tissues’ resistivity the same of muscles resistivity. Bone experimental resistivity value was obtained from literature

(Gabriel et al., 1996), while experimental resistivity values for muscles and lungs where measured at Surgery Depart-

ment - Faculty of Veterinary Medicine of University of São Paulo which is presented in a companion paper for COMBEM

2011. The values are presented on Tab. 1 . The standard deviation of the bone was unknown and was set to 1.0.

Table 1. Tissue resistivities in Ωm

Tissue mean value std. dev.

Muscles 2.59 0.51

Lungs 8.14 1.55

Bone 30.0 1.0
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1.6 Approximating anatomical atlas statistics

The segmented tomographic images represents a sample of the spatial distribution of three different tissues with three

different gray levels, while the impedance measurements associates each tissue with an impeditivity value, which in turn

is related with the gray levels of segmented image. This data can be used to approximate the anatomy based prior statistics

for EIT.

For each subject, identified by an index j = 1, . . . , Np, let its segmented 3–dimensional CT-Scan Xj be partitioned

in t = 1, 2, . . . , Nt (not necessarily connected) regions Ωt,j . For each region Ωt,j , let Xt,j be its characteristic function,

defined as

Xt,j =
{

1 if x ∈ Ωt,j
0 otherwise

, (2)

where x is the coordinate vector of a pixel within the image. Define a matrix [Xj ] with Xt,j as its columns.

Let the statistics of the electrical resistivity ρt of all Nt tissues be known and given by their probability density

functions (pdf) πt, for t = 1, 2, . . . , Nt. It is assumed that all ρt are Gaussian and independent of each other. Let a

random vector ρ ∈ R
Nt be composed by all resistivities and let ρ̄t and Γρt be its expectancy and covariance matrix.

Given a sample ρs, drawn from these pdfs, a sample image Xs
j can be formed by using the characteristic functions,

multiplied by the sampled resistivities

Xs
j =

Nt
∑

t=1

ρt,sXt,j = [Xj ]ρs. (3)

For a large number of subjects Np and a large number of samples Ns, the statistics of the anatomical atlas for the

whole population can be approximated by computing the sample statistics of all samples Xs
j for all Np subjects. This

process can be simplified analytically, without the need of explicitly generating the samples for each subject.

One approximation often assumed is that the anatomical atlas is a Gaussian random variable, so it is completely

described by its expectancy X̄ and covariance ΓX. The expectancy is estimated by

X̄ =
1

NpNs

(

Ns
∑

s=1

Xs
1
+

Ns
∑

s=1

Xs
2
+ . . .+

Ns
∑

s=1

Xs
Np

)

=

=
1

Np

Np
∑

j=1

(

1

Ns

Ns
∑

s=1

Xs
j

)

=
1

Np

Np
∑

j=1

X̄j , (4)

where X̄j is the sample mean image of the j-th subject

X̄j = E{Xs
j } = [Xj ]ρ̄t. (5)

The covariance ΓX is estimated by

ΓX =
1

NpNs − 1

Np
∑

j=1

(

Ns
∑

s=1

(Xs
j − X̄)(Xs

j − X̄)T

)

=

=
Ns − 1

NpNs − 1

Np
∑

j=1

Γj +
Ns

NpNs − 1

Np
∑

j=1

(X̄j − X̄)(X̄j − X̄)T, (6)

where Γj is the sample covariance matrix of the j-th subject

Γj = E{(Xs
j − X̄j)(X

s
j − X̄j)

T} = E{[Xj ](ρs − ρ̄t)(ρs − ρ̄t)T[Xj ]T} = [Xj ]Γρt [Xj ]T. (7)

At the limit Ns → ∞, both fraction in Eq. (6) before sums tend to 1

Np
. Defining ∆Xj = X̄j − X̄, Eq. (6) can be

written as

ΓX =
1

Np

Np
∑

j=1

(

[Xj ]Γρt [Xj ]T +∆Xj∆XT

j

)

=
1

Np

Np
∑

j=1

W jYW
T

j (8)

W j =
[

[Xj ] ∆Xj
]

(9)

Y =

[

Γρt 0

0 1

]

. (10)
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Finally, this equation can be written in factorized form as

ΓX =
1

Np

Np
∑

j=1

(W j

√
Y )(

√
YW j)

T =KKT (11)

K =
1

√

Np

[

W 1

√
Y W 2

√
Y . . . WNp

√
Y
]

. (12)

where
√
Y is a square root matrix of Y .

1.7 The use of the anatomy based prior for image estimation

The algorithm for the image estimation is based on a Gauss–Newton iterative search method (Vauhkonen, 2004). Our

algorithm minimizes a performance index Eq. (13) which is composed by three terms

I = (vm − vp(ρ))T (vm − vp(ρ)) + α(ρ− ρ̄)F TF (ρ− ρ̄) + γ(ρ− ρ̄)(Γ+ σ2I)−1(ρ− ρ̄) (13)

where vm is a set of measured electrical potentials at the electrodes, vp is a set of predicted electrical potentials at the

electrodes computed by the Finite Elements Method (FEM), ρ is a vector containing the resistivity of all finite elements,

α is the regularization parameter of a Gaussian high-pass filter F , Γ is the covariance matrix of the anatomy based prior,

interpolated to the FEM mesh, ρ̄ is the expected vector of the anatomy based prior also interpolated to the FEM mesh,

γ is a regularization parameter for the anatomy based prior and σ is the variance of a uncorrelated Gaussian white noise

added to the covariance matrix.

The first term takes into account the measurements, a candidate resistivity distribution ρ and the Finite Elements model

of the domain. It penalizes the difference between measurements and the prediction of the numerical model. The second

term is the Euclidean norm of the high-pass filtered difference between a candidate image ρ and the statistically expected

image ρ̄. It penalizes spatial high frequency image components of this difference vector. The third term is the anatomy

based prior which minimizes the difference between a candidate image ρ and the statistically expected image ρ̄ pondered

with the inverse of the covariance matrix.

2. Results

Anatomy based prior

Figure 8 shows the mean image computed from the segmented CT-scan of all Np = 660 subjects.

Figure 8. Mean image X̄ obtained from the anatomical atlas.

Expected resistivity distribution

Figure 9 shows the simulated resistivity distribution. The FEM mesh contains 1.2 million elements. The resistivity

distribution was generated from a CT-Scan of an animal which was not included in the set used to compute the anatomical

atlas. This distribution considers only resistivities of the same three tissues segmented for the atlas.

Figure 9. Simulated image used to simulate electrical potential measurements.
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Obtained resistivity images

Figure 10 to Fig. 13 show the results of Gauss-Newton algorithm with different values of regularization parameters

for a mesh with 9500 elements. All initial guesses were the same uniform resistivity distribution of 5.0 Ωm.

Figure 10. Estimated image using α = 1.0 · 10−16, β = 1.0 and γ = 1.0 · 10−6

Figure 11. Estimated image using α = 1.0 · 10−16, β = 1.0 · 10−12 and γ = 1.0 · 10−6

Figure 12. Estimated image using α = 1.0 · 10−16, β = 1.0 and γ = 1.0

Figure 13. Estimated image using α = 1.0 · 10−16, β = 1.0 · 10−12 and γ = 1.0

3. Discussion

The results show that it is feasible the assembling of an anatomy and physiology based prior for regularization of the

EIT inverse problems based on samples of the population. Qualitatively, the results show that when γ is around 10−6, β

is around 10−12 and α is around 10−16, the images obtained seem to take into account electric potential measurements

and do not follow solely the expected distribution of resistivity and make sense from the anatomical point of view.

The value of α is very low, indicating that the high pass filter is not actually being relevant for the regularization and

image estimation. The value of β is also small suggesting that the covariance matrix Γ, which was normalized by the

largest variance, has the significant role in the regularization. The results for γ = 1.0 and for γ = 10−6 show discontinu-

ous ribs as expected when the image estimation algorithm is taking into account electric potential measurements. Notice

that, the expected distribution of resistivity ρ̄, has continuous ribs.
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4. Final Comments

The objective of the present work was to test the hypothesis that a sample based anatomy based prior for EIT regu-

larization is feasible when the samples take anatomic information from CT-Scans and resistivity information from in vivo

and in vitro measurements. The images obtained clearly follow the electric potential measurements and do not reproduce

solely the expected distribution of resistivity, suggesting that the regularization is being effective. The number of CT-

Scans available was small, 39, so the covariance matrix and expected distribution of resistivity should not be considered

as having high statistical quality. Even with this small number of CT-Scans, the anatomy based prior seems to be able to

serve for regularization of the EIT inverse problem.
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