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Abstract. This work presents an optimization system developed to find optimal parameters for neural oscillators used
for trajectory generation of an exoskeleton for lower limbs. An exoskeleton can be considered as a biped robot, with a
given force interaction between the user and the robot. Since biped robots must present cyclical joint trajectories during
the walking, neural oscillators are being used as trajectory generators for these systems. The neural oscillators used
in this work are based on Matsuoka oscillators, consisting of two mutual inhibitory neurons which are able to produce
a cyclical output. Each neuron is modeled by two differential equations whose parameters are difficult to be set for a
given desired output. In this way, it is developed an optimization system to find the better values to the neural oscillator
parameters given a predefined desired joint trajectory of an exoskeleton for lower limbs. This optimization system works
to minimizing the error between the trajectory generated by the oscillator and the desired trajectory, regarding the robot
dynamics. The advantage of using oscillators is justified because the trajectories can be generated in a real time process,
with a less time-consuming with relation to analytical methods. The results show that the proposed optimization system
and the trajectory generator using neural oscillators can be applied in an adaptive model that include interaction forces
between the user and the robot, so changing the trajectory according to the user intention.
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1. INTRODUCTION

The field of robotic rehabilitation has received an increasing interest over the last years, and the development of
devices to assist disabled people, like exoskeletons, is one of the main focus of the researches, (Pons, 2008; Gomes et al.,
2009). Amongst several topics, biped locomotion has been a big motivation for researchers working with recovery of
human walking. In general, when the dynamic equations of the robot are well defined, they are used to generate joint
trajectories, as performed in Huang et al. (2001), where the dynamic model and a spline interpolation method are used
to find the joint trajectories with stability guaranteed by the Zero Moment Point criterion. However, the use of dynamic
equations requests a high computational cost due to nonlinearities. The resulting solutions are generally not suitable for
implementation due to approximations performed by computer restrictions. Also, usually it is imperative in robotics to
work in real time applications, and the trajectory generator algorithm should be sufficiently fast to provide the desired
trajectory. Considering hardware limitations and complexity of dynamic equations, these objectives are not attained in
general.

Alternative methods were proposed recently to deal with these problems. Amongst these techniques, studies on motor
pattern generators through neural oscillators, called Central Pattern Generators (CPG), are presented in Grillner (1985)
and Golubitsky et al. (1999). CPGs are biological neural networks that generate basic rhythmic movements applied
in locomotion, like walking, swimming and flying. In an artificial intelligence framework, the CPGs are composed of
nonlinear neural oscillators, which are differential equations able to produce coordinated patterns of rhythmic activities
with no rhythmic input patterns. In Matsuoka (1985, 1987) it is mathematically modeled an shooting rate of two mutual
inhibitory oscillators of a neural oscillator. This oscillator is large used to simulate bio-inspired and rhythmic movements
for robots. Mainly because the basic structure of the oscillator is simple in contrast to other oscillator models, for example,
the van der Pol oscillator, which has quadratic state nonlinearities, (van der Pol, 1927).

Righetti and Ijspeert (2006); Liu et al. (2008); Yang et al. (2006, 2007) have based their works in Matsuoka oscillators
to generate and adapt desired joint trajectories for bipedal robots. Matsuoka oscillators have several tunable parameters,
and its values should be well chosen to guarantee a desired oscillation in the output signal. In general, these parameters
are attained just after several testing experiments. Nevertheless, few studies have described a suitable methodology to
find optimal parameters to neural oscillators. Baydin (2008) has developed a optimization system where the internal
connection structure and the feedback pathways from the environment were subject to a genetic algorithm optimization.
This system find optimal parameters for a network of neural oscillators applied to a five-link planar bipedal robot. Arsenio
(2004) has presented studies to infer stability and convergence properties of the Matsuoka oscillator. A tuning method to
find Matsuoka oscillator parameters is shown in Hattori et al. (2010), considering a neural oscillator with a ladder-like
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structure. The results are applied to generate trajectories for a nematode Caenorhabditis Elegans, but not deal with human
movements.

then, based on previous work and motivated by the need to parameterize Matsuoka neural oscillators, in this paper it
is presented an optimization system based on Levenberg-Marquardt method to find optimal parameter for a set of neural
oscillators applied to trajectory generation of an exoskeleton for lower limbs. A network can be arranged by seven neural
oscillators, regarding the seven degrees of freedom of the exoskeleton. Each neural oscillator has 10 parameters to be
found. The optimization system works by minimizing the error between the trajectory generated by the oscillator and a
predefined desired trajectory found using the robot dynamics and the ZMP stability criterion.

This paper is divided as follows: Section 2. presents the general aspects of a Matsuoka neural oscillator; Section
3. defines the parameterization problem of the neural oscillator; Section 4. shows the optimization system based on
Levenberg-Marquardt method; Section 5. presents simulation results obtained using the optimization system applied to
an exoskeleton for lower limbs; Section 6. shows the conclusions.

2. MATSUOKA OSCILLATOR

Due to its simplicity and effectiveness, the Matsuoka oscillator has being widely used in much research on biped
robots. Basically, the Matsuoka oscillator is a nonlinear oscillator model that generate self-sustained oscillations and it
is able to sensory entrainment, (Matsuoka, 1985, 1987). It is composed by two neurons, each one consisting of two
first-order coupled differential equations given by:

τr
dxi
dt

= −xi +
n∑
j=1

wijyj + si − bfi + feedi, (1)

τa
dfi
dt

= −fi + yi, (2)

where the first state variable, xi, is a inner state which corresponds to the membrane potential of the neuron, and the
second one, fi, is the degree of adaptation (or self inhibition) in the i − th neuron. The parameter b represents the
adaptation constant related to self-inhibition fi. The output of the i− th neuron, yi, is the positive part of the firing rate,
e.g., yi = max{xi, 0}. The time constant τr specify the rise time when step input is given, where the frequency of output
is roughly proportional to 1

τr
, and τa specify the adaptation time lag. The inhibitory synaptic connection weight from the

j − th neuron to i − th neuron is denoted by wij , and wij 6= 0 for i 6= j, wij = 0 for i = j.
∑n
j=1 wijyj represents

the total input from neurons inside a neural network, si is constant drive input. It is the interaction between constant and
time-varying parameters that causes the self-sustained oscillations.

Figure 1. Neuron model (adapted from (Liu et al., 2008)).

The parameter feedi is added to represent the input feedback signal to the neuron and represents the interaction
between the robot and the environment, (Liu et al., 2008). Feedback paths provide a way to maintain an adaptive
mutual coordination between the oscillator and the walking mechanism subject to the environment. This is attained by
modification of oscillation characteristics and phase relations of the CPG network by the external inputs, and in turn, the
commands sent by the CPG network driving the walking mechanism.

Figure 1 shows the block diagram of one neuron, representing the equations 1 and 2. In Figure 2 it is shown the basic
architecture of the Matsuoka oscillator, composed by two neurons. Note that the output, y, is the difference between the
outputs of the neurons one and two. With this generic architecture and giving appropriate values for each variable, an
output signal can be generated containing a transient part and periodic stable permanent part.

3. PROBLEM DEFINITION

In this paper, it is considered a trajectory generation of an exoskeleton for lower limbs shown in Fig. 3(a). This
device is being constructed in our laboratory, and is driven by series elastic actuators, (Jardim and Siqueira, 2009). The
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Figure 2. Matsuoka oscillator model.

exoskeleton model used in this work has 7 joints, being 3 for each leg, referring to the foot, tibia and femur joints, plus
the hip joint. The model, with the definition of the absolute angles, can be seen in Fig. 3(b), considering the sagittal plane.

(a) Exoskeleton being con-
structed.

(b) Kinematic model (absolute angles).

Figure 3. Exoskeleton and its kinematic model.

In Gomes et al. (2009) it is used a trajectory generator for exoskeleton model which considers the ZMP as stability
criterion. The algorithm uses the dynamic and kinematic equations of the model to create the desired trajectory. However,
this procedure demands a high computational cost. In this paper, it is being used an approach with neural oscillators to
overcome this problem.

The main features of neural oscillators used for joint trajectories generation are the simplicity and robustness of the
resulting neural network. This fact gives the system more feasibility to the computational point of view, allowing its
application in real time systems. The trajectories can be generated in a short time, and possible adaptations of the system
during its use can occurs with efficiency, in our case, during the walking.

The mathematical condition for the network to produce a stable rhythm signal is given by |w12|/(1 + b) < s1/s2,
|w21|/(1+ b) < s2/s1 and

√
|w12w21| > 1+ τr/τa, (Matsuoka, 1987). Also, it can be seen that the rhythm frequency is

positively correlated to the adaptation parameter b, and is negatively correlated to the rise time constant τr, the adaptation
time constant τa, and the synaptic weights of the mutual inhibition, wij .

However, these conditions only guarantee the oscillation of the output signal. No conditions are imposed to the
oscillator to reproduce a desired output. Figure 4(a) shows the output of the Matsuoka oscillator, considering the values
to the parameters presented in Tab. 1. These parameters obey the conditions defined above for an oscillation in the output
signal (here it was considered feedi = 0). It can be observed that after a transient signal, the output converges to a
cyclical signal. If the conditions are not obey, the output signal can turn unexpected, as shown in Fig. 4(b), and the output
can not to attain a cyclical stage.

To guarantee that an oscillator be able to reproduce with correctness a biological behavior, it is necessary an optimal
parameterization of Eq. (1) and (2), taking into account the desired output signal. In general, to find the better values
to the parameters of the oscillator, the empiric method is adopted. In this way, these parameters are defined after a long
search process and after several tests with a set of the parameter values. Also, Matsuoka (1987) has found some specific
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τr τa s1 s2 w12 w21 b
0.1 5 15 15 1.5 1.5 50

Table 1. Parameters which obey the restrictions.

τr τa s1 s2 w12 w21 b
0.1 12 5 5 0.5 0.5 50

Table 2. Parameters which not obey the restrictions.

(a) Output signal with parameters of Table 1. (b) Output signal with parameters of Table 2.

Figure 4. Output signal according to the parameters values.

parameter values such that the oscillator is not overly sensitive. So, in general, the ranges of the parameter values that
generate stable oscillations is very large, and to find the better values is a hard and time-consuming task.

In the following section it is presented an optimization system based on Levemberg-Marquardt method to find these
optimal parameters, taking into account the error between the output oscillator and a desired signal (joint trajectory) given
by the robot’s dynamic model.

4. PARAMETER OPTIMIZATION SYSTEM

In order to find the better values to the neural oscillator parameters, it was adopted a strategy that minimize the error
between the desired trajectory, given by the results presented in Gomes et al. (2009), and the neural oscillator output. The
strategy can be described as a fitting problem between a non-linear curve through the Least Mean Squares (LMS) method,
given by:

min
x
||f(x)||22 = min

x
(f1(x)

2 + f2(x)
2 + . . .+ fn(x)

2), (3)

where x = [x0, x1, x2, ..., xm] are the m parameters which need to be adjusted to optimize the function f(x). The cost
function related to the global error between the desired trajectory and the neural oscillator output, evaluates in a specific
time interval, [1; k], is given by:

f(x) =

k∑
i=1

(y(i)− yd(i))2, (4)

where y is the neural oscillator output, depend to the neural oscillator parameters, and yd is the desired trajectory. The
block diagram in Fig. 5 represents this optimization strategy, being x∗ the vector with optimized parameters.

Figure 5. Optimization strategy.

The selected optimization tool is the Levemberg-Marquardt algorithm (Marquardt, 1963), which can be considered an
approximation to the Newton method, with the advantage of computing only the Jacobian matrix, instead of the Hessian
matrix as in the that method. This method is simple to be implemented and gives a very powerful tool to realize the
proposed task.

Although this problem is quite simple to be solved, in practical applications there are two important issues to be
considered: the selection of the initial value for the vector x to start the Levemberg-Marquardt method, it should be
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properly selected in order to result in convergence of the optimization process; and the determination of a reasonable
transition point, p, between the transient and the permanent output of the oscillator. The last issue is important since we
want to work only with the stable output of the system, and this output should produce periodic and adaptable oscillations
according the desired movements of the robot.

In this paper, we define the initial parameters to the optimization process by performing random searches to find values
that can contour the restrictions presented in Section 3.and give a minor error between the desired trajectory and the output
oscillator, e.g, this initial parameters must ensure a rhythmic signal like the desired trajectory. This procedure guarantees
the convergence to the Levemberg-Marquardt method. Also, from these conditions, it can be observed that the value of
b must be large to evoke the rhythm and this information is useful to give the initial parameters. The point p is defined
empirically after observing the transient behavior of the output and computing the phase of the output trajectory.

5. RESULTS

Considering the aspects presented in previous sections, the optimization system is implemented to reproduce the joint
trajectories of the exoskeleton for lower limbs presented in Section 3.. Figures 6, 7 and 8 show respectively the foot, tibia
and femur absolute trajectories obtained from the dynamic model-based algorithm presented in (Gomes et al., 2009) (see
Fig. 3(b) for the definitions of the foot, tibia and femur absolute angles). The trajectory of the hip was omitted because it
was considered constant. To standardize the domain, all trajectories are considered in absolute angles and its values are
normalized to I = [−1; 1]. This is important in the definition the initial parameters of the optimization process, since the
output oscillator starts in 0 and it is able to vary the signal to positive and negative values.

Figure 6. Desired trajectory of the foot - normalized angle. Figure 7. Desired trajectory of the tibia - normalized angle.

Figure 8. Desired trajectory of the femur - normalized angle.

An important issue verified after some testing shows that it is necessary to use different values for the parameters τr, τa
and b for different neurons in the same neural oscillator to reproduce the desired trajectory. Then, during the optimization,
these parameters are divided to each neuron, being τr1, τa1, b1 for neuron 1, and τr2, τa2, b2 for neuron 2, totalizing 10
parameters to be adjusted by the optimization process. For all the cases, the point p was considered as p = 2.4s, since it
was observed that the output trajectory presents a permanent state after this time.

The Levemberg-Marquardt method is implemented considering a starter vector variable, x, composed by parameters
τr1, τr2, τa1, τa2, s1, s2, w12, w21, b1, and b2. In order to consider the restrictions cited in Section 3. , the initial values are
found by a random process with only 7 parameters, with τr1 = τr2, τa1 = τa2, b1 = b2. No domain restrictions are added
since their values are not known.

Here, the algorithm considers all the points of the interval separately, verifying the individuals errors for each time.
As a performance index, it is defined the global error given by Eq.4. Also, it is considered an optimization interval that
include 4 steps in the robot walking, as shown in Fig. 6 and 7, totalizing 7.2s.

Figures 9, 10 and 11 show the initial neural oscillator output, given by random parameters and considering a minimum
error between this trajectory and desired one. This initial curve should be properly selected to guarantee the convergence
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of the optimization method.

Figure 9. Initial trajectory for the optimization - foot. Figure 10. Initial trajectory for the optimization - tibia.

Figure 11. Initial trajectory for the optimization - femur.

Figure 12. Final trajectory after optimization - foot. Figure 13. Final trajectory after optimization - tibia.

Figure 14. Final trajectory after optimization - femur.

Figures 12, 13 and 14 show the results considering the initial and final parameters shown in Tab. 3. It can be observed
that the algorithm works satisfactorily and the neural oscillator output follows the desired trajectory. The initial and final
parameters for the foot, tibia and femur joints found by the optimization system are shown in Tab. 3.

It can be observed that there is a small error, of approximately 5.86%(global error) to foot trajectory, and 5.49% to
femur trajectory, between the desired and resulting neural oscillator trajectory. Moreover, the parameters wij for the
trajectory of the foot gets negative values. These values are necessary to guarantee the flat section of the trajectory that
correponds to the stance phase of walking, when the foot is completely in contact with the ground. Again, the main issue
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τr1 τr2 τa1 τa2 b1 b2 w12 w21 s1 s2
foot initial 0.0219 0.0219 2.3349 2.3349 5.8406 5.8406 -1.6723 -1.0115 2.6731 3.3237

error: 5.86% final 0.0485 0.1515 2.3674 0.8444 5.3569 5.6904 -2.0835 -1.5438 3.3578 4.8664
tibia initial 0.0502 0.0502 0.8805 0.8805 1.4187 1.4187 2.2650 0.9465 1.5682 0.8772

error: 13.3% final 0.1353 0.0154 0.1534 1.4166 2.0789 0.3733 2.1453 1.3923 1.8473 0.9365
femur initial 0.0502 0.0502 0.8805 0.8805 1.4187 1.4187 2.2650 0.9465 1.5682 0.8772

error: 5.49% final 0.1748 0.0424 0.2767 1.2196 1.8235 1.1211 1.8305 1.4204 1.8556 1.2293
Table 3. Initial and optimized parameters for foot, tibia and femur joints.

related to the proposed optimization system is the correct choice to the initial parameters to the optimization process.
Some choices are not be able to sucessfully found a satisfactrory solution to the procedure, and the method finds a
local minimum for the fitness function. For the tibia trajectory, the error after the optimization was approximately 13%.
However, it was observed that this error can be decreased after a long optimization process considering a large-scale
algorithm.

The trajectories generated with the optimal parameters were used in a simulation, considering the dynamic for the
robot shown in Fig. 3(b). By consider just that the joints should follow the trajectories, no control it was used in these
preliminary tests. Figures 15, 16 and 17 show the behavior of the joints of the foot, tibia and femur, respectively, subject
to the generated trajectories, in absolute angles.

Figure 15. Simulation to the foot trajectory. Figure 16. Simulation to the tibia trajectory.

Figure 17. Simulation to the femur trajectory.

Note that, because no control was applied in the system, there are some instable points during the walking, mainly
when the impact with the ground occurs. However, the simulation shows that the optimized parameters can be used to an
exoskeleton or a biped robot to generate the joints trajectories.

6. CONCLUSION

This work deals with trajectory generation using neural oscillators for an exoskeleton for lower limbs. The proposed
optimization system, based on the Levemberg-Marquartd optimization method, aims to find the best values of the Mat-
suoka oscillators’ parameters such that their output follow a given desired trajectory. The approach performed in this
work consider a pure model of the Matsuoka oscillator, with 10 parameters that should be appropriately adjusted. In
this case, it is observed that the optimization process works satisfactorily with a correct choice to the initial parameters.
These initial values should be selected by a random process considering the range restrictions. The results show that the
optimization process is feasible to find good parameters for the Matsuoka oscillators, according to the desired trajectories.
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It is also shown that, with these optimized parameters, the trajectory generator using neural oscillators can be applied in
an adaptive model that include interaction forces between the user and the robot, so changing the trajectory according to
the user intention.
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