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Abstract. Research on autonomous navigation for tracked mobile robots operating in unstructured environments has

received renewed attention in the last years due to its increasing use in tasks as forestry, mining, agriculture, military

applications and space exploration. For these tasks, the slip phenomena is an important factor that must be taken into

account during the control design. If the slip is not considered, the control objective may not be completed and a stable

system may even become unstable. Accurate estimation of the slip is essential for the implementation of efficient control

strategies. This paper shows that the longitudinal slip of the tracks can be estimated from the robot pose and velocity

using the unscented Kalman filter (UKF). A control strategy that uses the estimation of the slip is proposed to achieve

the trajectory tracking objective. The control strategy is based on the kinematic and dynamic models which include the

longitudinal slip of the left and right tracks as two unknown parameters. Numerical results show the performance of the

proposed control strategy.
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1. INTRODUCTION

Tracked mobile robots have been extensively investigated due to their capacity of operating in unstructured and even

hazardous environments, where a high degree of autonomy is required. Locomotion based on tracks has a large ground

contact patch that provides satisfactory stability and traction on various terrain conditions, making the tracked mobile

robots useful in applications such as agriculture, forestry, mining, military, search and rescue, and space exploration

(Nourbakhsh and Siegwart, 2004). However, all these tasks require an efficient solution to the robot navigation problem.

One of the main navigation problem, the trajectory tracking problem, consists in designing control inputs that stabilize

the mobile robot in a trajectory generated by a reference model. In general, this is a difficult problem, since tracked mobile

robots are typical examples of systems that has nonholonomic constraints (Kolmanovsky and McClamroch, 1995). An

overview of the most recent tracking control methods for nonholonomic mobile robots can be seen in Morin and Samson

(2006). It is in general difficult to control tracked robots during applications in unstructured environment due to slip

phenomena, which is an important factor that must be taken into account during the control design (Fan et al., 1995).

Many researches have addressed the slip phenomena in the navigation of mobile robots. Wang and Low (2008) give a

general presentation on modeling of wheeled mobile robots in the presence of wheel skid and slip from the perspective of

control design. Sidek and Sarkar (2008) provide a theoretical and systematic framework to include the slip into the overall

system dynamics of wheeled mobile robots. Ward and Iagnemma (2008) propose a model-based approach to estimating

longitudinal wheel slip and detecting immobilized conditions of autonomous mobile robots operating on outdoor terrain.

Song et al. (2008) present a nonlinear sliding mode observer for the estimation of tracked-vehicle slip parameters based

on the vehicle kinematic equations and sensor measurements. Gonzales et al. (2009) present the synthesis of a control

law for a wheeled mobile robot under slip condition using an LMI-based approach. Michalek et al. (2009) proposes a

nonlinear feed-forward loop that compensates for the skid-slip effects of a mobile robot. The paper Iossaqui et al. (2010b)

presents an adaptive tracking control strategy, based on the robot kinematic model, that is able to compensate for the

longitudinal slip, assuming that the left and right slip are the same. This result is extended in Iossaqui et al. (2010a) to

account for the robot dynamics. Assuming that the left and the right slip can be different, Iossaqui et al. (2011b) provide

an adaptive control law, based on the kinematic model, that achieves trajectory tracking. The paper Iossaqui et al. (2011a)

shows that the kinematic controller, from Iossaqui et al. (2010b), and the dynamic controller, from Iossaqui et al. (2010a),

are still able to provide satisfactory performance even if the states are estimated using the unscented Kalman filter and

the extended Kalman filter. Others works that also consider the slip problem are found in Iagnemma and Ward (2009);

Tarakameh et al. (2010).

This paper proposes a control strategy for the tracking control of a tracked mobile robot under slip condition that

considers the dynamics of the robot. A slip parameter dependent control law is derived, however, instead of using an

adaptive update rule as done in Iossaqui et al. (2010a), a nonlinear filter is used to estimate the slip parameters from the

measured states (pose and velocity) of the robot. Similar idea is developed in Le et al. (1997), where an extended Kalman

filter (EKF) is used to estimate the slip parameters. However, the estimated parameters are not used in the feedback control

law. The paper Zhou et al. (2007) also uses the unscented Kalman filter (UKF) to estimate the slip, but the dynamics of

the robot are not consider.
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The paper is organized as follows. Section 2 presents the dynamic model of a tracked mobile robot. Section 3

introduces a control strategy for the tracked robot under slip condition. Section 4 presents the numerical results using

the proposed control strategy. Section 5 presents the conclusions and the Appendix briefly presents the nonlinear UKF

algorithm.

2. KINEMATIC AND DYNAMIC MODEL OF THE TRACKED MOBILE ROBOT

This section presents a simplified dynamic model of a tracked mobile robot with slip. The longitudinal slip of the left

and right tracks are described by two unknown parameters. These parameters are incorporated on the kinematic equations.

It is assumed that the robot will operate at low speed, since the lateral slip is zero during straight line motion and it can be

neglected when the robot turns on the spot (Gonzales et al., 2009). Moreover, the kinematic model of a tracked robot can

be approximated by the one of a wheeled robot if slow motions are assumed (Martínez et al., 2005).
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Figure 1. Geometric model of a tracked mobile robot.

Figure 1 shows the geometric model of a tracked mobile robot. It is assumed that the tracked robot is formed by a

rigid body with two independent tracks. The motion of the robot is described by its position (x,y) and its orientation θ in

an inertial coordinate frame F1(xw,yw). The robot position is given by the coordinate of its geometric center Om, which is

also the origin of the local coordinate frame F2(xm,ym). The robot orientation is given by the rotation of the frame F2 in

relation to the frame F1. The distance between the two tracks is b and the equivalent radius of each track is r. Furthermore,

the motion of the robot is composed of the translation velocity v and the rotational velocity ω = dθ/dt.

As presented in Zhou et al. (2007), the kinematic equation of the tracked robot with longitudinal slip is given by





ẋ

ẏ

θ̇



 =
1

2b





br(1− iL)cosθ br(1− iR)cosθ
br(1− iL)sinθ br(1− iR)sinθ
−2r(1− iL) 2r(1− iR)





[

ωL

ωR

]

⇔ q̇ = S(q)ξ (1)

where q = (x,y,θ)T is the robot configuration, ξ = (ωL,ωR)T is the vector composed of the angular velocities of the left

and right tracks, iL and iR denote the longitudinal slip ratio of the left and right wheels, respectively, which are assumed

unknown. As shown in Wong (2001), the unknown slip parameters can be defined as

iL =
(rωL − vL)

rωL

and iR =
(rωR − vR)

rωR

, 0 ≤ iL, iR < 1

where vL and vR are respectively the linear velocities of the left and right wheels with relation to the terrain.

As presented in (Iossaqui et al., 2010b), the dynamic model of the tracked robot is given by

q̇ = S(q)ξ (2)

Mξ̇ = B(q)τ (3)

where q, S(q) and ξ are defined in (1), τ = (τL,τR)T is the input vector that represents the generalized forces on the left

and right tracks, M = ST (q)MS(q) and B(q) = ST (q)B(q), with the matrices M and B(q) given by

M =





m 0 0

0 m 0

0 0 I



 , B(q) =





cosθ cosθ
sinθ sinθ
−b/2 b/2





where m is the total mass of the robot and I is the moment of inertia about a vertical axis normal to the xm-ym plane

through Om.
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3. CONTROL DESIGN USING THE UNSCENTED KALMAN FILTER

Although the kinematic model (Zhou et al., 2007) may be suitable for certain control objectives, models that include

dynamic effects are required for other purposes. An UKF-based controller for the dynamic model is presented in this

section. The proposed method consists in converting the desired velocity input into a force control that take into account

the dynamics of the system.

To apply the proposed control design, the dynamic model is represented in an integrator backstepping form (Fierro

and Lewis, 1997). For this purpose, let u be an auxiliary control input, then by applying the following input force

τ = B(q)−1Mu (4)

we obtain the backstepping form

q̇ = S(q)ξ (5)

ξ̇ = u (6)

To design the control law u using the backstepping technique, it is necessary to specify a velocity input ξ . This input

ξ will be generated as the solution of a kinematic tracking problem. Thereafter, the solution of the kinematic tracking

problem will be denote as the desired velocity input ξd = (ωLd ,ωRd)
T . Before presenting the methodology to obtain the

desired velocity ξd , we present the design of the auxiliary input u.

To obtain the input u that guarantee that the velocity ξ , applied to the system, follows the desired velocity ξd , we need

to define the velocity error

ed =

[

e4

e5

]

= ξ −ξd

It is possible to shown (see Iossaqui et al. (2010a)) that the auxiliary input u, that guarantees that ed converges to zero, is

given by

u = ξ̇d −

[

k4 0

0 k5

]

(ξ −ξd) (7)

with k4 and k5 positive constants.

Now, to obtain the desired velocity ξd , consider an auxiliary velocity η = (v,ω)T , for the kinematic model, that is

related to the desired velocity ξd according to the equation η = T ξd given by

[

v

ω

]

=
r

2b

[

bωLd(1− iL)+bωRd(1− iR)
−2ωLd(1− iL)+2ωRd(1− iR)

]

= T

[

ωLd

ωRd

]

with

T =
r

2b

[

b(1− iL) b(1− iR)
−2(1− iL) 2(1− iR)

]

The inverse relation ξd = T−1η is given by

[

ωLd

ωRd

]

=
1

2r

[

2(1− iL)−1 −b(1− iL)
−1

2(1− iR)−1 b(1− iR)−1

][

v

ω

]

(8)

Thus, the desired velocity ξd = (ωLd ,ωRd)
T can always be obtained if an auxiliary velocity η = (v,ω)T is provided. The

auxiliary velocity η will be computed to solve a tracking problem for the kinematic model





ẋ

ẏ

θ̇



 =





cosθ 0

sinθ 0

0 1





[

v

ω

]

⇐⇒ q̇ = Sa(q)η (9)

where q = (x,y,θ)T is the robot configuration. The tracking problem is stated as follows: find a velocity η = (v,ω)T such

that

lim
t→∞

(qr −q) = 0

where qr = (xr,yr,θr)
T is a reference trajectory generated using the kinematic equation

q̇r = Sa(qr)ηr
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that is





ẋr

ẏr

θ̇r



 =





cosθr 0

sinθr 0

0 1





[

vr

ωr

]

(10)

where ηr = (vr,ωr)
T is a given constant reference input, described by a linear velocity vr > 0 and an angular velocity ωr.

To address the kinematic tracking problem, we define the tracking error e = (e1,e2,e3)
T as





e1

e2

e3



 =





cosθ sinθ 0

−sinθ cosθ 0

0 0 1









xr − x

yr − y

θr −θ



 (11)

The dynamics of the error e, derived using (9), (10) and (11), is given by





ė1

ė2

ė3



 =





ωe2 + vr cose3 − v

−ωe1 + vr sine3

ωr −ω





Neglecting the slip, it is shown in Kim and Oh (1998) that the velocity input

v = vr cose3 − k3e3ω + k1e1

ω = ωr +
vr

2

[

k3 (e2 + k3e3)+
1

k2
sine3

]

, ki > 0
(12)

drives the error signal e to zero.

Now, if the parameters iL and iR that appear in (8) are unknown, we cannot directly calculate the desired velocity

ξd and thus an estimation procedure is necessary. Instead of using the adaptive update rule presented in Iossaqui et al.

(2011b), we use a nonlinear filtering algorithm to estimate the slip parameters iL and iR. Equation (8), considering now

the estimate iLe and iRe, is given by

[

ωLd

ωRd

]

=
1

2r

[

2(1− iLe)
−1 −b(1− iLe)

−1

2(1− iRe)
−1 b(1− iRe)

−1

][

v

ω

]

(13)

Note that the input force given by equation (4) also depends on the slip parameters iL and iR and thus needs to be

reformulated in therms of the estimated values iLe and iRe.

The unscented Kalman filter (UKF) is now needed to jointly estimate the states and the slip parameters. Figure 2

shows the schematic representation of the proposed strategy. The numbering inside the blocks in Fig. 2 indicate the cor-

responding equation number. The UKF algorithm are given in the Appendix. The UKF acts like an observer by which the

slip parameters iL and iR are recovered from the states (the pose and the velocity) of the robot (x,y,θ ,ωL,ωR)T . To apply

this filter, it is necessary to form an augmented state (x,y,θ ,ωL,ωR, iL, iR)T . The estimate (xe,ye,ωLe,ωRe,θe, iLe, iRe)
T is

obtained from the measurements (xm,ym,θm,ωLm,ωRm)T that are corrupted by additive noises respectively denoted by δx,

δy, δθ , δωL
and δωR

.

4. NUMERICAL RESULTS

This section presents the numerical results for the proposed tracking control algorithm. The numerical data for the

robot, taken from Wang et al. (2007), are b = 0.50 m, r = 0.25 m, m = 27.0 kg and I = 1.125 kg.m2. The control gains

are heuristically selected as k1 = k3 = 1, k2 = 20 and k4 = k5 = 10. In order to simplify the analysis, two basic reference

trajectories are used. First, a linear trajectory generated by the reference velocity vr = 0.3 m/s and ωr = 0 rad/s. Second,

a circular trajectory generated by the reference velocity vr = 0.3 m/s and ωr = 0.1 rad/s. The initial conditions are taken

as qr(0) = (0,0,0)T . The total time for the computer simulation is t = 200 s. The slip parameter iL and iR are taken as

0s ≤ t < 40s : iL = 0.0 and iR = 0.3

40s ≤ t < 50s : iL = 0.0 and iR = 0.0

50s ≤ t < 100s : iL = 0.2 and iR = 0.0

100s ≤ t < 120s : iL = 0.0 and iR = 0.0

120s ≤ t < 150s : iL = 0.0 and iR = 0.15

150s ≤ t < 200s : iL = 0.0 and iR = 0.0
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Figure 2. Schematic representation of the proposed control strategy.

Note that the kinematics and the dynamics of the robot are described by the continuous-time equations (2) and (3).

On the other hand, the UKF is a discrete-time algorithm. Thus, to perform the computer simulation, the continuous-time

equations (2) and (3) are discretized using Euler’s forward-difference scheme with a sampling period of Ts = 0.01 s.

The input for the UKF algorithm are the forces τL, τR and the measurements (xm,ym,θm,ωLm,ωRm)T , which are

corrupted by an additive noise (δx,δy,δθ ,δωLm
,δωRm

)T with covariance matrix Rm = diag(0.01,0.01,0.01,0.001,0.001),
where diag(x) is the diagonal matrix with the vector x down the diagonal. The output of the UKF algorithm are the

estimated (xe,ye,θe,ωLe,ωRe)
T of the robot states and the estimated iLe and iRe of the slip parameters. To apply the filter,

it is necessary to define an augmented state given by (xe,ye,θe,ωLe,ωRe, iLe, iRe)
T that includes the dynamics of the robot

and the dynamics of the unknown slip parameters, which is taken as

[

iLe

iRe

]

k+1

=

[

iLe

iRe

]

k

+

[

wiLe

wiRe

]

k

with wiLe
and wiRe

the additive process noises.

To achieve satisfactory result, the filter parameters were heuristically chosen as α = 1, β = 2 and γ = 0. The initial

state, for the filter, is chosen as x0 = (1,1,π/4,0,0,0,0)T +0.01(1,1,1,1,1,1,1)T ε , where ε is a random value drawn from

a normal distribution with mean zero and standard deviation one. The initial state covariance is the identity matrix P0 =
I7×7. The covariance of the process and the measurement noise, needed by the UKF algorithm, are selected respectively as

Qk = 10−4I7×7 and Rk = diag(0.02,0.015,0.01,0.0015,0.0005). We have assumed that the signal τL and τR are measured

without noise.
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Figure 3. Robot trajectories in the inertial frame.

Figure 3 shows the robot trajectory in the fixed frame F1 obtained using our proposed controller. The results for the

linear and circular reference trajectories are respectively shown in Figs. 3(a) and 3(b). The dashed line stands for the

reference trajectory, while the solid line stands for the robot trajectory. The robot initial condition for the linear and
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circular reference trajectories are respectively given by q(0) = (0,−1,0)T and q(0) = (0,1,0)T . This figure shows that

the robot trajectory is able to follow to reference trajectory.

Figure 4 shows the tracking errors e1, e2 and e3. The results for the linear and circular reference trajectories are

respectively shown in Figs. 4(a) and 4(b). The high initial error is due to the fact that the reference trajectory starts at a

point that is far from the initial position of the robot. As we can see in Fig. 4(a) and Fig. 4(b), the mobile robot tracking

error already approach zero around t = 20s.
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Figure 4. Time evolution of the tracking error.

Figures 5 and 6 show the estimated slip parameters iLe and iRe for the linear and for the circular reference trajectories,

respectively. The dashed line denotes the true value of the unknown slip parameters iL and iR and the solid line denotes the

estimated value iLe and iRe. Note that the parameters converge to the true values at a slow rate (slower than the tracking

error).
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Figure 5. Estimation of the slip parameters for the linear reference trajectory.
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Figure 6. Estimation of the slip parameters for the circular reference trajectory.
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Figure 7 shows the estimation error for the pose xe−x, ye−y and θe−θ , obtained using the UKF algorithm. The results

for the linear and circular reference trajectories are respectively shown in Figs. 7(a) and 7(b). Although the estimation

error does not converge to zero, the robot trajectory is still able to follow the reference trajectory. The estimation error is

sensitive to the increment-time used in the first-order Euler approximation.
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Figure 7. The estimation error for the pose.

Figure 8 shows the estimation error for the angular velocities ωLe −ωL and ωRe −ωR, obtained using the UKF algo-

rithm. The results for the linear and circular reference trajectories are respectively shown in Figs. 8(a) and 8(b).
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(a) Linear reference trajectory.

0 20 40 60 80 100 120 140 160 180 200
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 

t (s)

V
el

o
ci

ty
es

ti
m

at
io

n
er

ro
r

ωLe −ωL
ωRe −ωR

(b) Circular reference trajectory.

Figure 8. The estimation error for the angular velocity.

5. CONCLUSIONS

This paper provides a tracking control strategy for a tracked mobile robot under longitudinal slip condition. The

proposed control strategy is based on the dynamic model of the tracked robot, in which the longitudinal slip of the left

and right tracks are described by two unknown parameters. A nonlinear feedback control law is proposed to achieve the

trajectory-tracking objective, using estimation of the slip parameters. The unscented Kalman filter (UKF) is introduced

to joint estimate the states and the slip parameters. Although the estimation of the slip parameters are slower than the

robot pose, the proposed tracking control strategy is able to ensure that the robot can appropriately follow both linear and

circular reference trajectories.
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APPENDIX

The Unscented Kalman Filter

The UKF uses a single Gaussian distribution to match the first and second-order moments of the required probability

density function to different accuracy levels (Cui et al., 2005). Furthermore, the UKF does not approximate the nonlinear

process and measurement models. Instead, it uses the true nonlinear models and approximates the distribution of the state

random variable. By preserving the higher order information of the system, UKF improves both accuracy and convergence

properties of the solution.

The basic structure of the unscented Kalman filter (UKF) involves the estimation of the state of a discrete-time non-

linear dynamic system of the form

xk+1 = f (xk,uk)+wk

yk = h(xk)+δk

where xk is the state of the system, uk is the control input and yk is the measured output. The process and measurement

noises are respectively given by wk and δk. It is assumed that wk and δk are independent zero-mean Gaussian random

variables with covariance matrices respectively given by Qk ≥ 0 and Rk > 0.

The UKF algorithm (Haykin, 2001) can be summarized as follows. Let the n-dimensional state vector xk−1, with mean

x̂k−1 and covariance Pk−1, be approximated by 2n+1 weighted samples or sigma points. Initialize with:

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

where E[·] denotes the expectation. For k ∈ {1, ...,∞}, calculate the sigma points:

X i
k−1 = x̂k−1, i = 0

X i
k−1 = x̂k−1 +

√

(n+λ )Pk−1, i = 1, ...,n

X i
k−1 = x̂k−1 −

√

(n+λ )Pk−1, i = n+1, ...,2n

where λ = α2(n+κ)−n for given α > 0 and κ ≥ 0. Propagate the sigma points and obtain the mean and covariance of

the state using the following time-update equations:

X i
k|k−1 = f (X i

k−1,uk−1), i = 0, ...,2n

x̂−k =
2n

∑
i=0

W
(m)
i X i

k|k−1

P−
k =

2n

∑
i=0

W
(c)
i

[

X i
k|k−1 − x̂−k

][

X i
k|k−1 − x̂−k

]T

+Qk

with the weights given by

W
(m)
i = λ/(n+λ ), i = 0

W
(c)
i = λ/(n+λ )+(1−α2 +β ), i = 0

W
(m)
i = W

(c)
i = 1/2(n+λ ), i = 1,2, ...,n

where β is a non-negative weighting term. The size of the sigma point distribution is regularized by the non-negative

weighting terms α and β , which can be used to compensate for the information of the higher order moments of the

distribution. Finally, calculate the measurement sigma points Y i
k|k−1

using h(·) and update the mean and covariance using
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the following measurement-update equation:

Y i
k|k−1 = h(X i

k|k−1), i = 0, ...,2n

ŷ−k =
2n

∑
i=0

W
(m)
i Y i

k|k−1

Pỹk ỹk
=

2n

∑
i=0

W
(c)
i

(

Y i
k|k−1 − ŷ−k

)(

Y i
k|k−1 − ŷ−k

)T

+Rk

Pxkyk
=

2n

∑
i=0

W
(c)
i

(

X i
k|k−1 − x̂−k

)(

Y i
k|k−1 − ŷ−k

)T

Kk = Pxkyk
P−1

ỹk ỹk

x̂k = x̂−k +Kk

(

yk − ŷ−k

)

Pk = P−
k −KkPỹk ỹk

KT
k

It is worth to emphasize that the EKF algorithm could have also been used for parameter estimation. However, it may

suffer from large estimate errors when the system has strong nonlinearities. On the other hand, the UKF uses the true

nonlinear models and can achieve more accurate estimations without linearization. As stated by Haykin (2001), the UKF

algorithm was first proposed by Julier et al. (1995) and further developed by Wan and van der Menve (2000).


