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Abstract. In this work, the Characterisc Based Split (CBS) scheme is applied for two-dimensional incompressible flow 
simulations over tube bundles. Numerical simulations of unsteady flows have been carried out on unstructured meshes 
of linear triangles. With the CBS scheme is possible to use the standard Galerkin finite element method for convective 
dominant problems without oscillations in the solution. The results of some test cases show that the CBS formulation is 
accurate and efficient. 
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1. INTRODUCTION 
 

The Bubnov-Galerkin finite element method or the standard Galerkin finite element method (GFEM) gives the 
minimum error in the L2 norm for self-adjoint problems and in this case the system of algebraic equations resulting is 
symmetric. However, if the GFEM is used to solve incompressible flow equations without any stabilization it may 
result in violent oscillations. The instability due to the non-linear convective acceleration terms, which make the flow 
equations non-self-adjoint, leads to a system of non-symmetric equations, Liu (2005). Also, the incompressible limit, 
Ladyshenskaya-Babuska-Brezzi (LBB) conditions, introduces instability if equal order interpolation functions are used 
for velocity and pressure fields. In this way, use of simple linear triangular elements results in highly oscillatory 
solutions when the viscous flows of incompressible fluids is solved using equal order interpolation. The violation of this 
condition often results in numerically unphysical oscillations in the pressure field. 

There are several stable approximations available to deal with the steady-state situations which reduce/eliminate 
oscillations resulted from standard discretization of convective acceleration terms. These schemes of stabilization 
include the Streamline Upwind Petrov-Galerkin (SUPG), the Finite Increment Calculus (FIC) method and the Subgrid 
Scale (SGS). For stabilization via transient formulation there are, for example, the Characteristic-Galerkin (CG) method 
and the Taylor-Galerkin method (TG), Liu (2005).  

The Characteristic Based Split (CBS) based on firstly removing all pressure gradient terms from the Navier-Stokes 
equations leads to a non-singular solution for any shape functions used for velocity and pressure. In the second step, the 
pressure is obtained from the continuity equation and finally the intermediate velocity variables obtained from the first 
step are corrected to get the final velocity values. 

The CBS for both incompressible and compressible flows was initially presented by Zienkiewicz and Codina (1995) 
and has been extended to investigate other applications: solid dynamics, shallow water flows, thermal and porous 
medium flows, for example. The CBS scheme has been combined with the standard Artificial Compressibility (AC) 
method to obtain an efficient and accurate explicit matrix free procedure, Liu (2005). In this work a semi-implicit CBS 
scheme, in which a matrix solution procedure is required for the implicit solution of the pressure Poisson equation, has 
been applied for computational solution of the Navier-Stokes equations in two-dimensional domains, Pereira (2010). 

 
2. THE GOVERNING EQUATIONS AND THE CBS SCHEME 
 

The governing equations for incompressible viscous flows with heat transfer are the continuity, the momentum and 
the thermal energy equations, generally called the Navier-Stokes equations. These equations are now considered and the 
CBS scheme is described in the subsection 2.2.  

 
2.1. Governing equations 
 

The governing equations are presented in a non-dimensional form of the governing equations as presented in Pereira 
(2010) and this form is: 
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where /i iX x L= ; i iU uρ= ; 2/P p uρ∞ ∞= ; ( ) ( )* / wT T T T T∞ ∞= − −  and all physical properties in Eqs. (1) - (3) are 

non-dimensionalized in relation to reference properties at T∞ . * /ρ ρ ρ∞= ; * /μ μ μ∞= ; * /α α α∞=  are the density, 
the dynamic viscosity and the thermal diffusivity respectively. L is a reference length; * /i iu u u∞=  and the Reynolds and 
the Prandtl numbers are defined as /Re = u Lρ μ∞ ∞ ∞  and /pPr = c kμ∞ ∞ ∞  respectively. An asterisk indicates 
dimensional values. 
 
2.2. The CBS Scheme 
 

Details of the derivation of the CBS scheme, for the Navier-Stokes equations, can be found in Lewis, Nithiarasu and 
Seetharamu (2004) and it’s an extension of the CG method of Zienkiewicz and Taylor (2000). It’s based on evaluation 
of the time derivative along the characteristic that eliminate the convective term in the transport equation. So, a pure 
diffusion equation is obtained and after an expansion in Taylor series, a time discretized equation to a scalar variable 
similar to Eq. (3) has the form, see details also in Pereira (2010): 
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(4) 

 
Note that the convection terms reappear in the time discretized equation and also higher order terms appeared. These 

high order terms work as stabilizing of the solution. 
 

2.2.1 Time discretization of the Navier-Stokes equations 
 
The time discretization of the continuity and the momentum equations is done in three steps. In the first step the 

pressure terms are dropped from the momentum equations and an intermediate velocity is obtained as 
 

Step 1: Intermediate velocity 
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(5) 

 
In the second step, a Poisson equation is solved for the pressure field considering the continuity equation. This 

Poisson equation is of the form 
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Step 2: Pressure calculation 
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In the third step the final velocity is obtained as 
Step 3: Corrected velocity 
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In incompressible flows, if there is heat transfer, the time discretization of the temperature field can be obtained in a 

fourth step, after applying the CBS scheme to the Eq. (3). The resulting equation is: 
Step 4: Temperature transport equation 
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(8) 

 
2.2.2 Spatial discretization and matrix form 
 

Now the standard Galerkin approximation with the divergence theorem is applied to the time discretized Eqs. (5) to 
(8). In the GFEM the following set of interpolations are used for the variables: 
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are 
the interpolation functions. The integration of the equations and the use of the divergence theorem result in the weak 
formulation in the form 
 

Step 1: Weak form of intermediate momentum 
 

( )

( ) ( )

*

2

1
Re

2

nT
T T u
u j u k j ij

k i

n
n

T T
m u k j u d

m k

NN U d t N u U d d
x x

t u N u U d t N t d
x x

τ
Ω Ω Ω

Ω Γ

⎡ ⎤∂∂
Δ Ω = Δ − Ω− Ω +⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤⎛ ⎞Δ ∂ ∂ ⎡ ⎤+ − Ω + Δ Γ⎢ ⎥⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠⎣ ⎦

∫ ∫ ∫

∫ ∫
 

(10) 

 
Step 2: Weak form of pressure equation (semi-implicit CBS) 
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Step 3: Weak form of momentum correction 
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Step 4: Weak form of temperature transport equation  
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The final matrix form of the weak formulation (10)-(13) is 
Step 1: Intermediate momentum 
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Step 3: Momentum correction 
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Step 4: Temperature transport equation 
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In the Equations (14) – (17) the matrices and vectors are defined as 
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Where B is a matrix defined by 

 

uSNB =  (19) 
 

and S is a differential operator that for two-dimensional problems is of the form: 
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And the vectors m and oI  are 
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The CBS scheme as has been proved by Liu (2005) doesn’t have the LBB restriction for interpolations functions. 

Velocity and pressure fields can be interpolated by functions of the same order without any spurious oscillation in the 
pressure field. For the semi-implicit form used in this work, the mass matrices in Eqs. (14), (16) and (17) are the lumped 
matrices. 
 
3. SOLUTION AND RESULTS 
 

The only system of equations solved in this scheme is Eq. (15), all others solutions are obtained explicitly. The 
solution of Eq. (15) is obtained by applying the pre-conditioned conjugate gradient method. In the explicit solution the 
time step can be calculated locally for stability considerations as demonstrated by Liu (2005). In this work, however, a 
small fixed time step of the order 10-5 has been specified. The original source program can be obtained from Lewis, 
Nithiarasu and Seetharamu (2004). This program has been validated in several problems. Some modifications of the 
original program were done and the modified code was tested in the case of the classical benchmark problem of the lid-
driven cavity, in the domain 0 1; 0 1X Y≤ ≤ ≤ ≤ , presenting good agreement with results from the literature as shown 
in Fig. 1. Here is also presented an application for the case of simulation of flow over a tube bundle. The problem 
considered has application in many heat transfer processes. In the case it is considered the staggered arrangement of 
tubes. 
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Figure 1. Flow at different times in a lid-driven cavity for Re = 1000. 

 
The domain of the problem is presented in Fig. 2. For this case is considered that the flow characteristics repeat 

periodically, so only the dashed domain in Fig. 2 is discretized. Following Roychowdhury, Das and Sundararajan 
(2002), the domain for simulation is the range: 0 1,5; 0 1x y≤ ≤ ≤ ≤ . In the case the longitudinal pitch is 2LS =  and 
the transversal pitch is 1.5TS = . In this simulation the reference length is the cylinder diameter chosen to be 1D = . 
There is some difficult to specify the boundary condition at the vertical inlet and outlet of the domain because they are 
not known before the solution. These boundary conditions can be specified during the solution to satisfy the mass 
conservation. However, in the present work a fictitious unitary axial velocity is applied at inlet and null pressure is 
applied at outlet. Non-slip boundary conditions are applied at tube wall. At the horizontal contours is imposed condition 
of symmetry as boundary conditions. It considered that the flow is heated by the walls of the tube. The non-dimensional 
temperature is zero at inlet and unitary at the tube walls.  
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(a) Staggered tube bundle and domain for simulation. 
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(b) Discretized domain in linear triangular elements. 

 
Figure 2. Tube bundle in staggered arrangement and discretized domain (5864 nodes and 11420 elements) 
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Figure 3. Flow development along the time for Re = 1000. 
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Now, some results of simulations are presented for the velocity and temperature fields. In Figure 3 is shown the 
evolution of the velocity field considering the streamtraces of the flow. It can be observed that the growing of the 
recirculation zone behind the lower tube presents the behavior expected. In front of the upper cylinder none 
recirculation is formed. To a better analysis of the flow, a simulation of the complete domain should be more 
appropriated. Also, others combinations of longitudinal and transversal pitches have to be considered to analyze the 
influence of the distance between cylinders on the flow. In this work none turbulence model has been implemented. For 
higher Reynolds numbers flows may be necessary some turbulence model for the corrected simulations of the flow 
field. With a time step of 10-5 it takes about forty minutes to run one unity of time, in the case of this simulation on a 
personal computer of 2 Gb de RAM and Intel processor core i5, 750 of 2.67 GHz.  

In Figure 4 is shown the temperature field at different times for a Prandtl number equal to 0.71. The maximum 
temperature must be 1. Notice that the expected values have been simulated. By inspection of the Fig. 4, it can be 
observed that the fluid is more heated in the wake of the lower cylinder. The region of heated fluid in front of the upper 
cylinder is thin. The characteristic of boundary layer is simulated in front of the upper cylinder.  
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Figure 4. Temperature field in different times for Re = 1000. 
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Figure 5. Flow development along the time for Re = 1500. 

 
Some results of simulations for Reynolds number of 1500 are also presented in Figs. 5 and 6. In Figure 5 it is shown 

the development of the flow by the streamtraces at some initial times and in Fig. 6 it is shown results for the 
temperature field. In this case the results suggest the formation of a second small vortex after the separation of the flow 
from the cylinder surface, as can be seen at t= 5. Qualitatively the results seem to have the expected behavior. 
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Figure 6. Temperature field in different times for Re = 1500. 

 
3. CONCLUSIONS 
 

The semi-implicit CBS scheme has been applied in this work to the heat transfer problem in a bank of staggered 
tubes. The corrected behaviors of the velocity and temperature fields were predicted. Only one configuration of 
longitudinal and transversal pitches was considered. The flows were simulated without any turbulence model for the 
Reynolds number adopted. The CBS was effective and presented good results for the cases analyzed. Simulations of 
others combinations of pitches are necessary for more insight in the evaluation of the influence of the distance between 
tubes. 
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