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Abstract. In this paper, a three-dimensional ductile damage model based on principles of continuum mechanics is 
analyzed. The hypothesis of strain equivalence and the concept of effective stress, according to a methodology based 
on the thermodynamics of irreversible processes govern the model. The theories of elastoplasticity and damage 
(Lemaitre model) are coupled to perform a numerical simulation of the evolution of damage in structures through the 
finite element method (FEM). Postulates of damage mechanics in solid medium are used to incorporate the damage as 
an internal variable to the model. An isotropic scalar damage variable is firstly used and later the anisotropy in the 
distribution of microcracks is introduced through the orthotropic damage which is represented by a second order 
symmetric tensor. The program developed is based on FEM and the constitutive model of Lemaitre is suitable for 
metallic materials, considering an isotropic material behavior with linear isotropic hardening and von Mises yield 
criteria. The corresponding numerical algorithm integrating the constitutive equations is based on a prediction step 
(elastic trial state) and a correction step (plastic/damage corrector state), and the implementation of the numerical 
simulation was performed using the MATLAB®. The algorithm for integration and mapping of return based on the 
constitutive model are presented, as well as the numerical results. 
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1.  INTRODUCTION  
 

Continuum Damage Mechanics (CDM) represents a local approach to detect failure in a material and it is one of the 
most promising tools to predict macro-crack initiation and propagation (Doghri, 1995), treating the damaged material as 
a macroscopically homogeneous one (Chaboche, 1981). Fracture mechanics became one of its leading branches. It was 
based on the analysis of existing cracks, representing the damage that is the deterioration of material which occurs prior 
to failure (Lemaitre, 1996). 

The objective of this paper is coupling the theories of plasticity and damage to perform numerical simulations of the 
evolution of damage in structures through the finite element method (FEM). Only the kinematics of small strains and 
displacements are considered. 

The routines developed are adequate to metals and materials whit isotropic behavior and linear isotropic hardening. 
The numerical implementation was realized using the MATLAB ® 7.6.0 program. 

Isotropic and orthotropic damage is implemented. The importance of the orthotropic damage is in situations where, 
for example, two or more highly directional loads are applied sequentially. In such cases, each load will cause micro-
cracks to grow in one preferential direction, affecting the material response to subsequent loads in different directions. 
Therefore, the usual isotropy hypotheses may offer a good first approximation, but may lead to substantial errors in 
many practical applications (Souza Neto et al. 2008). In this way, one of the goals of this paper is to compare the 
evolutions of isotropic and orthotropic damages.  
 
2.  CONTINUUM DAMAGE MECHANICS  
 

The Continuum Damage Mechanics (CDM) is a branch of continuum solid mechanics, where it is possible to 
formulate continuum constitutive models capable to accounting for the internal deterioration of the solids. 

The formulation of damage presented is based on the principle of continuum mechanics, on the strain equivalence 
hypothesis and on the effective stress concept σ , which L.M. Kachanov as the pioneer in this study (Katan e Voyiadjis, 
2002; Ladevèze, 1983; Armero e Ollers, 2000). Since the original model proposed by Kachanov (1958) and Rabotnov 
(1963), it did not take long before the concept of internal damage variable was generalized to three-dimensional 
situations. 

The three-dimensional damage in ductile metals coupled which plasticity will be modeled in this paper utilizing the 
Lemaitre’s ductile damage model (Lemaitre e Desmorat, 2005; Souza Neto et al. 2008). 
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2.1. Thermodynamics of damage 

 
The starting point of this theory is the assumption that the free energy, taken as a thermodynamic potential, is a 

function of the set of internal state variables { }, , p Dαεεεε  (Souza Neto et al. 2008), as in Eq. (1): 

 

( ), , e Dψ ψ α= εεεε    (1) 

 
2.1.1. Dissipation potential and  evolution laws 

 

The evolution laws of the internal variables { }, , p Dαεεεε  are derived from a dissipation potencial ϕ  which is a 

function of associated variables { }, ,q Yσσσσ (Lemaitre, 1985). The dissipation potencial is assumed to be written as a 

sum of parcelas which effects of plasticity and hardening pϕ  and damage dϕ , as in Eq. (2):  

 

( ) ( ), ; ;p dq D Y Dϕ ϕ ϕ= +σσσσ    (2) 

 
The evolution laws of plasticity with coupled damage are derived from this potential by mean of a scalar multiplier 

γ  which is always positive,  
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2.2. Isotropic damage 

 
In this case, the damage variable D  is a scalar and presents the same value in all directions (Omerspahic, 2007).  
In the present theory the postulated form for the elastic-damage potential is given by Eq. (4) (Lemaitre e Desmorat, 

2005). The energy density release rate may be written by Eq. (5): 
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introcucing the triaxiality function ( ) ( )( )2
2 / 3 1 3 1 2 /vR pν ν ς= + + − , where C  is the isotropic elasticity tensor, 

( ) ( )1/3p tr= σσσσ  is the volumetric pressure, ( )3/2 :ς = s s  is the von Mises equivalent stress, p= −s Iσσσσ  is the 

stress deviator, ν  is the Poisson ratio and E  is the Young modulus of elasticity. 

The elasticity law is given by Eq. (6), where (1 )D= −ɶC C is the effective elasticity tensor, which considers the 

effect of damage. 
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The effective stress tensor σσσσ  may be written by Eq. (7). Equation (8) shows  the following von Mises form 

adoptad for the yield function f .  

 

( )1 D
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σσσσ
σσσσ    (7) 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

( ) ( ), , yf q D qς σ= − +σσσσ    (8) 

 

where ( ) ( )23 / 2 : 3Jς = =s s s , 'q H α= , 'H  is the isotropic hardening modulus and yσ  is the initial yield 

stress of the material. 
 The plastic flow rule is given by Eq. (9), where N is the flow vector given by Eq. (10) (Souza Neto et al. 2008) 

and 2J  is the second invariant of the stress deviators . The evolution lei of the internal variable associated to the 

isotropic hardening is given by Eq. (11). 
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By taking the Equation (11), the evolution law for the accumulated plastic strain is given by Eq. (12) and the 

Equation (13) give the damage evolution law, where r  and s  are material parameters. 
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The hypothesis of associate plasticity is adopted and the yield function is taken as plastic potential. 
This model admits that damage growth starts only at a critical value of accumulated plastic strain. This value will be 

called the damage threshold and denoted byDε . 

The condition to a mesocrack starts is when the corresponding damage reaches a critical value cD . The critical 

damage is a material parameter. 
 

2.3. Orthotropic damage 
 
The orthotropic damage model used here is an extension of isotropic ductile damage model described above. 
The largest generality for a damage variable is a representation by a fourth order tensor, but for practical 

applications a symmetric second order tensor is often used (Desmorat e Cantournet, 2007). As shown by microscopic 
observations, the second order damage tensor is mainly driven by the plastic strain which make it orthotropic (Lemaitre 
e Desmorat, 2001). 

The forth order effective elasticity tensor and the effective stress tensor are defined by Eq. 14 e Eq.15, respectively. 
 

1 :−=ɶC M C   (14) 
 

=σ σσ σσ σσ σM                                                                                                                                         (15) 
   

The forth order tensor M  may be written by Eq. (16), where ijδ  é o delta de Kronecker, H Hd Dη= , η  is a material 

parameter associated with the variation of Poisson’s ratio due to damage and often for metals 3η ≈ , 

( ) ( )1 / 3HD tr= D : 
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In the above expression, H  is the second order tensor defined by: 

 

( ) 1/2

ij ij
H

−
≡ −I D   (17) 

 
The effective stress tensor also is defined as the sum of its volumetric and deviatoric parts, as 
 

= pσσσσ s + I   (18) 

 
where s  e p  are, respectively, the effective stress deviator and effective volumetric pressure defined by 

 

[ ]dev≡s HsH ,  
1 H

p
p =
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  (19) 

The energy density release rate tensor is written as /ij ijY Dρ ψ− = ∂ ∂ , but in the damage evolution law it is replaced 

by an scalar Y−  called effective elastic energy density, given by 
 

21 1

2 2 2

e e e v
ijkl kl ij ij ij

R
Y = C

E

ς
ε ε σ ε− = =   (20) 

 

where ijklC  are the components of the elasticity tensor C  and ( ) ( ) ( ) ( )2
2/3 1 3 1 2 /vR pν ν ς+ + −=  is the 

effective triaxiality function, with ( ) ( ) ( ) ( ) 1/2
3 / 2 :

eq
dev devς = =   HsH HsH HsH . 

According Lemaitre et al. (2000), the anisotropic damage evolution law is a simple extension of the isotropic case, if 

we considerer the dissipative potential given by Eq. (21), where ⋅  applied to a tensor means the absolute value of the 

principal values, α  is the internal variable associated to the isotropic hardening, and f  is the von Mises yield function 

given by Eq. (22): 
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( )yf qς σ= − +   (22) 

 

The plastic flow rule is given by Eq. (23), where the normals XN and Xn  are definide by Eq. (24) (Lemaitre e 
Desmorat, 2005). The evolution of the hardening variable has the usual format given by Eq. (25), and the accumulated 
plastic strain rate by Eq. (26). 
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According to present theory, the rate of damage tensor is assumed to follow the directions of plastic strain. The 

evolution law for damage is defined by 
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with the absolute plastic strain rate defined by 
3

1

 
i

p p p p
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iεɺ  are the eigenvalues of the plastic 

strain rate tensor pɺεεεε , and { }p
ie  is an orthornormal basis of eigenvectores of p

ɺεεεε . 

The damage evolution starts only above a threshold defined in terms of the accumulated plastic strain, i.e. 

0,  se p
ac Dε ε= <ɺD . 

According to a physics definition of damage, a mesocrack is initiated when the density of defects in some plane 

reaches the critical value cD .  For anisotropic damage with principal damage components ID , this take place when 

max I cD D=  (Lemaitre e Desmorat, 2001). 

 
2.4. Integration and return-mapping algorithm for damage coupled with elastoplasticity model 

 
Next the constitutive model is presented in its implicit incremental form, which leads to the return mapping 

algorithm. In this case we consider the three-dimensional elastoplasticity model with isotropic hardening coupled with 
isotropic and orthotropic damage, proposed in Lemaitre e Desmorat (2005). 

The numerical algorithm is based on a prediction step which correspond to the elastic trial state and a correction step 
corresponding to the plastic/damage corrector state. 

 

1) Evaluate the elastic trial test (elastic predictor) 

Given ∆εεεε and the state variables at nt , evaluate the elastic trial test 
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2) Check plastic consistency 
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e    
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Else plastic step go to (3). 
 

3) Return mapping (correction step) 

Let the local residual defined as { } { }, ,
T

elocR R R Rγ∆= εεεε D . Solve the system for the unknown independent 

variables { }, ,eW γ= ∆εεεε D . 
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where 1n n+∆ = −ε ε εε ε εε ε εε ε ε . 

The Newton-Raphson iterative scheme may be used again and one has to solve the local iterative problem: 
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with { }, ,eW γ∆ = ∆ ∆∆ ∆εεεε D , where the expression for the Jacobian matrix [ ] { } ( )

1
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i

nlocR W
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= ∂ ∂∆  Jac   (or any good 

approximation) is needed for convergence reasons. In this paper one uses the finite differences method to evaluate the 
Jacobian matrix. 
 

4) Update explicitly the remaining variables  
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5) Evaluate the elastoplastic tangent operator: 

Let the first column of the inverse of Jacobian matrix [ ]Jac  at convergence is  

 0  0 
 
 
0 
 
 
0 

= 
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The expression for the elastoplastic tangent operator consistent which the integration algorithm above is (Lemaitre e 
Desmorat, 2005): 
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3. NUMERICAL APPLICATION 

 
In this section a numerical test is implemented. The coupling plasticity/isotropic and orthotropic damage is 

performed through the application of the algorithm detailed in Section 2.4. 
The entire computational implementation was done via user code using the MATLAB® 7.6.0. The visualization of 

the results of the analysis was performed using the GID® 9.0.2 software, which is a system of pre and post-processing of 
Finite Elements results. In this problem the isoparametric solid elements (hexahedrons) with eight nodes is utilized. 

The problem considered is the three-dimensional analysis of a thick-walled cylinder (Fig.1).  
The following constraints of displacement are imposed on nodes on the surface 0z = : 
- Component 0z =  on all nodes. 
- Component 0x =  on nodes along the y-axis. 
- Component 0y =  on nodes along the x-axis. 

Firstly, a prescribed axial displacement is applied at surface 30z = mm of the cylinder, divided in 50 steps. After 
that, the cylinder is subjected to prescribed outward radial displacement at its inner surface, also over 50 steps. The 
constitutive model of the material is elastoplastic, with von Mises yield criterion, linear isotropic hardening and 
isotropic and orthotropic damage, as presented in Section 3.4. The problem data are: E = 210 GPa (elasticity modulus); 
ν  = 0,3 (Poisson ratio); 'H = 10,5 GPa (isotropic plastic hardening modulus); yσ  = 620 MPa (yield stress); cD  = 0,40 

(critical damage); Dε  = 0,0 (damage threshold); η  = 1,0 (parameter of material related to the damage in the isotropic 

case) ; η  = 3,0 (orthotropic case);  r = 3,5 and s = 1,0 (material parameters for damage); d1 = 2 mm (prescribed axial 

displacement); d2 = 0,3 mm (prescribed radial displacement). 
 
 

 
 

Figure 1. Cylinder dimentions 
 

An mesh consisting of 640 hexahedral elements was used, as shown in Figure 3. 
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Figure 3. Mesh used in the analysis 
 

3.1.  Comparison of results 
 
In this section, some results of the evolution of isotropic and orthotropic damages are compared. Figure 4 shows the 

damage – displacement variation in z direction for the models of isotropic and orthotropic damage for the first 
prescribed displacement (maximum value in a face element). In the orthotropic case the principal values of damage 
corresponding to the directions of orthotropy are shown. We can see that in both cases of damage the values of isotropic 
and orthotropic (first principal value) damage are very close. 
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Figure 4. Damage versus displacement in z direction [mm] 

 
Figure 5 shows the damage - accumulated plastic strain curve for the models of isotropic and orthotropic damage 

after the two prescribed displacements. In first prescribed displacement we can see similar results for both isotropic and 
orthotropic (first principal value) cases, with accumulated plastic strain until 0.06. After the second prescribed 
displacement we can see that the material response was affected by the change in direction of loading. The values of 
damage and accumulated plastic strain in the isotropic case are larger than the orthotropic (first principal value) one. In 
this case, the principal directions were not modified, but a change in the proportion between the principal plastic strains 
after the first load is verified. 
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Figure 5. Damage versus accumulated plastic strain  

 
In Figure 6 is shown the behavior of isotropic damage after the two loads. 
 

 
 

Figure 6. Isotropic damage after the two loads 
 

4. CONCLUSION 
 

The aim of this study was to compare, through numerical simulation the evolution of the isotropic and orthotropic 
damages in metals coupling theories of plasticity and damage. 

The computational implementation adapted to three-dimensional analysis was based on Finite Element Method 
(FEM) and in a constitutive damage model of Lemaitre that is adequade for metallic materials. This model is applied to 
the analysis both isotropic and orthotropic beyond the analysis without damage.  

Two sequential loads were applied with change of direction. For the orthotropic case each load induced the damage 
growth in a preferred direction, affecting the response of the material as compared with the isotropic case. We can see 
that the maximum value of isotropic damage is larger than the orthotropic (first principal value) one. 
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