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Abstract. MHD natural convection in laminar cavity flow of a Newtonian fluid is analyzed by making use of the 

streamfunction only formulation for the transient version of the Navier-Stokes and energy equations. The partial 

differential equations system describing the streamfunction and temperature distributions is then solved by the 

Generalized Integral Transform Technique (GITT). Numerical results are obtained for different Grashof and 

Hartmann numbers and Prandtl number equal to 0.71. Critical comparisons with previously reported numerical 

results are performed. 
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1. INTRODUCTION 
 

In recent years, a number of different approaches have been used for solving MHD flow in cavities in the primary 

purpose of validating these methods in the solution of coupled momentum and heat transport phenomena and 

electromagnetism, as governed by the continuity, Navier-Stokes, energy and Maxwell's equations, with the inherent 

complexity in light of their highly nonlinear and coupled characteristics. In order to assess the accuracy and 

effectiveness of such solution methodologies, the study of natural convection with or without a transverse magnetic 

field inside a square cavity has become a classical benchmark problem as in the works of De Vahl Davis (1983), 

Ramaswany et al. (1992), Sai et al. (1994), Barakos et al. (1994) and Colaço et al. (2009). 

Oreper and Szekely (1983) were the first to propose a numerical solution to study the effect of a magnetic field on 

natural convection in square cavities, and have employed the finite difference method for obtaining the velocity and 

temperature distributions in terms of the streamfunction formulation in transient MHD flow. Al-Najem et al. (1998) 

also numerically studied laminar natural convection in a closed cavity with a transverse magnetic field. More recently, 

Colaço et al. (2009) used Radial Basis Functions (RBFs) to solve such system of coupled equations in steady state. The 

use of the Generalized Integral Transform Technique (GITT) to solve natural convection in laminar cavity flows has 

been advanced, for instance, by Leal and Cotta (1998), Leal et al. (1999) and Leal et al. (2000), providing a hybrid 

numerical-analytical solution for the velocity and temperature fields, working with a streamfunction only formulation 

for automatic satisfaction of the continuity equation and elimination of the pressure field. 

The present paper is first of all aimed at advancing the hybrid integral transforms approach into handling natural 

convection problems under the action of a magnetic field. It also takes advantage of the developed hybrid solution to 

examine the influence of the magnetic field in the momentum and heat transfer in transient MHD flow in a square 

cavity, for conditions of moderate and high Grashof numbers. Following the previous works on natural convection with 

the GITT approach, the present analysis considers a formulation in terms of streamfunction only, which involves two 

independent variables, streamfunction and temperature. After a double integral transformation to eliminate the two 

space coordinates from the transformed system, the resulting nonlinear ordinary differential system in the time variable 

is numerically solved for the transformed potentials. Numerical results are then computed for different values of the 

governing parameters (Grashof, Hartmann and Prandtl numbers) and critical comparisons with previously reported 

results are performed to illustrate the adequacy of the present hybrid analytical-numerical solution methodology. 
 

2. MATHEMATICAL FORMULATION 
 

We consider a two-dimensional laminar flow in a square cavity, as illustrated in Figure 1. The cavity has an infinite 

extend along the z-axis, the lower and upper walls are insulated, while the side walls are maintained at different and 

constant temperatures, namely, the hot (Th) and cold walls (Tc), respectively. The flow is in transient state and the fluid 

is Newtonian and electrically conductive. Also, the fluid properties are considered constant throughout the range of 

temperatures in the specific example. The temperature difference causes the movement through the onset of the 

buoyancy force. This term in the momentum equations is modeled using the Boussinesq approximation (density 

variation in the body force term only), as in (Gray and Giorgini, 1976). The fluid is permeated by a constant magnetic 
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field B0 applied in the x-direction (from the left to the right wall), which creates a force opposing the buoyancy effect, 

the Lorentz force, represented by the vector product between the electrical current density and the magnetic field. 

Therefore, the equations governing the problem are the continuity, Navier-Stokes and energy equations, as well as the 

equation of electric charges conservation, Ohm's Law and Ampere-Maxwell's law in a moving medium, which are 

given by: 

 

 
Figure 1. Geometric configuration of the natural convection problem with a transverse magnetic field. 
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where, ν is the kinematic viscosity, βT is the coefficient of thermal expansion, σ is the electrical conductivity and μ0 is 

the magnetic permeability of the vacuum. In this study the effects of polarization and magnetization were neglected. 

The magnetic Reynolds number is considered to be very small. Also, the effects of Joule heating and viscous dissipation 

are assumed to be very small, thus we can neglect the second term on the right hand side of Eq. (1.c). 

In Eq. (1.e), the Ohm's Law, E is the electric potential and –E the electric field associated to this potential. It can 

be shown that that the electric field vanishes everywhere for the situation of electrically insulating boundaries (Garandet 

et al., 1992). Also, it is easy to show by substituting Eq. (1.f) into Eq. (1.d), that for a two-dimensional flow, the 

equation of conservation of charge is automatically satisfied. 

Now, we recall the usual definition of the streamfunction, in the form: 
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and the following dimensionless quantities: 
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where the subscript “*” identifies the dimensional variables, and L is the length of the cavity. 

Substituting Eqs. (2.a,b) into Eqs. (1.a-c), we obtain the vorticity transport and energy equations in terms of the 

streamfunction and temperature only, which in dimensionless form is given by: 
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Here, the notation (a,b)/(c,d) is similar to the Jacobian determinant, and Ha, Ra, Pr and Gr are the Hartmann, 

Rayleigh, Prandtl and Grashof numbers, respectively, which are defined as: 
 

3 3

T h c T h c

0 2

0 T T

g (T T )L g (T T )L R a
Ha B L ; Ra ; Pr ; Gr

Pr

  

    

 
      (6.a-d) 

 

The initial and boundary conditions, in dimensionless form, needed to complete the mathematical formulation, are: 
 

forT( x,y,0 ) ( x, y,0 ) 0 t 0    (7.a,b) 

at at0; T 1      x 0;   T 0      x 1
x x
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3. SOLUTION METHODOLOGY 
 

The first step in the solution procedure is the filtering strategy to enhance convergence of the eigenfunction 

expansions, by making the boundary conditions homogeneous. The simplest choice of a filtering solution for the 

temperature field is extracted from the steady pure conduction problem, and the filter is written as: 
 

;F FT( x,y,t ) ( x, y,t ) T ( x )  T ( x ) 1 x     (8.a,b) 

 

A filter based on the transient version of the conduction problem can be obtained, but for purposes of 

homogenization of boundary conditions of the temperature field, it suffices to take Eq. (8.b) as a simple filter. Now, 

substituting Eqs. (8) into the original problem, Eqs. (4), (5) and (7), we obtain: 
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The next step is the selection of the eigenfunction basis in each direction, x and y, for each individual potential, ψ 

and  . Following previous developments (Pérez Guerrero, 1995; Leal, 1996), for the streamfunction expansion, it is 

proposed to use fourth-order eigenvalue problems basic to the integral transform solution of the biharmonic equation 

(Cotta, 1993) as: 
 

- x-direction: 
 

4

4i

i i4

d X ( x )
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i i
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with the solution for the eigenfunctions Xi(x) and the transcendental equation for computing the eigenvalues, given by: 
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satisfying the following orthogonality property: 
 

1

i j
0

i

0,        i j
X ( x )X ( x )dx

Mx ,   i=j





  (12.j,k) 

 

The norm or normalization integral Mxi is obtained from 
 

1
2

i i
0

Mx X ( x )dx 1   (12.l) 

 

The normalized eigenfunctions iX ( x )  are then defined by: 

 

i

i 1/ 2

i

X ( x )
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which in this case coincide with the original eigenfunctions themselves. Similarly, for the y direction, we propose a 

fourth order eigenvalue problem: 
 

- y-direction: 
 

4
4

4

d Y ( y )
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  (13.a) 
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     (13.b-e) 

 

Similarly to the x-direction, Eqs. (13.a) to (13.e) are analytically solved to yield the eigenfunctions, transcendental 

equation for computing the eigenvalues, orthogonality property, normalization integral, and normalized eigenfunctions, 

respectively, as: 
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For the temperature expansion, the following second order eigenvalue problems are proposed, as follows: 
 

- x-direction: 
 

2

2i

i i2

d ( x )
( x ) 0,   0<x<1

dx


    (14.a) 

i i(0 ) 0;  (1) 0    (14.b,c) 
 

Equations (14.a) to (14.c) are analytically solved, to yield 
 

fori i i( x ) sin( x );    i ,    i 1,2,3,...       (14.d,e) 
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- y-direction: 
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Similarly, Eqs. (15.a) to (15.c) are analytically solved, to yield: 
 

for( y ) cos( y );    ( 1) ,    1,2,3,...        (15.d,e) 

1

m
0
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   (15.f-j) 

 

The eigenvalue problems above allow the determination of the following integral transform pairs for the 

streamfunction and temperature fields, respectively: 
 

transform;
1 1

i i
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( t ) X ( x )Y ( y ) ( x, y,t )dydx,       inversei i

i 1 1
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  (16.a,b) 
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  (17.a,b) 

 

Applying the double integral transformations given by Eqs. (16.a) and (17.a), into the streamfunction and 

temperature problems, respectively, it results in the following infinite coupled transformed ODE system: 
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   (18.b) 

 

The same integral transformation is operated on the initial conditions, providing: 
 

;i i i(0 ) 0 (0 ) f    (18.c,d) 
 

The above coefficients are computed from the following definite integrals: 
 

;
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   ; ;     ;  
1 1 1 1

m

ij m i j i i ij m
0 0 0 0

0,   i j 0,   mdY
J X dx dy    f ( x 1) dx dy    

1,   i j 1,   mdy
     

                  
     (19.j-m) 

 

The coefficients above are analytically obtained through symbolic manipulation packages (Wolfram, 2005). 

Equations (18) form an infinite system of first order nonlinear coupled ODEs. For computational purposes the system 

must be truncated to a sufficiently large finite order so as to achieve converged solutions for a given desired accuracy. 

Before defining a truncated version of the initial value problem to be numerically solved, system (18) is rewritten so 

as to account for the most important contributions in an orderly manner, thus transforming the nested double 

summations into single ones, reordered from the expected largest to the smallest transformed potentials. A fairly simple 

reordering scheme for multidimensional eigenfunction expansions is described in greater detail in Mikhailov and Cotta 

(1996) and Cotta and Mikhailov (1997), aimed at saving computational effort while providing convergence of the 

expansions with the minimum number of equations in the transformed system. Here, the same criterion was selected 

and the reordering procedure involves the summation of the squared eigenvalues in each direction, in the form: 
 

;4 4 4 2 2 2

i p i p          (20.a,b) 
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Then, the indices related to the streamfunction and temperature expansions are reorganized into a single index, as: 
 

; ;
i 1 1 p 1 j 1 m 1 q 1 k 1 n 1 r 1

        

        

         (21.a-c) 

 

System (18) is then rewritten as: 
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   (22.b) 

;p p p(0 ) 0 (0 ) f    (22.c,d) 
 

System (22) is now in the appropriate format for numerical solution through dedicated routines for stiff initial value 

problems, such as the subroutine DIVPAG from the IMSL Library (1991), which is well tested and capable of handling 

such situations, offering an automatic accuracy control scheme. For computational purposes, the expansions are then 

truncated to NV and NT terms for the streamfunction and temperature fields, respectively, where the truncation orders 

are selected so as to reach the user requested accuracy target in the final solution. This subroutine solves initial value 

problems of the form: 
 

; 0' f ( ,t ) (0 )  y y       y y  (23.a,b) 
 

where, in this notation, the solution vector composed of NV+NT ODEs is given by: 
 

 
T

1 NV 1 NT( t ),..., ( t ), ( t ),..., ( t )   y  (24) 
 

From the solution of system (22) above for the transformed potentials, the streamfunction and the temperature fields 

are then readily obtained from the inversion formulae (16.b) and (17.b), as well as other quantities of practical interest, 

such as the horizontal and vertical velocity components, in the form: 
 

;
   

   

    i

i i i

i 1 1 i 1 1

dX ( x )dY ( y )
u X ( x ) ( t ) v Y ( y ) ( t )

dy dx
   (25.a,b) 

 

From the definitions for the maximum (or minimum) local (at the hot wall x = 0), average (at any “x” cross-section) 

and global (across the cavity) Nusselt numbers, we obtain: 
 

; ;
1 1

M x x
0 0

x 0

T T( x, y,t )
Nu Nu u( x, y,t )T( x, y,t ) dy Nu Nu dx

x x

  
       

     (26.a-c) 

 

The numerical values of Nusselt numbers defined in Eqs. (26) are computed from the substitution of the inversion 

formulae (16.b) and (17.b) into such expressions. 

 
4. RESULTS AND DISCUSSION 

 

A Fortran 95/2003 code was built and implemented on a PC-PENTIUM Dual Core 2.80 GHz. Test cases were 

analyzed for Grashof numbers equal to 10
4
 and 10

6
, Hartmann number in the range from 0<Ha<100, while the Prandtl 

number was taken equal to 0.71 in all cases. The subroutine DIVPAG of the IMSL Library (1991) was employed for the 

transformed system solution, always with a relative error target of 10
-10

. The coefficients were analytically evaluated 

with the symbolic manipulation package Mathematica (Wolfram, 2005). Results are presented and compared for 

different times of interest during the transient process, in terms of the dimensionless velocity components, 

dimensionless temperature, local and average Nusselt numbers. Also, some steady state results have been compared 

with results available in the literature. 

Figure 2 shows the behavior of the streamfunction isolines at four selected times for Gr = 10
4
 and Ha = 0 and 50. It 

is observed that for the shortest time, t = 0.005, there is the formation of a distinct boundary layer in the flow along the 

hot wall, besides there is the presence of a clockwise distorted vortex near the same wall. The vortex moves over time to 

the geometric center of the cavity to assume a rounded configuration at tsteady state, here illustrated by the curves for  

t = 0.93. The presence of a transverse magnetic field in the square cavity (Ha = 50) makes the rounded and central 

vortex at the geometric center of the cavity undergo a vertical stretch. This behavior is observed in the streamfunction 

isolines for various times, which shows that over time arises a tendency to break up the central vortex towards the 

appearance of secondary vortices. 
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Temperature isolines are shown in Fig. 3 for Gr = 10
4
, for a few selected time values, and make it clear that in the 

early stage of the process the temperature field evolves similarly to a pure conduction problem, characterized by higher 

temperature gradients in the vicinity of the hot wall. As time progresses, gradually reduces these gradients and the bulk 

temperature increases, while the contours acquire the typical aspect of the presence of convection. The isotherms for  

Ha = 50 show that, initially, the process continues with the aspect of a pure conduction problem, and as the process 

moves forward in time the gradients are kept fairly high along the horizontal direction, and this characteristic is 

maintained. The isotherms are almost parallel to the vertical walls, indicating that most of the heat transfer process is by 

conduction. 

 

 
Gr = 104 

Ha = 0 

    

Ha = 50 

    

 (a) (b) (c) (d) 

Figure 2. Streamfunction isolines for different times with Gr = 10
4
 and Ha = 0 and 50. 

(a) t = 0.005; (b) t = 0.02; (c) t = 0.1; (d) t = 0.93. 

 
Gr = 104 

Ha = 0 

    

Ha = 50 

    
 (a) (b) (c) (d) 

Figure 3. Temperature isolines for different times with Gr = 10
4
 and Ha = 0 and 50. 

(a) t = 0.005; (b) t = 0.02; (c) t = 0.1; (d) t = 0.93. 

 

The second Grashof number examined is Gr = 10
6
, which corresponds to conditions in which thermal effects are of 

greater magnitude, the convection evolves extremely quickly, and we observe the emergence of marked movements of 

internal waves. Thus, the magnetic field necessary to suppress the natural convection must be stronger than those 

previously discussed for Gr = 10
4
. Therefore, this behavior is shown in Figure 4 for the streamfunction isolines with  

Gr = 10
6
 and Ha = 0 and 100 at four different times. Now, with the presence of stronger magnetic field, Ha = 100, with 

the advancement of the transient process the axis of the central vortex is rotated in a counterclockwise direction, and 

this effect is due to the suppression of convection by the Lorentz force. 

Figure 5 shows the isotherms for the cases Gr = 10
6
 and Ha = 0 and 100 at four different times. Again, it is evident 

the formation of a distinct vertical boundary layer along the heated wall early in the process and the formation of at least 

two vortices at the geometric center of the cavity for the largest time, t = 0.93. The discharge of a jet by the heated side 

wall form an initially horizontal layer of intrusion that occurs along the upper horizontal wall of the cavity, as shown in 

Fig. 5.a for t = 0.005. With the advancement of the transient process, the horizontal flow invades the center of the cavity 

resulting in the formation of a thermally stratified core, where the temperature increases monotonically as a function of 

the coordinate y, and tend to be parallel to the vertical wall. 
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Gr = 106 

Ha = 0 

    

Ha = 100 

    

 (a) (b) (c) (d) 

Figure 4. Streamfunction isolines for different times with Gr = 10
6
 and Ha = 0 and 100. 

(a) t = 0.005; (b) t = 0.02; (c) t = 0.1; (d) t = 0.93. 

 
Gr = 106 

Ha = 0 

    

Ha = 100 

    
 (a) (b) (c) (d) 

Figure 5. Temperature isolines for different times with Gr = 10
6
 and Ha = 0 and 100. 

(a) t = 0.005; (b) t = 0.02; (c) t = 0.1; (d) t = 0.93. 

 

The agreement of the results for the global Nusselt number obtained with the GITT approach, with those of both 

Colaço et al. (2009) and Al-Najem et al. (1998), is quite reasonable, with a relative error as observed in Table 1, always 

below 5%, for Gr = 10
4
and all Hartmann numbers studied. 

 

Table 1. Comparison of the present results for the global Nusselt number with previously reported solutions for  

Gr = 10
4
 and Ha=0, 10, 25, and 50, in steady state. 

Global Nusselt number 

Ha Present Colaço et al. (2009) Error(%) Al-Najem et al. (1998) Error(%) 

0 2.01 2.02 0.50 2.01 0.00 

10 1.69 1.70 0.59 1.69 0.00 

25 1.16 1.17 0.85 1.14 1.75 

50 1.01 0.97 4.12 1.00 1.00 

 

The behavior of the velocity field is more evident when we observe Figure 6.a, where it is compared the present 

results obtained by the GITT approach with those of Colaço et al. (2009) for the velocity profile in the x-direction in the 

vertical midplane of the cavity (x = 1/2), for Gr = 10
4
 and steady state. For the lowest Hartmann number analyzed  

(Ha = 0), the behavior of the velocity field at this point indicates the existence of a vortex and a point of zero velocity (y 

= 1/2). The high gradients from the center to the vertical walls indicate the existence of convective currents. On the 

other hand, for the largest Hartmann number analyzed (Ha = 50), the behavior indicates that the magnetic field 

suppresses convective currents inside the cavity. Results for the temperature field obtained by the GITT are also 

compared with those of Colaço et al. (2009), in Figure 6.b in the median horizontal plane of the cavity (y = 1/2). Heat 

transfer by conduction takes place predominantly with high gradients at the largest Hartmann number. A decrease in 

these gradients is observed and a typical aspect of the presence of convection is observed for the lowest Hartmann 
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number. Also, Figs. 6.a and 6.b show the excellent agreement between the present results with those of Colaço et al. 

(2009). 

Similar comparisons are provided in Figures 7.a and 7.b, for the velocity and temperature fields, respectively, for a 

higher Grashof number (Gr = 10
6
). Again, an excellent agreement is verified between the two different approaches for 

this case. For lower Hartmann numbers (H = 0 and 15), despite showing the same trend, a slight deviation from the 

results obtained by Colaço et al. (2009) is evident. The differences for the temperature field are less evident, and an 

excellent agreement is verified for all Hartmann numbers. 

 

 

   
Figure 6. Comparison of the velocity and temperature fields for Gr = 10

4
 at steady state: (a) velocity component u along 

the vertical coordinate at the cavity position x = 1/2; (b) temperature profile along the horizontal coordinate at the cavity 

position y =1/2. 

 

 

   
Figure 7. Comparison of the velocity and temperature fields for Gr = 10

6
 at steady state: (a) velocity component u along 

the vertical coordinate at the cavity position x = 1/2; (b) temperature profile along the horizontal coordinate at the cavity 

position y =1/2. 

 

5. CONCLUSIONS 

 

The present study extends the application of the Generalized Integral Transform Technique (GITT) to a natural 

convection problem involving two-dimensional MHD flow problem in square cavities with constant magnetic field. The 

hybrid technique proved to be an effective tool in obtaining accurate results for situations of high nonlinearity and 

coupling, allowing for a physical analysis for typical values of the governing dimensionless numbers, Grashof and 

Hartmann numbers. The results are shown to be in excellent agreement with those available in the literature, 

demonstrating the consistency of the GITT approach in handling such class of problems. 
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