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Abstract. This paper tackles UML modeling and analysis applied to real-time embedded software implementation of a 

low-cost university satellite 3-axis attitude determination and control system in a hardware-in-the-loop testing 

environment. The operating system core RTEMS (Real-Time Executive for Multiprocessor Systems) running in a 

SPARC architecture ERC-32 processor for space applications has been employed for that purpose. 
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1. INTRODUCTION 

 

The main difficulties in developing quality software are requirements specification and conceptual design 

(Douglass, 2002). Within this context, system modeling has an important role, mainly because it enables project 

analysis and validation before implementation. In real-time embedded systems, software modeling may be considered 

as a promising approach to deal with the intricacies that arise in developing such a complex system. Such an approach 

should provide development flexibility, improved product quality, ease of maintenance, and easier project upgrading, 

expansion, and reuse of software components (Schulmeyer and McManus, 1992). 

Currently considered the main standard for system modeling, the Unified Modeling Language (UML) (OMG, 2005) 

is a software modeling language that has been widely used in development projects. Its use provides a visual language 

for modeling, design, and documentation of common artifacts in complex systems software, to better understand 

systems, and to simplify the reuse of models and source-codes (Heath, 2003). (Note: an artifact is the product of one or 

more activities within the context of developing a software or system. They are used to capture and convey project 

information, and can be either a document, or a model, or a model element. Document requirements, or use cases, for 

example, are artifacts.) 

The most common UML-based implementations of embedded system models have been coded with Java or C++, 

with C language in second place. This is quite surprising because the most common programming language for 

embedded systems overall by far is C language. Additionally, UML is a software modeling language designed for 

systems that are based on the paradigm of object-oriented programming, and UML has been used almost exclusively in 

developing such systems. However, embedded designs are known to be function-oriented (Wang, 2009) and thus a 

mapping of features from UML onto C language is motivated. 

A complete mapping of features from UML onto C language is still emerging. Studies (Wang, 2009, Douglass, 

2009) have been performed to facilitate this mapping process, which proposes the use of object-oriented UML notation 

when the main deployment platform is a function-oriented embedded system to be coded in C language. The 

establishment of a methodology that tackles the complexities involved in the integration of two different ways of 

thinking, that is object-oriented and function-oriented, can reduce design time and development, as well as trim down 

recurrent expenditures due to either bug fixes, or the development of new features. 

This paper tackles the modeling of a C-based embedded system using UML for a real-time implementation of a low-

cost, university satellite attitude estimation and control system in a hardware-in-the-loop testing environment. Operating 

system core RTEMS (Real-Time Executive for Multiprocessor Systems) running on a SPARC architecture ERC-32 

processor intended for space applications has been employed for that purpose. UML diagrams are used to describe the 

groundwork for the conceptual construction of the software. 

 

2. EMBEDDED SYSTEM FEATURES 

 

An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions 

(Kopetz, 1997). By its nature specialist, an embedded system may have numerous applications, for example, automotive 

systems (engine control, braking systems), computer peripherals (printers, scanners), spaceflight (attitude control 

system and data management), and myriad others (Heath, 2003). 

The main feature of an embedded system, common to all of them, is that these systems manipulate data and interact 

with the physical real world by controlling some specific hardware. Additionally, (Marwedel, 2003) listed the following 

features: 

 Embedded systems generally interact with the environment, collecting data from sensors and modifying the 

environment using actuators; 
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 Embedded systems call for metrics to measure efficiency other than those already known to designers of 

desktop systems and servers, such as power consumption, code size, performance and cost; 

 Some embedded systems have real-time requirements. Not completing a task at a given time may result in 

data loss, and consequently quality of service in multimedia applications, or cause damage. Failure to 

comply with a real-time requirement can result in catastrophe; and 

 Embedded systems react to the environment, that is, they are in continuous interaction with the 

environment. One can say that a reactive system is in the state of waiting for an input. For each received 

input, an embedded system should perform the required processing of information and generate an output. 

 

The presence of features common to many embedded systems justifies the study of development methodologies. 

Given that the design of a new system can and should use components and modules developed in other projects, 

software modeling allows development teams to focus on the design features that have not yet been developed, using 

components from previous projects. 

 

3. SOFTWARE METHODS AND TOOLS 

 

The methods for the development of embedded systems used in this article include a methodology for Hard Real 

Time System following the paradigm of waterfall lifecycle modeled in UML, with software being coded in C language. 

The real-time operating system used is RTEMS (Real-Time Executive for Multiprocessor Systems) running in a 

SPARC architecture ERC-32 processor. 

 

3.1. Real-time operating system 

 

Real-Time Executive for Multiprocessor Systems is a real-time executive (kernel) that provides a high performance 

environment for embedded military applications including the following features (OAR, 2010): 

 Multitasking capabilities; 

 Homogeneous and heterogeneous multiprocessor systems; 

 Event-driven, priority-based, preemptive scheduling; 

 Optional rate monotonic scheduling. A scheduling algorithm used in real-time operating systems with a 

static-priority scheduling class (Bovet, and Cesati, 2000). The static priorities are assigned on the basis of 

the cycle duration of the job: the shorter the cycle duration is the higher is the job's priority; 

 Intertask communication and synchronization; 

 Priority inheritance; 

 Responsive interrupt management; 

 Dynamic memory allocation; and  

 High level of user configurability. 

 

One important design goal of RTEMS is to provide a bridge between two critical layers of typical real-time 

systems. As shown in Figure 1, RTEMS serves as a buffer between the project dependent application code and the 

target hardware. Dependency on the hardware specific to a real-time application can be located mostly at the low-level 

device drivers. 

 

 
Figure 1. RTEMS application architecture (OAR, 2010 a) 

 

The RTEMS I/O interface manager provides an efficient tool for incorporating such hardware dependency into the 

system, thus providing a general mechanism to the application code that enables access to the target hardware. A well 

designed real-time system can benefit from this architecture by building a rich library with standard application 

components which can be used repeatedly in other real-time projects. 

 

 

http://en.wikipedia.org/wiki/Scheduling_algorithm
http://en.wikipedia.org/wiki/Real-time_operating_system
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3.2. Lifecycle of embedded software 

 

The development process of embedded software uses the paradigm of waterfall lifecycle. This approach is 

recommended for systems where security and reliability have great importance. Such trait highlights the quality of a 

rigid and linear model for developing real-time embedded software in the sense that a phase begins after the previous 

one has finished (ECSS-E-40, 2008). Inherent to each phase are the procedures of verification and validation, with 

testing included therein. 

To impart the production of embedded software with enhanced flexibility, when necessary, the process lifecycle 

may make use of a revised waterfall model that leads to the returning to a previous stage in the lifecycle to 

accommodate functional or technical changes as shown in Figure 2. 

 

 
 

Figure 2. Process lifecycle of embedded software 

 

In the waterfall lifecycle paradigm, requirements specification is the first activity in software development. This 

stage defines the services that a system should perform, the interfaces with other elements, and the operation constraints 

(Ferrari and Vincentelli, 1999). 

The requirements stage establishes what the system should do rather than how it is to be done. The analysis stage 

focuses on understanding software behavior in the context of the environment where the system operates, constraints 

included. The specification capabilities of software modeling languages such as UML are used to allow for the 

specification of structural and behavioral aspects of the system. The design stage is a multistep process that reinforces 

four important attributes: data structure, software architecture, procedural detail and interface design. In addition, the 

design phase aims at translating those requirements into a representation of the software with enough detail for 

implemention. As in the requirements stage, the design stage also needs documentation, this being done based on the 

requirements specification.  

In the construction phase the programs are coded, the databases created and software modules integrated. The focus 

of testing is to validate the internal logic of the program procedures, ensuring that all commands have been tested and 

that system performance produces the expected results for certain inputs. 

 

3.3. Modeling of an embedded system with UML 2.0 

 

UML is a modeling language-oriented paradigm of object-oriented programming (OMG, 2005). Its use provides a 

visual language for modeling, design, and documentation of common artifacts in complex systems software (Gamma et 

al., 1994), to better understand systems and to simplify the reuse of models and source codes.  

While it has not been specifically developed to model real-time systems, some traditional concepts of object 

orientation, as classes and packages have been improved from the traditional UML. Within this context, three main 

structures to help real-time modeling can be cited: capsules, ports, and connectors (Douglass, 2002).  

 Capsules or active classes represent modules of the architecture, whose only points of interaction with 

other modules are called ports. 

 Ports represent interaction points of a class, or interfaces that specify operations and signals offered by a 

class, called protocols, allowing communication with the external environment. 

 Connectors specify a link that enables communication between two or more entities, the latter being, for 

instance, either a class, or an object, or an actor in a use case.  

 

UML proposes that modeling be performed through several diagrams that visually show characteristics of the 

modeled software. As shown in Figure 3, altogether there are eight diagrams divided into two subsets called structural 

and behavioral diagrams, each with its own function, which together enable the understanding of the system software as 

a whole. 
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Figure 3. Diagrams proposed by UML (OMG, 2005) 

 

3.4. Mapping from UML onto C  

 

Since modeling language UML has no direct support for C language, this section presents a mapping strategy that 

defines rules for using UML models with C-language–based embedded systems The primary diagram types defined in 

this strategy are detailed in Table 1. 

 

Table 1. Mapping from UML onto C: profile diagrams. 

 

UML Basis Diagram UML C-based 

Diagram 

Description 

Use case diagram Use case diagram Represents use cases of the system with respect to actors. 

Creates one .c and one .h file corresponding to each use 

case. 

Component diagram Build diagram  Shows the set of artifacts constructed from the source file, 

such as executables and libraries. 

Class diagram Call diagram Shows calls and their sequences among sets of functions. 

Sequence diagram Message diagram Represents sequences of calls and events sent among a set 

of files, including passed parameter values. 

State diagram Statechart Shows the state machine for a file and how their included 

functions and actions are executed as events are received. 

Activity diagram Flowchart Details the control flow for a function or functional unit 

(such as a use case) 

 

Every use case in the use case diagrams can describe two C files (one .c and another .h header file), each use case 

defines a behavior yielding an observable result. Sequence diagrams identify the sequence of function calls. In the case 

where a system object can have different states, as specified in the corresponding State Machine, it can be described 

using an UML statechart. The Activity Diagram in UML can represent the flowchart for a function use. Event triggers 

in those diagrams are implemented by triggering the timers, the user inputs, the interrupts, etc (Wang, 2009). 

 

4.  FORMULATION OF THE ATTITUDE CONTROL PROBLEM 

 

The satellite attitude dynamics has been modeled as a rigid body with the principal inertia axes as the body reference 

coordinate frame. It has been assumed that the Attitude Control System (ACS) uses magnetotorquers as the only 

actuators, and employs Sun sensors and a magnetometer, respectively, to determine the direction of the Sun relative to 

the satellite, and measure the projection of the Earth's magnetic field along the sensitive axes of the magnetometer. The 

goal is to keep the solar panels located on the lateral faces of the satellite constantly oriented towards the Sun for 

adequate power generation and thermal protection of electronic devices at the top and bottom sides of the satellite. The 

Cartesian coordinate frames that describe the attitude of the satellite and its motion along the orbit are shown in Figure 

4. 
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Figure 4. Cartesian coordinate frames (Shigehara, 1972) 

 

RS is the vector position from the center of the Earth to the satellite center; η is the angle of the satellite position in 

the orbital plane in relation to the ascending node, ζ is the longitude of the ascending node; and i is the inclination of the 

orbit, with axis iI directed to the vernal equinox and axis kI perpendicular to the equatorial plane. In the orbital frame, 

axis iO is directed to the ascending node and axis kO is perpendicular to the orbital plane. The orbital reference frame 

and the body coordinate frame are related by the following rotation sequence: rotation ψ around axis kO, rotation θ 

around axis j’B, and spin angle φ around axis kB. The quaternion has been selected as the attitude parameter in the 

kinematics differential equation (Chobotov, 1991): 
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and the real-part component of the rotation quaternion relating inertial and body reference frames is scalar λ; q1 is 

the imaginary-part component along the direction of i; likewise are q2  along j and q3 along k; and ω is the angular 

velocity of the satellite relative to inertial space. 

The implementation of the Attitude Control System (SCA) that is here reported relies on purely magnetic actuation 

to acquire and maintain the satellite spin axis pointing orthogonal with respect to the ecliptic plane, to mitigate the 

nutation motion, and to maintain the spin speed in the vicinity of a nominal value, in spite of adversary initial conditions 

that arise when separation occurs from the launch vehicle upon reaching orbit as a secondary, piggyback payload. 

Magnetic coils in the magnetotorquers are activated to produce magnetic dipole moments that interact with the 

geomagnetic field vector during orbital flight and produce small-intensity torques that change the satellite attitude. 

Attitude acquisition after separation from launch vehicle should not last longer than the available capacity of the 

batteries on board that supply the SCA operation prior to proper solar panel pointing for battery recharge. Torque coil 

activation should be timed to consider the magnetometer measurement time window and avoid electromagnetic 

interference from coil current transients that might compromise the geomagnetic induction measurements, and thus 

severely degrade attitude and angular rate estimation. 

 

6. MAIN RESULTS 

 

The design of embedded software is based on the classic process of systems development waterfall, with a sequence 

of well-defined phases, with the possibility of returning to an earlier phase to make changes if necessary. The software 

architecture has been modeled by integrating concepts used by UML with concepts used by programming language C. 

The definition of the software architecture is finalized at this stage of the project. But a flexible software architecture 

should be able to incorporate changes. So far, the results obtained should be enough to proceed with the design of the 

software. The architecture is being built covering the strictly necessary to implement an initial version of the software. 

The evolution of embedded software and changes to novel versions are directly related to verification and validation 
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through testing to ensure not only the quality of the embedded software, but also that of the architecture. The errors and 

failures found in the operation of the embedded software indicate conditions that call for improvements that will be 

implemented in later versions. 

 

6.1. Attitude determination and control system modeling 

 

6.1.1. Use case diagram 

 

The initial step of modeling is the development of the UML use case diagram, which illustrates a high level 

overview of the software, its functionality, and interaction with the outside world represented by actors. Figure 5 shows 

this diagram. Table 2 presents a list of actors. 

 

 
Figure 4. Modeling attitude determination and control system: use case diagram  

 

Table 2. List of actors in the attitude determination and control system model. 

 

Actors Represented stereotypes 

Reset the estimated orbits Ground station 

Sun sensor Sun sensor, used to determine the direction of  

the sun relative to the satellite 

Timer Timer task 

Actuator Magnetotorquer 

Magnetometer sensor Magnetometer, used to determine the 

geomagnetic field vector 

 

The use case initiating the attitude determination and control system model is “Estimating Position of the Satellite in 

Orbit”, that is to determine the position the satellite in orbit at a precise moment of time. This is defined with parameters 

of the embedded system, or with updated parameters provided from use case “Receive Data from Ground Station”. 

Having defined the geo-inertial Cartesian coordinate frame, the geomagnetic field vector and the direction of the Sun 

are represented in that coordinate frame with the execution of use case “Modeling Direction of the Sun and 

Geomagnetic Field Vector in the Reference Frame”, composed of the two functions “Estimating Direction of the Sun” 

and “Estimating Geomagnetic Field Vector”. 

Using as reference the modeled geomagnetic field vector and the direction of the Sun, the angular velocity and 

attitude estimates are computed from use case “Estimating Angular Velocity and Attitude”. Magnetometer bias exerts 

significant influence on the accuracy of the attitude and angular velocity estimators. Magnetometer bias is therefore 

estimated with use case “Estimate Magnetometer Bias”. 

Magnetometer measurements can be received every second, or every 10 seconds, for magnetometer bias estimation 

depending on the estimate of angular velocity. Furthermore, magnetometer measurements are received every 100 

milliseconds to estimate angular velocity and attitude, along with simultaneous measurements of the Sun sensor, 

respectively, with use cases “Receive Measurements Magnetometer Sensor” and “Receive Measurements Sun Sensor”. 
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Control is accomplished by the use case “Attitude Control of Satellite” that computes which coil should be activated 

and current polarity.  
 

6.1.2. Activity diagram using Flowchart 

 

Once the use cases and actors in the system have been defined, the activity flowchart is used to represent an 

algorithm, or some detail of the functional flow control, thus indicating in high-level the actions carried out on a given 

scenario of each use case. Figure 5 shows the activity flowchart that corresponds to use case “Estimating Satellite 

Position” that estimates the position of the satellite in orbit at a precise moment in time. 

 
Figure 5. Activity flowchart of “Estimating Satellite Position” 

 

The update of orbit parameters in the embedded system for attitude determination occurs when there is line-of-sight 

communications from the ground station to the satellite. In case line-of-sight positioning arises from the ground station 

to the satellite, the embedded system model awaits updated data from the ground for 10 seconds. If errors occur during 

data transmission and the time limit set for update is exceeded, a message notifying the error is sent, and the required 

satellite position in orbit is then estimated without use of updated orbit parameters, with the parameters so far stored in 

the embedded system model. Likewise is the satellite position estimated in case of no line-of-sight with respect to the 

ground station.  

 

6.1.3. Build diagram 

 

The build diagram represents the artifacts constructed via the compilation and link processes and how they relate to 

one another. Figure 6 shows the build diagram for the attitude determination and control system. The heard the files, 

"modulo1.h", "modulo2.h", "modulo3.h", "modulo4.h" and "modulo5.h", contains declaration of variables, functions, 

and other identifiers. The simulation of sensors and actuators is performed using executables developed in Matlab: 

 

 sensorSolar.mat: simulate sun sensor; 

 sensorMag.mat: simulate magnetometer; 

 atuador.mat: simulate magnetotorquers; and 

 dadoSolo.mat: simulate the ground station. 

 

The circular symbols represent interfaces. For example, "modulo1.h" depends on the interface "Sistema de 

comunicação" associated with “dadoSolo.mat”. 
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Figure 6. Build diagram 

 

 

6.1.4. Message sequence 

 

Message diagrams show how the files functionality may interact through messaging by way of synchronous function 

calls or asynchronous communication. This diagram can be used at different levels of abstraction, and in general several 

diagrams are needed to represent a use case, because this diagram covers several scenarios of a same use case wherein 

message exchanges occur. Figure 7 shows one of message diagram for the use case “Estimating Angular Velocity and 

Attitude”.  

 

 
 

Figure 7. Message diagram 
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6.1.5. Statechart 

 

A statechart represents the set of states achievable by a file or an use case. There are five files concerning Estimating 

Position of the Satellite, init_01.c, receberDadosDoSolo.c, reset0.c, reset1.c and task1.c. Depending on the state of the 

serial communication, file receberDadosDoSolo.c changes its state to one of the following: Ready, Listening, Working, 

or Idle. A statechart of file receberDadosDoSolo.c is shown in Figure 8. 

 
 

Figure 8. Statechart of file receberDadosDoSolo.c 

 

 

6.2. Software coding and testing  

 

The software-modeling–based implementation is presently under way through C-language coding of the embedded 

system for satellite attitude estimation and control with real-time operating system RTEMS and its resources. The 

implementation is being carried out in a SPARC-architecture ERC-32–processor development kit specific for 

spaceflight applications. The choice of RTEMS as the operating system core arises as a consequence of real-time 

requirements and costs reduction, since RTEMS is based on the open-source philosophy. The development kit 

communicates with a host PC that runs a Matlab-based simulation of the differential equations that model orbital flight 

mechanics, satellite attitude dynamics, and disturbance torques arising from geomagnetic and gravitational 

perturbations. The implementation is aimed at developing a real-time hardware-in-the-loop simulator on a distributed 

computing platform that encompasses actual satellite sensors and actuators. The simulator is intended to provide the 

means for software analysis and testing. Satellite attitude and position in orbit is to be visualized with package Satellite 

Tool Kit (STK) (AGI, 2005).  

 

7. CONCLUSION 

 

This article tackled modeling and implementation of real-time software for a university satellite attitude 

determination and control system. The mapping of features from UML onto C reduces design time and development 

effort, as well as recurrent expenditures due to bug fixes and development of new features when C language is the main 

deployment platform.  

The proposed software model is undergoing implementation using real-time operating system RTEMS. A hardware-

in-the-loop simulator is being developed as an alternative testing environment to demonstrate the distributed computing 

platform developed for the satellite sensor. The definition of the software architecture has been finalized and the results 

obtained so far are being used to proceed with the real-time embedded system software design. 

Finally, the development reported here is part of the ongoing project FINEP/DCTA/INPE Inertial Systems for 

Aerospace Application with the purpose of providing graduate students at ITA with high-level knowledge and skills in 

the fields of inertial engineering and real-time systems. 
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