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Abstract. In this paper, a three-dimensional ductile damagedet based on principles of continuum mechanics is
analyzed. The hypothesis of strain equivalencethadoncept of effective stress, according to ehatilogy based
on the thermodynamics of irreversible processesegothe model. The theories of elastoplasticity alanage
(Lemaitre model) are coupled to perform a numeraiatulation of the evolution of damage in structutierough the
finite element method (FEM). Postulates of damagehamnics in solid medium are used to incorporatedhmage as
an internal variable to the model. An isotropic lstadamage variable is firstly used and later th@satropy in the
distribution of microcracks is introduced throughet orthotropic damage which is represented by amseorder
symmetric tensor. The program developed is base8#fEM and the constitutive model of Lemaitre is ahlié for
metallic materials, considering an isotropic magdrbehavior with linear isotropic hardening and viises yield
criteria. The corresponding numerical algorithmegtating the constitutive equations is based orredigtion step
(elastic trial state) and a correction step (pla#tiamage corrector state), and the implementatibthe numerical
simulation was performed using the MATLAB®. Theodlgm for integration and mapping of return based the
constitutive model are presented, as well as thearical results.

Keywords: orthotropic damagegamage mechanigglastoplasticity, Finite Element Method.

1. INTRODUCTION

Continuum Damage Mechanics (CDM) represents a kmgptoach to detect failure in a matedad it is one of the
most promising tools to predict macro-crack initiatand propagation (Doghri, 1995), treating thendged material as
a macroscopically homogeneous one (Chaboche, 1B84gture mechanics became one of its leading hesndt was
based on the analysis of existing cracks, reprexgtite damage that is the deterioration of materach occurs prior
to failure (Lemaitre, 1996).

The objective of this paper is coupling the themoéplasticity and damage to perform numericaludations of the
evolution of damage in structures through the ditement method (FEM). Only the kinematics of $rsimhins and
displacements are considered.

The routines developed are adequate to metals atetials whit isotropic behavior and linear isotmpardening.
The numerical implementation was realized usingMiA'LAB © 7.6.0 program.

Isotropic and orthotropic damage is implemented: iFhportance of the orthotropic damage is in siomast where,
for example, two or more highly directional loads applied sequentially. In such cases, each ladhatause micro-
cracks to grow in one preferential direction, afffeg the material response to subsequent load#fereht directions.
Therefore, the usual isotropy hypotheses may affgood first approximation, but may lead to sub#hmrrors in
many practical applications (Souza Neto et al. 2008 this way, one of the goals of this paperdscompare the
evolutions of isotropic and orthotropic damages.

2. CONTINUUM DAMAGE MECHANICS

The Continuum Damage Mechanics (CDM) is a brancleasftinuum solid mechanics, where it is possible to
formulate continuum constitutive models capabladocounting for the internal deterioration of thédso

The formulation of damage presented is based ompiriheiple of continuum mechanics, on the strainieajence
hypothesis and on the effective stress conéeptvhich L.M. Kachanov as the pioneer in this st{dgtan e Voyiadiis,
2002; Ladeveze, 1983; Armero e Ollers, 2000). Stheeoriginal model proposed by Kachanov (1958) Batiotnov
(1963), it did not take long before the conceptirdérnal damage variable was generalized to thieefwsional
situations.

The three-dimensional damage in ductile metals leauwhich plasticity will be modeled in this papgilizing the
Lemaitre’s ductile damage model (Lemaitre e Dest@@05; Souza Neto et al. 2008).
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2.1. Thermodynamics of damage

The starting point of this theory is the assumptioat the free energy, taken as a thermodynamiengat, is a
function of the set of internal state variab{esp, a, D} (Souza Neto et al. 2008), as in Eq. (1):

w=y(e a.0) (1)
2.1.1. Dissipation potential and evolution laws

The evolution laws of the internal variabl%sp, a, D} are derived from a dissipation potenciglwhich is a
function of associated variabIc{sr,q,Y} (Lemaitre, 1985). The dissipation potencial is assd to be written as a

sum of parcelas which effects of plasticity anddearing ¢” and damageﬁbd ,as in Eq. (2):

¢=¢"(0.q;0)+¢°(Y; D) (2)

The evolution laws of plasticity with coupled damage arévddrfrom this potential by mean of a scalar multiplier
y which is always positive,

0 0 . 0
p:yl, d:—yly D:—yl (3)
lilea 0q oY

2.2. Isotropic damage

In this case, the damage varialideis a scalar and presents the same value in all direcmer§pahic, 2007).
In the present theory the postulated form for the elastinadje potential is given by Eq. (4) (Lemaitre e Desmorat,
2005). The energy density release rate may be writtdtgby(5):

ed[ e 1 . e 1+tvo:o v tr(a)2
=—¢€ |1~ €= -— 4
i (g’D) 2f (1-p)c e 2E 1-D 2 1-D X
o (e p)eteeci s SR
Y paD(s,D) 5€ :C:¢ 2E (- DY (5)

introcucing the triaxiality functiorR, = 2/3(1+ v) + 3(1— 2/)( p /c)z, where C is the isotropic elasticity tensor,

p=(13) tr(a) is the volumetric pressure; =+/(3/2)s:'s is the von Mises equivalent stress= g - pl is the
stress deviatory is the Poisson ratio anfl is the Young modulus of elasticity.

The elasticity law is given by Eq. (6), whet@= (1- D)C is the effective elasticity tensor, which considte
effect of damage.

ed

o =(1-D)c:e°=C:¢€° (6)

o=p
o€

e

The effective stress tens@ may be written by Eq. (7). Equation (8) shows tbkowing von Mises form
adoptad for the yield functiorf .

g

(1-0)

g =

(7)
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f(a,q,D):f—(ay+q) (8)

where ¢ = \/(3/2)5 'S = \/3]2 (§) , q=H'a, H' is the isotropic hardening modulus aug is the initial yield
stress of the material.

The plastic flow rule is given by Eq. (9), whelis the flow vector given by Eq10) (Souza Neto et al. 2008)
and J, is the second invariant of the stress deviatofhe evolution lei of the internal variable asstetl to the
isotropic hardening is given by Eq. (11).

9
=y—=y—=yN 9
g

3 S 3 S
R oo -

09 0p°
—yi = —yi =
aq aq

a= y (11)

By taking the Equation (11), the evolution law the accumulated plastic strain is given by Eq. (A2J the
Equation (13) give the damage evolution law, wherand s are material parameters.

2= el =

d S
p=—y%? - (":(j er (13)

aY

The hypothesis of associate plasticity is adoptetthe yield function is taken as plastic potential
This model admits that damage growth starts only @itical value of accumulated plastic strainisTvalue will be

called the damage threshold and denoteg, by

The condition to a mesocrack starts is when theesponding damage reaches a critical valjye The critical
damage is a material parameter.

2.3. Orthotropic damage

The orthotropic damage model used here is an d@rten$isotropic ductile damage model describedvabo

The largest generality for a damage variable isepresentation by a fourth order tensor, but forctiral
applications a symmetric second order tensor isnofised (Desmorat e Cantournet, 2007). As showmibgoscopic
observations, the second order damage tensor idymhiven by the plastic strain which make it atttopic (Lemaitre
e Desmorat, 2001).

The forth order effective elasticity tensor and éffiiective stress tensor are defined by Eq. 14.&Fqespectively.

c=M"':C (14)

The forth order tensoM may be written by Eq. (16), whem‘% € o delta de Kronecked,, =7D,, 77 is a material
parameter associated with the variation of Poissoratio due to damage and often for metajs= 3,
D, =(1/3)tr (D):
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Mi = Hi Hy _;[kaqj +Hj2él ]+;Hp§€M +3(1)4fﬁ (16)

1-d,
In the above expressiom] is the second order tensor defined by:

-1/2
H; =(1 -D), (17)
The effective stress tensor also is defined astime of its volumetric and deviatoric parts, as

g=5+7l (18)

whereS e p are, respectively, the effective stress deviatal @ffective volumetric pressure defined by

p
1-d,,

s=defHsH], p=

(19)
The energy density release rate tensor is WritﬁeﬁYﬁl =poyl aqj , but in the damage evolution law it is replaced

by an scalar-Y called effective elastic energy density, given by

e e

1 . ¢
Ciw&a&i =20

Y= i 5

1 1
= - (20)
2 2 2E

where Cj are the components of the elasticity tengor and R, =(2/3)(1+|/)+3(1— 2/)(@/6)2 is the

. o . o _ . 1/2
effective triaxiality function, withg = (HsH )eq = [(3/ 2) dev(HsH ) : de\(HsH ):| .
According Lemaitre et al. (2000), the anisotropaenéhge evolution law is a simple extension of toérdpic case, if
we considerer the dissipative potential given by 24), Where|[F applied to a tensor means the absolute valueeof th

principal values,a is the internal variable associated to the isatrbprdening, andf is the von Mises yield function
given by Eq. (22):

(21)

f :5—(ay+q) (22)

The plastic flow rule is given by Eg. (23), whehe thormalsN X and N* are definide by Eqg. (24)Lemaitre e

Desmorat, 2005)The evolution of the hardening variable has thealformat given by Eq. (25), and the accumulated
plastic strain rate by Eq. (26).

=y—=yN X (23)

X = X x_3s_|35s
N —dev(Hn H), n Y \E”§” (24)

a=y (25)
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P :\/2”5"” :\/2 NNy (26)

According to present theory, the rate of damagseders assumed to follow the directions of plasti@in. The
evolution law for damage is defined by

d R S
D:_VM:(YJ EP (27)

. 3
with the absolute plastic strain rate defined &Y= Z‘éip‘qp 0 ¢, where &” are the eigenvalues of the plastic
i=1

strain rate tensog”, and{e,p} is an orthornormal basis of eigenvectores8t

The damage evolution starts only above a threshefihed in terms of the accumulated plastic straim,
D=0, seel <¢,.

According to a physics definition of damage, a neesck is initiated when the density of defects @ame plane
reaches the critical valu®_. For anisotropic damage with principal damage poments D, , this take place when

maxD, =D, (Lemaitre e Desmorat, 2001).
2.4. Integration and return-mapping algorithm for damage coupled with elastoplasticity model

Next the constitutive model is presented in its linipincremental form, which leads to the returrapping
algorithm. In this case we consider the three-dsimral elastoplasticity model with isotropic harthgncoupled with
isotropic and orthotropic damage, proposed in Lénma& Desmorat (2005).

The numerical algorithm is based on a predictiep sthich correspond to the elastic trial state aadrrection step
corresponding to the plastic/damage corrector.state

1) Evaluate the elastic trial test (elastic preutict
Given 4¢ and the state variables gt, evaluate the elastic trial test

eteste_ _ e teste _ teste _ teste _ —teste e testt
€1 T &y +4¢, Oy =dy, ‘gac(n+l) - gac(n)' Dn+1 - Dn ' n+l C£n+1
2) Check plastic consistency
teste,_ — teste . teste
If 1 =Cu (ay +H'a, ) <0,
. _ [Ateste ep —
then elastic step, séf}nﬂ = (E)n+l eC, =C,

exit.
Else plastic step go to (3).

3) Return mapping (correction step)

T
Let the local residual defined a{sRoc} ={R£e, Ry Ra} . Solve the system for the unknown independent

variablesw :{ee, Ay, D} .
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Rse:Age_A£+A£p:£i2_5:_A£+AV$21N$1 S
Ry = fha = Zr(1i+)1 - (Jy +H I(an +AV$21)) 0
S A
D,(L)l -D, - (_rYj 1A1/I:Eil) (isotrépico) [ = < 0 ¢
RD = s n+l
Dﬁ?l -D, _(_rYj &P (ortotrépico) 0

whereAe =€, - €,.
The Newton-Raphson iterative scheme may be used agd one has to solve the local iterative problem

0
{Ruc (na} * aiiw} (Wi - wi) =0

n+l

with AW :{Age,AAy, AD} , Where the expression for the Jacobian me[t.ﬂ'm:] = [6{ ROC} laAw](i)l (or any good
n+.

approximation) is needed for convergence reasonthi$ paper one uses the finite differences metboelaluate the
Jacobian matrix.

4) Update explicitly the remaining variables

— _ e _ P _ _ €
Oni1 — C£n+1’ ahy =4, + Ayml' €1 T €1 "€

/2 .
ac (1) — ggc(r) + 3 NN XAVM (for orthotropic damage)

+ Ayn+l
1- Dn+1

p

ac () = egc( 3 (for isotropic damage)

&

0,.,=M ;flﬁml (for orthotropic damage)

O = (1— Dn+1) g,., (for isotropic damage)

1/2
3
Chay = [2 dev(H ne1SmeH n+1) : de\(H T I ])} (for orthotropic damage)

3 S
c= \/ Sl ™1 _ (for isotropic damage)
2 (1_ Dn+1) (1_ Dn+1)

5) Evaluate the elastoplastic tangent operator:
Let the first column of the inverse of Jacobian maEﬂ&c] at convergence is
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[Jac| :y e

-1

[Jac]Ee’Ee

[ J ac] _Dl, £°

The expression for the elastoplastic tangent opeansistent which the integration algorithm ab@/€Lemaitre e
Desmorat, 2005):

_ -1 oMt -1
c®=m7t:.c: [.Jac]eelb_e +&:? : [Jac]D’Ee

3. NUMERICAL APPLICATION

In this section a numerical test is implementede Tdoupling plasticity/isotropic and orthotropic dage is
performed through the application of the algoritthetailed in Section 2.4.

The entire computational implementation was domeusier code using the MATLAB7.6.0. The visualization of
the results of the analysis was performed usingxf¥ 9.0.2 software, which is a system of pre and postgssing of
Finite Elements results. In this problem the isapaatric solid elements (hexahedrons) with eightesad utilized.

The problem considered is the three-dimensiondyaiseof a thick-walled cylinder (Fig.1).

The following constraints of displacement are imggbsn nodes on the surfaze 0 :

- Componentz =0 on all nodes.

- Componentx =0 on nodes along theaxis.

- Componenty = 0 on nodes along theaxis.

Firstly, a prescribed axial displacement is apphl¢durfacez =30 mm of the cylinder, divided in 50 steps. After
that, the cylinder is subjected to prescribed outwadial displacement at its inner surface, alger &0 steps. The
constitutive model of the material is elastoplastiéth von Mises yield criterion, linear isotropltardening and
isotropic and orthotropic damage, as presentecati@ 3.4. The problem data are:= 210 GPa (elasticity modulus);

V = 0,3 (Poisson ratio)d '= 10,5 GPa (isotropic plastic hardening modulus);= 620 MPa (yield stressp), = 0,40

(critical damage);s, = 0,0 (damage thresholdy, = 1,0 (parameter of material related to the damaghe isotropic

case) ;n = 3,0 (orthotropic case); r = 3,5 and s = 1,0témal parameters for damagel);= 2 mm (prescribed axial
displacement)d, = 0,3 mm (prescribed radial displacement).

Figure 1. Cylinder dimentions

An mesh consisting of 640 hexahedral elements wed,as shown in Figure 3.
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Figure 3. Mesh used in the analysis

3.1. Comparison of results

In this section, some results of the evolutionsotiopic and orthotropic damages are comparedré&igjishows the
damage — displacement variation Zndirection for the models of isotropic and orthgio damage for the first
prescribed displacement (maximum value in a faeeneht). In the orthotropic case the principal valoé damage
corresponding to the directions of orthotropy dreven. We can sethat in both cases of damage the values of isatropi
and orthotropic (first principal value) damage @eey close.

0,040 l l l

0,035 _'7 — = — Isotropic damage /
' | |— = — First principal orthotropic damage /
0,030 4| —*— 2nd principal orthotropic damage
4 |—~— 3th principal orthotropic damage /
0,025 1 o~
0,020 /

0,015 / /

0,010 ] Pt f /

o‘oos ] ”'(f w“//
\ 'W

0,000 -**‘:“::;

-0,005

Maximum damage

0,0 0,5 1,0 15 2,0

Displacement in the axial direction [mm)]

Figure 4. Damage versus displacemergt direction [mm]

Figure 5 shows the damage - accumulated plastiinsturve for the models of isotropic and orthotcogamage
after the two prescribed displacements. In firgispribed displacement we can see similar resultsdih isotropic and
orthotropic (first principal value) cases, with aowlated plastic strain until 0.06. After the sedoprescribed
displacement we can séeat the material response was affected by thegeh@andirection of loading. The values of
damage and accumulated plastic strain in the igimtrcase are larger than the orthotropic (firshgipal value) one. In
this case, the principal directions were not medifibut a change in the proportion between thecipah plastic strains
after the first load is verified.
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Figure 5. Damage versus accumulated plastic strain

In Figure 6 is shown the behavior of isotropic dgmafter the two loads.

Isotropic damage
lﬂ,1 3604
0.12988
-0.12171
. 0.11355
- 0.10539
. - 0.097226
0.089063
0.080901
0.072738

Figure 6. Isotropic damage after the two loads
4. CONCLUSION

The aim of this study was to compare, through nigaksimulation the evolution of the isotropic aodhotropic
damages in metals coupling theories of plastiaity damage.

The computational implementation adapted to thieeedsional analysis was based on Finite Elementhbtet
(FEM) and in a constitutive damage model of Lenaatitrat is adequade for metallic materials. This ehdglapplied to
the analysis both isotropic and orthotropic beytivdanalysis without damage.

Two sequential loads were applied with change afdion. For the orthotropic case each load indubeddamage
growth in a preferred direction, affecting the raspe of the material as compared with the isotropge. We can see
that the maximum value of isotropic damage is latlyan the orthotropic (first principal value) one.
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