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Abstract. In Part 1 of this paper it was seen estimates of plastic zone from two linear elastic (LE) stress fields, which 

are: the stress field generated from Stress intensity factors (SIF), which are the fulcrum for linear elastic fracture 

mechanics (LEFM) predictions, and the stress field obtained from SIF plus T-stress, the name given by Irwin for the 

Williams series constant, or zero order, term parallel to the crack plane. However, it was showed in the Part 1 that the 

LE stress field generated by SIF besides not satisfying boundary conditions, it generates plastic zones (pz) that are 

insensitive to ratio between nominal stress and yielding strength (σn/SY). This is not the case for the LE stress field 

generated by SIF plus T-stress. Nevertheless, these two LE stress fields cannot replicate the nominal stress far from the 

crack tip in the componentσyy. Indeed, using the correct LE stress field in the Griffith plate, generated by its complete 

Westergaard stress function, it is showed that the nominal stress to yielding strength ratio has a major influence on the 

pz size and shape. In addition, the Westergaard stress function may be confirmed by the Inglis plate solution when its 

elliptical notch root is supposed equal to half the crack tip opening displacement. This second part of this two-paper 

work shows that it is possible to use the complete Williams series to reproduce the correct stress field generated by the 

Westergaard stress function. Therefore, as presented in the part 1 paper, an appropriated (pz) estimative could be 

obtained from the complete William series for the cracked component. 
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1. INTRODUCTION 
 

Irwin (1957) and Williams (1957) introduced the stress intensity factors (SIF) KI, KII, or KIII as the parameters 

responsible for characterizing the severity of the stress field around crack tips in mode I, II or III. However, the linear 

elastic (LE) stress field generated from the SIF alone is correct only very close of the crack tips. This affirmation can be 

confirmed by the proper analysis of the Griffith plate (1920) (the infinite plate with a central 2a crack, loaded in mode I 

by a nominal stress σn perpendicular to the crack plane). The LE stress field generated from its SIF KI = σn√πa does not 

satisfy boundary conditions. Indeed, that simplified stress field predicts that σyy(r → ∞) = 0 instead of σyy(r → ∞) = σn 

as it should, where σyy is the stress component parallel to σn and r is the distance from the crack tip. Due to that, LE 

stress fields obtained from KI cannot estimate well the plastic zone pz(θ) around crack tips frontiers, except for very low 

nominal stress to yielding strength σn/SY ratios, much lower than those actually used in most structural components. 

However, for teaching and designing purposes, pz(θ) are traditionally estimated from simplified LE analysis, assuming 

that they depend only on KI (in mode I) according was done by Irwin (1958).  

Part 1 of this work showed estimated plastic zones from stress fields generated from SIF, SIF + T-stress, and 

Westergaard stress function, which was presented by Westergaard (1939), demonstrating that the latter two generate pz 

that depend on the σn/SY ratio. It also demonstrated that the (constant) T-stress addition to the σxx stress component does 

not satisfy the boundary conditions either. Analyzing the Griffith plate, this work shows that the plastic zone estimates 

obtained from a stress field generated from the Williams series are identical to the estimates obtained from the complete 

stress field generated from its Westergaard stress function, when increasing the number of terms in the series. Since the 

complete stress field obtained from the Westergaard stress function satisfies all boundary conditions, it is expected that 

more consistent pz estimates can also be obtained from the William series which reproduces it. 

This article first presents a brief development of the Williams series (Lopes, 2002), indicating that stress fields 

generated using only the first term of the series are identical to the SIF stress field given by Eq. (3). Next, it shows how 

to get the SIF stress field from the Westergaard stress function (Castro and Meggiolaro, 2009). Finally, it shows through 

two examples that the estimates of the plastic zones are sensitive to σn/SY when the number of terms in the Williams 

series is increased. Moreover, these examples demonstrate that the pz estimates based on the Williams series converges 
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to the estimates based on the complete stress field obtained from Westergaard stress function, when an adequate number 

of terms is considered in the series. 

 

2. THE WILLIAMS SERIES 
 

Williams (1957) proposed the following stress function to solve LE stress analysis problems: 
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in which c1, c2, c3 and c4 are constants and λ  is an exponent to be determined according the boundary conditions of the 

problem. Eq. (1) can be written in a more compact form as: 

 

( )λθλ , *1 Fr +=Φ  (2) 

 

In order to be a stress function, ( )θ,rΦ=Φ  must satisfy the following equation: 

( ) 0,4 =Φ∇ θr  (3) 

 

The stress components in polar coordinates may be obtained from the William stress function: 
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By substituting the William stress function, Eq. (1) or Eq. (2), in Eq. (4), results in: 
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in which ( )*θF ′  is the derivative of F with respect to *θ . For the condition of a free surface, where there is no tractions 

on the surface, the following equation may be written: 

 

( ) ( ) ( ) ( ) 02020 ==== πσσπσσ θθθθθθ rr  (6) 

 

Therefore: 

 

 ( ) ( ) ( ) ( ) 02020 =′=′== ππ FFFF  (7) 

 

If Eq. (1) constants are not null, the boundary conditions described in Eq. (7) are satisfied if: 

 

 ( ) 02sin =πλ                                                                                                                                     (8) 

 
2

n
=λ , n = 1, 2, 3,…                                                                                                                                                                     (9) 

Substituting Eq. (7) and Eq. (9) in Eq. (1), two constants are eliminated, resulting in: 
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Expressing πθθ −= *  in Eq. (10), results in: 
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in which si and ti are constants that must be defined (i = 1, 2, 3, …). Substituting Eq. (11) in Eq. (4): 
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The constants s1 and t1 may be related to modes I and II. Therefore: 
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Considering the first term of the stress field generated from the William series, it is possible to obtain the stress field 

generated by SIF. This shows that the Williams series result, for points very close to the crack tip, in functions that have 

KI as a single parameter. 

 

3. THE WESTERGAARD STRESS FUNCTION 
 

The general expression for obtaining stress components from the Z(z) Westergaard stress function is (Castro and 

Meggiolaro, 2009): 
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in which z = x + iy and i = √-1. In the case of Griffith plate, the Westergaard stress function is: 
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When this infinite plate (Griffith plate) is loaded in the direction parallel to the crack plane, it is necessary to add -σn 

in component σxx to force σxx (∞) = 0. This addition is an adequate mathematical trick since a constant stress in the x 

direction does not affect the stress field near the crack tip. 

Using Eq. (15), defining an axis translation xp = x – a, in which the origin of the coordinate system is at the crack tip, 

and interpreting an  πσ  constant as KI, the component ( )0,pyy xσ  very close of the crack tip (xp << a) is given by: 
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It is noted that the Irwin solution reproduces the singularity ( )pij xf 1=σ  of the Williams series. Using relations 

( ) 222 yaxr +−=  and ( )[ ]axy −= arctanθ , it is possible to transform the original function ( )zZ  in an equivalent 

function with the origin at the crack tip, resulting in: 
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Substituting Eq. (17) in the stress field represented by Eq. (14), one has: 
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Equation (18) shows that the Westergaard stress function also results in functions that have KI as a single parameter 

at locations close to the crack tip. Although it is not demonstrated in this work, it can be shown (Lopes, 2002) that the 

stress field obtained from the William series converges to the Westergaard stress field, if an adequate number of terms 

are considered. The number of terms depends on the problem. This convergence problem is illustrated by the pz 

estimates developed in the next section. 

 

4. PLASTIC ZONES ESTIMATED FROM LINEAR ELASTIC ANALYSIS WITH THE WILLIAMS SERIES 

AND THE WESTERGAARD STRESS FUNCTION 
 

The first example is the biaxially loaded Griffith plate. Two levels of σn/SY are evaluated: 0.2 and 0.8, for both plane 

stress and plane strain situations. The second example is the uniaxially loaded Griffith plate, in which it is shown the 

convergence of the estimates of plastic zones obtained by the series of Williams in plane stress, ( ) tNWil

plMθpz
 

,

−
−σ , and in 

plane strain, ( ) tNWil

plMθpz
 

,

−
−ε , with the increase of the number N of terms in the series. In the latter example, six levels of 

σn/SY are evaluated: 0.2, 0.4, 0.5, 0.6, 0.7 and 0.8. 

 

4.1. Griffith plate (biaxially loaded) 
 

This example has an analytic solution, given by Eq. (14). Figure 1 presents the estimates of the plastic zone under 

plane stress and Fig. 3 shows the estimates of the plastic zone under plane strain. 
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Figure 1. Convergence of estimates of pz(θ)M obtained from Williams series to estimates from Westergaard stress 

function under (a) σn/SY = 0.2, (b) σn/SY = 0.4, (c) σn/SY = 0.5, (d) σn/SY = 0.6, (e) σn/SY = 0.7 and (f) σn/SY = 

0.8, for the Griffith plate biaxially loaded in plane stress. 

 
 

 

 

 
(a) (b) 

  



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

  

  

(c) (d) 
 

 

 

 
(e) (f) 

 

Figure 2. Convergence of estimates of pz(θ)M obtained from Williams series to estimates from Westergaard stress 

function under (a) σn/SY = 0.2, (b) σn/SY = 0.4, (c) σn/SY = 0.5, (d) σn/SY = 0.6, (e) σn/SY = 0.7 and (f) σn/SY = 

0.8, for the Griffith plate biaxially loaded in plane strain. 

 

Analyzing Fig. 1 and Fig. 2, it is noted that in both cases of plane stress and plane strain, for higher values of σn/SY, 

more terms in the series of the Williams are necessary to adjust the estimates of plastic zones to the case of the plastic 

zones obtained from the Westergaard stress function.  

For the plastic zones estimated from Williams series LE stress field in plane stress with σn/SY equal to 0.2, only one 

term is necessary; for σn/SY equal to 0.4 and 0.5, two terms are needed; for σn/SY equal to 0.6 and 0.7, three terms are 

needed; and for σn/SY equal to 0.8, four terms are needed for convergence. 

For the plastic zones estimated from Williams series LE stress field in plane strain with σn/SY equal to 0.2, only one 

term is necessary; for σn/SY equal to 0.4, two terms are needed; for σn/SY equal to 0.5, 0.6 and 0.7, three terms are 

needed; and for σn/SY equal to 0.8, four terms are needed for convergence. 

 

4.2 Griffith plate uniaxially loaded 
 

This example also uses Eq. (14) as an analytical solution. However, it is necessary to add a constant stress value -σn 

to the σxx stress component to force the boundary condition σxx (∞) = 0. Figure 3 presents estimates of plastic zones 

under plane stress and Fig. 5 shows estimates of plastic zones under plane strain. 
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Figure 3. Convergence of estimates of pz(θ)M obtained from Williams series to estimates from Westergaard stress 

function under (a) σn/SY = 0.2, (b) σn/SY = 0.4, (c) σn/SY = 0.5, (d) σn/SY = 0.6, (e) σn/SY = 0.7 and (f) σn/SY = 

0.8, for the Griffith plate uniaxially loaded in plane stress. 
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Figure 4. Convergence of estimates of pz(θ)M obtained from Williams series to estimates from Westergaard stress 

function under (a) σn/SY = 0.2, (b) σn/SY = 0.4, (c) σn/SY = 0.5, (d) σn/SY = 0.6, (e) σn/SY = 0.7 and (f) σn/SY = 

0.8, for the Griffith plate uniaxially loaded in plane strain. 
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Analyzing Fig. 3 and Fig. 4, it is noted that in both plane stress and plane strain cases, more terms are necessary in 

the William series to adjust their estimated plastic zones to the plastic zones estimated from the complete LE stress field 

generated from the Westergaard stress function for higher values of σn/SY. 

For the plastic zones estimated from Williams series LE stress field in plane stress with σn/SY equal to 0.2, only one 

term is necessary; for σn/SY equal to 0.4, two terms are needed; for σn/SY equal to 0.5 and 0.6, three terms are needed; 

for σn/SY equal to 0.7, four terms are needed; and for σn/SY equal to 0.8, six terms are needed for convergence. 

For the estimative of plastic zones from Williams series in plane strain with σn/SY equal to 0.2, only one term is 

necessary to adjust; for σn/SY equal to 0.4, two terms are needed; for σn/SY equal to 0.5 and 0.6, three terms are needed; 

for σn/SY equal to 0.7, four terms are needed; and for σn/SY equal to 0.8, five terms are needed. 

 

5. CONCLUSION 
 

Part 2 this work showed plastic zones estimates obtained from Westergaard stress function and from Williams series 

with more than one term that are sensitive to σn/SY. It was observed that, for locations close the crack tip, the stress 

fields obtained from these solutions could be simplified, resulting in the SIF stress field. Another important fact is that 

the estimates obtained from Westergaard stress function and from Williams series are coincident at all levels of σn/SY, if 

an adequate number of terms are used in the Williams series. The number of terms depends on the problem. This 

convergence is demonstrated in two examples of the Griffith plate. 

Since Westergaard stress function satisfies all boundary conditions, it is expected that more consistent pz estimates 

can be obtained from the William series, although the singularity at the crack tip still persists in this LE solution. 
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