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Abstract.In DNS numerical simulation of two-phases flows a high level of refinement are required when flow details
and phisical discontinuity desired. Furthermore, it involves analysis of flow around complex geometries that can be
moving and deforming. In order to solve these problems, in the present work numerical simulation of two phases-flow
was performed using a hybrid methodology, which use Fourier pseudo-spectral coupled with Front-Tracking and Front-
Capturing. This method presents high order convergence and accuracy but is limited by periodic boundary conditions. In
the present work, the methodology verification is made through manufactured solution and a validation with a cylindrical
rise bubble is also presented here and the terminal velocity compared with Clift et al. (1978) diagram.
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1. INTRODUCTION

Numerical simulations of two-phase flow require high accuracy and high convergence rate to obtain detailed informa-
tion of the flow. Low computational cost is also very important, because in general, DNS require a high grid refinement,
which makes them onerous. Thus, in the present work the use of Fourier pseudo-spectral to solve multiphases flow
problems is proposed. This method presents high convergences rates and low computational cost, due to the algorithm
named Fast Fourier Transform (FFT). Furthermore, when this method is applied to solve the Navier-Stokes equations for
incompressible flows, the pressure and velocity fields are decoupled through the projection method, without the need to
solve the pressure Poisson equation. To handle the two-phases flow with moving and deformable geometries, Fourier
pseudo-spectral method is coupled with the Front-Tracking/ Front-Capturing method. This hybrid method use two do-
mains, one is the Eulerian domain, where the Navier-Stokes and continuity equations are solved for the fluid and other
the Lagrangian domain. For this method, both domains are coupled by interpolation and distribution process, and, the
Lagrangian interface are transported through the Eulerian domain.

2. MATHEMATICAL MODELLING

2.1 Eulerian formulation

The eulerian formulation, used to describe the flow dynamic, is modeled by Navier-Stokes equations for incompress-
ible and isothermal flows with variable in physical properties in the whole calculation domain (Ω = Ω1 ∪ Ω2, Fig. 1),
which are given by Eqs. 1 and 2:

∂ul
∂t

+
∂uluk
∂xk

= −1

ρ

∂p

∂xl
+

1

ρ

∂

∂xk

[
µ

(
∂ul
∂xk

+
∂uk
∂xl

)]
+
ρ− ρ0

ρ
gl +

1

ρ
fl, (1)

∂uk
∂xk

= 0. (2)

where ρ and µ are, respectively, the density and viscosity of the fluid, ul is the component l of the velocity vector, p is the
pressure field, fl is the component l of the vector force field that acts on the flow at the interface, gl is the component l of
the gravitational acceleration and l = 1, 2, for two-dimensional problems.

The source term fl allows the communication between the Navier-Stokes equations and the equations for interface
motion. Thus, the Eulerian source term is nonzero only on the interface and zero at the rest of the Eulerian domain. This
behavior is represented mathematically by the Dirac delta function (δ) (Peskin, 1977). The Eulerian force field is given
by Eq.3:

fl(~x, t) =

∫
Γ

Fl( ~X, t)δ(~x− ~X)d ~X, (3)
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where Fl( ~X, t) is the Lagrangian force in the l direction calculated on the fluid particles that compose the interface, the
vector ~x is the position of a fluid particle on the Eulerian domain and the vector ~X is the position of a fluid particle which
is on the interface Γ (Fig.1).

Figure 1. Definition of vectors ~x and ~X .

The gravitational term, (ρ− ρ0)gl, represents the balance between the gravitacional and buoyant forces. Note that, to
treat two-phase flow with periodic boundary conditions in the vertical direction (y of the Fig. 1), a restriction of this term
is required in order to avoid a downward uniform acceleration throughout fluid (Esmaeeli and Tryggvason, 1999). The
Eq. 4 models the ρ0 calculation:

ρ0 = (1− α)ρc + αρd, (4)

where ρc is the density for the continuous phase (Ω1, Fig. 1), ρd is the density for the dispersed phase (Ω2, Fig. 1) of
multiphase flow and α is the volume fraction between the phases, i.e, is the volume fraction of dispersed phase (Ω2, Fig.
1) by the volume of continuous phase (Ω1, Fig. 1).

A indicator function Ψ(~x, t) is used to calculate the physical properties of the continuous phase, dispersed phase and
the transition region between both phases. This function assumes values ranging from 0 to the continuous phase until 1
for the dispersed phase. This function Ψ(~x, t) is given by:

Ψ(~x, t) =

∫
Γ

nl( ~X, t)δ(~x− ~X)dXl, (5)

where nl( ~X, t) is the normal vector to the interface.
With Ψ(~x, t) calculated at each time step, physical properties are then obtained using Eqs. 6 e 7:

ρ(~x, t) = ρc + (ρd − ρc)Ψ(~x, t), (6)

µ(~x, t) = µc + (µd − µc)Ψ(~x, t), (7)

where µc and µd are the viscosities of the continuous and dispersed phase, respectively.

2.2 Lagrangian formulation

The method used to tracking the interface was proposed by Unverdi and Tryggvason (1992) based on the methodology
proposed by Peskin and Mcqueen (1980). In this method, the interface is defined by a Lagrangian domain which moves
delimiting the dispersed phase, while the continuous phase is completely defined in the Eulerian domain. The modeling
in these two domains are treated separately and the interactions between them are made by interpolation.

The calculation of Lagrangian force (Unverdi and Tryggvason, 1992) depends on the interface geometrical parameters
and the pair of fluids, given by Eq.8:

Fl( ~X) = σκnl( ~X, t), (8)

where σ is the coefficient of the interfacial tension [N/m], κ is the curvature and nl is the unit normal vector component.
When the interface moves due to fluid velocity or due to gravity, the new interface position can be calculated by Eq.

9:

∂Xl

∂t
= Ul( ~X, t). (9)

The Lagrangian velocity Ul is interpolated from the Eulerian velocity field, which is given by the new position Xl of
the interface.
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2.3 Eulerian-Lagrangean coupling

The communication between Lagrangian and Eulerian domains is done through the distribution. The distribution of
interfacial Lagrangian force to Eulerian points is given by the Dirac Delta function (δ) and is represented by Eq. 3. This
equation on Fourier spectral space:

f̂l(~k, t) =

∫
Ω

e−ikl.xl
[∫

Γ

Fl( ~X, t)δ(~x− ~X)dXl

]
dxl. (10)

Doing some math operations and using the definition of the Dirac delta function in Eq. 10, Eq. 11 is obtained, giving
the source term of the Eulerian force in Fourier spectral space.

f̂l(~k, t) =

∫
Γ

Fl( ~X, t)e
−ikl.XldXl. (11)

The indicator function (Eq. 5) on to the Fourier spectral space follows the same procedure performed for the source
term and is given by Eq. 12.

Ψ̂l(~k, t) =

∫
Γ

nl( ~X, t)e
−ikl.XldXl. (12)

The Eqs. 11 and 12 were solved numerically using the Trapezium Rule (Chapra and Canale, 1985).
The interpolation function of velocity, called cubic function, proposed by Griffith and Peskin (2005), was used. This

function is given by Eqs.13, 14 and 15:

Ul( ~X, t) =
∑

Γ

Dh( ~X − ~x)ul(~x, t)d~xl, (13)
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1
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h

)
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(
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h

)
, (14)

Wc =

 1− 1
2 |r| − |r|

2 − 1
2 |r|

3 if 0 ≤ |r| < 1
1 + 11

6 |r|+ |r|
2 − 1

6 |r|
3 if 1 ≤ |r| < 2

0 if 2 ≤ |r|
. (15)

2.4 Navier-Stokes equations on a spectral Fourier space

To obtain Navier-Stokes and continuity equations, to the Fourrier space, for incompressible flows on a spectral Fourier
space with periodic boundary conditions in all directions (Mariano et al., 2010) (Eqs. 1 and 2), the projection method
(Silveira-Neto, 2002) for the pressure-velocity decoupling is used, applying the Fourier transform properties (Briggs and
Henson, 1995).

The transformation of continuity equation gives:

ikkûk = 0. (16)

From the Eq.16 and the definitions coming from analytic geometry, a plan π is defined, such as it is perpendicular to
the vector wave number kl, which is contained in the vector ûl(kl, t) transformed, according to Fig. 2.

Figure 2. Definition of plan π (Silveira-Neto, 2002)

Rewritting the Eq. 1 on a spectral Fourier space, has the Eq. 17:
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∂̂ul
∂t

+ ikk ̂(uluk) = (17)

= −1

ρ̂
∗ iklp̂+

1

ρ̂
∗ ikk ∗ [µ̂ ∗ (ikkûl + iklûk)] +

1

ρ̂
∗ ̂(ρ− ρ0)gl +

1

ρ̂
∗ f̂l.

Form Eq. 17, we can conclude that the rate of change of linear momentum, ˆ∂ul
∂t , is contained in the plan π. The

pressure gradient convolution product term with 1

ρ̂
, 1

ρ̂
∗ iklp̂, is colinear to the vector wave number (kl), because p̂ and 1

ρ̂

are scalar and thus, the convolution product 1

ρ̂
∗ iklp̂ is orthogonal to the plane π.

As for the advective term ikk(ûluk), the source term 1

ρ̂
∗ f̂l, the diffusive term 1

ρ̂
∗ ikk ∗ [µ̂ ∗ (ikkûl + iklûk)] and the

gravitational term 1

ρ̂
∗ ̂(ρ− ρ0)gl, can not be said about their positions in relation the plan π.

Applying, then, a projection operator on the Eq. 17 (Silveira-Neto, 2002), Fig. 3, obtains the Navier-Stokes trans-
formed to the Fourier spectral space , Eq. 18:

Figure 3. Projection of the source terms, advective, diffusive and gravitational term on the plan π.

∂̂ul
∂t

= ℘lm

[ ̂TNLm − D̂IFm − ̂GRAVm −
1

ρ̂
∗ f̂m

]
. (18)

Note by the Eq. 18 the independence of the pressure term, which was eliminated by the projection of the source term,
advective, diffusive and the gravitational terms. Compared with classical schemes, this procedure is equivalent to replace
the solution of a Poisson equation for a vector-matrix product what, numerically, is more computationally efficient. In
physical terms, both have the same function, which ensures the mass conservation.

Despite the pressure field that do not appear in the Navier-Stokes equation, it can be retrieved for post-processing
(Villela, 2011), and, after some mathematical manipulations, the pressure field is given by Eqs. 19 and 20:

p̂ =
ikm
k2

[
ρ̂ ∗

( ̂TNLm − D̂IFm − ̂GRAVm −
1̂

ρ
∗ f̂m

)]
. (19)

where,

p(~x, t) = IFT [p̂(~k, t)], (20)

IFT being the inverse Fourier transform.

3. NUMERICAL METHOD

3.1 Discrete Fourier Transform and Fast Fourier Transform

The discrete Fourier transform (DFT) given by Eq. 21, allow to work with Fourier Transform numerically.

f̂k =

N
2∑

n=−N
2 +1

fne
−2πikn
N , (21)
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where k is the wave number, N is the number of grid points, n provides the position xn placement (xn = n∆x) and
i =
√
−1.

The DFT transforms a function f , periodic (Figueiredo, 2007), from physical space to Fourier spectral space (Eq. 21).
The Inverse Discrete Fourier Transform (IDFT) is presented by Eq. 22:

fk =
1

N

N
2∑

n=−N
2 +1

f̂ne
2πikn
N . (22)

Cooley and Tukey (1965) home developed an algorithm named Fast Fourier Transform (FFT), which solves efficiently
the DFT and the IDFT (Eq. 22), what makes it attractive to solve partial differential equations using the Fourier spectral
method. The disadvantage of this technique is the restriction to problems with periodic boundary conditions.

The wave numbers kl, used in the equations transformations, are calculated as follows (Eq. 23):

klη =

{
η − 1 1 ≤ η ≤ N

2 + 1,
η − 1−N N

2 + 2 ≤ η ≤ N. (23)

where η is the position vector in a direction of the domain.
This parameter should be suited for each subroutine FFT used. In the present case, the subroutine FFTE given by

Takahashi (2006), which can be found in www.ffte.jp, was used.

3.2 Treatment of non-linear term

When working with the Navier-Stokes equations using the Fourier spectral method, the resolution of non-linear term
is given by a convolution integral (Briggs and Henson, 1995). Solving this integral numerically becomes impractical, then
Fourier pseudo-spectral method is applied and the basic algorithm can be found at Mariano (2007).

The non-linear term can be treated in different forms (Canuto et al., 1988), and have different properties when it is
discretized. In the present work, a skew-symmetric form (Eq.24) is used, because of their stability:

1

2

(
∂(uluj)

∂xj
+ uj

∂(ul)

∂xj

)
or

1

2

(
∂ ̂(uluj)

∂xj
+

̂
uj
∂(ul)

∂xj

)
. (24)

3.3 Discretization on Force Space

As seen in subsection 2.2, Lagrangian force density is depend on interface curvature, κl and the unit normal vector nl.
The discretizations of the vector nl and the κl are made using the Lagrange polynomials (Villar et al., 2010).

3.4 Time discretization

It’s necessary to use a time advance methodology that is compatible with the high accuracy of the spectral methodology
applied in the space. The best results are obtained with the of optimized Runge Kutta time advancement method (RK46).
This method is an explicit method of fourth order and six stages. The algorithm is given by Allampalli et al. (2009).

3.5 Filtering Process

Another important procedure is the need to filter all the terms on the right side of the Navier-Stokes equations due to the
discontinuities generated by the forcing term, which shows abrupt changes in physical properties. These discontinuities
generate the Gibbs phenomenon (Navarra, 1994), and with the filter process, tends to disappear leading to increased order.
The filtering process is given by Eq. 25:

f̂(~k, t)filtrado = ϕ(θ)f̂(~k, t), (25)

where ϕ(θ) is the filter function.
In the present work the filter used is the "Raised Cosine". Its mathematical model can be found at Mariano et al.

(2010).

4. RESULTS

4.1 Numerical verification

The verification performed in this work is done through the technique of manufactured solutions, where a source term
is introduced in differential equations, creating a mathematical problem that has an analytical solution.
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Here the Navier-Stokes equations are verified, where the gravitational term is not considered. In this way the fl term
is determined by analytical solution. The Navier-Stokes equations has the following form:

ρ

[
∂ul
∂t

+
∂uluk
∂xk

]
= − ∂p

∂xl
+

(
∂

∂xk

[
µ

(
∂ul
∂xk

+
∂uk
∂xl

)])
+ fl, (26)

where the forcing term fl obtained from the analytical equations presented by Nós (2007), u and v being the velocity
fields in horizontal and vertical directions, respectively and p is the pressure field.

The analytical solutions to u, v and p are given by Eq. 27. The superindex e stands for the or exact analytical solutions,
in which (x, y) = xl ∈ [0, 1]× [0, 1]. The initial conditions are given by u(0, x) = ue(0, x), v(0, x) = ve(0, x), ρe is the
analytical density and µe is the analytical dynamic viscosity.

ue(x, t) = sin2(2πx+ 2πy + t), (27)
ve(x, t) = cos2(2πx+ 2πy + t), (28)
pe(x, t) = cos(2πx+ 2πy + t). (29)

To verify the implementation of the Navier-Stokes equations, with variable physical properties, the density (ρe) and
the viscosity (µe) are given by:

ρe(x, t) = 1 + 0, 1[sin2(2πx+ 2πy + t)], (30)
µe(x, t) = 1 + 0, 2[cos2(2πx+ 2πy + t)]. (31)

The Tab. 1 shows the results of the normL2 of the error, obtained on an uniform grid and periodic boundary conditions,
as previously described.

Table 1. Norm L2 for u, v and p errors with ρ and µ variables t = 5[s].

Mesh Variable Norm L2

32× 32 u 5, 3265× 10−15

v 5, 3222× 10−15

p 3, 9150× 10−15

64× 64 u 1, 5811× 10−15

v 1, 5637× 10−15

p 2, 7136× 10−15

128× 128 u 1, 1230× 10−15

v 1, 1084× 10−15

p 2, 9079× 10−15

The Tab. 1 shows that the error, given by the norm L2, atain machine error, when double precision is used. Comparing
with Nós (2007) work, the present work presents high accuracy with Fourier pseudo-spectral method when working with
varables physical properties, than Nós (2007). This author report an errors on the 10−2 order to a grid 128× 128× 128.

4.2 Cylindrical buble rise

In the present work a rise bubble in two-dimensional domain, was simulated. This study consider that the fluid are
initially at rest and have periodic boundary conditions in both directions.

The result is compared with by experimental data provided by Clift et al. (1978) diagram, where for different numbers
of Eötvös and Morton (Villela, 2011), this diagram provides the Reynolds number and different shapes. So, is possible to
compare the bubble shape and the Reynolds number to validate the process.

For all tests presented, the domain was given by Ω = [0; 4π]× [0; 12π], the surface tension σ is 1.0 [N/m], the bubble
diameter dd [m] is 0.7π [m], the mesh is 128 × 384 and a δt = 0.001 [s]. The dimensionless coordinates x and y were
obtained using the bubble diameter and the dimensionless time given by t∗ = t√

dd/g
.

Two other parameters models the flow of a rise bubble, which are the density ratios λ and the viscosity ratios γ (Villela,
2011). For the simulations presented here a fixed density e viscosity ratio of 0.5 is used.

The Eötvös and Morton numbers assumes values equal to 1 and 0.01, respectively. For those parameters the bubble
presents a cylindrical shapes. Fig. 4, shows the density field evolution.

A second case is simulated and showed in Fig. 5 where the density field of a rise bubble deformed is presented.
Through the diagram of Clift et al. (1978) the Eötvös and the Morton number are used in the present work, Eo = 100 and
M = 1000. For these values the bubble must atain an ellipsoidal-cap. The Reynolds number assumes Re = 1.
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Figure 4. Temporal evolution of the density field for Eo = 1 and M = 0.01.

Figure 5. Temporal evolution of the field of density for Eo = 100 and M = 10.000

5. CONCLUSIONS

In the present work numerical simulations of two-phase flow using the Fourier pseudo-spectral methodology cou-
pled with the hybrid method Front-Tracking/Front-Capturing are presented. The numerical code for physical variables
properties ρ and µ, is verified through the manufactured technique where it reaches machine error. The manufacturing
solution used here is adapted from Nós (2007), which presented errors of order of 10−2 for the refined mesh. Although
the proposed methodology reached high accuracy on the error analysis.

Flows with rising cylindrical and cap-ellipsoidal bubbles, are presented in the present work. The preliminary results
for rising bubbles are consistent with the physics presented by others authors.

6. ACKNOWLEDGEMENTS

The authors thank the College of Mechanical Engineering (FEMEC) of the Federal University of Uberlândia (UFU),
Capes, FAPEMIG and CNPq for financial support.

7. REFERENCES

Allampalli, V., Hixon, R., Nallasamy, M. and Sawyer, S., 2009. “High-accuracy large-step explicit runge - kutta (hale−
rk) schemes for computational aeroacoustics”. Journal of Computational Physics, Vol. 228.

Briggs, W.L. and Henson, V.E., 1995. DFT. Philadelphia: SIAM.
Canuto, C., Hussaini, M., Quarteroni, A. and Zang, T., 1988. Spectral methods in fluid dynamics. New York: Springer-



Proceedings of COBEM 2011
Copyright c© 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

Verlag.
Chapra, S. and Canale, R., 1985. Numerical Methods for Engineers. McGraw-Hill.
Clift, R., Grace, J.R. and Weber, M.E., 1978. Bubles, Drops and Particles. Academic Press, London.
Cooley, T.W. and Tukey, J.W., 1965. “An algorithm for the machine calculation of complex fourier series”. Mathematics

Computations, Vol. 19, pp. 297–301.
Esmaeeli, A. and Tryggvason, G., 1999. “Direct numerical simulations of bubbly flows part 2. moderate reynolds number

arrarys”. Journal of Fluid Mechanics, Vol. 385, pp. 325–358.
Figueiredo, G., 2007. Análise de Fourier e Equações Diferenciais Parciais. IMPA-Rio de Janeiro.
Griffith, B.E. and Peskin, C.S., 2005. “On the order of accuracy of the immersed boundary method: Higher order

convergence rates for sufficiently smooth problems”. Journal of Computational Physics, Vol. 37, pp. 75–105.
Mariano, F., 2007. Simulação de Escoamentos Não-Periódicos Utilizando as Metodologias Pseudo-Espectral de Fouriere

da Fronteira-Imersa. Universidade Federal de Uberlândia-Faculdade de engenharia Mecânica.
Mariano, F., Moreira, L., Silveira-Neto, A., Silva, C. and Pereira, J., 2010. “A new incompressible navier-stokes solver

combining fourier pseudo-spectral and immersed boundary methods”. Computer Modeling Engineering and Sciences,
Vol. 59, pp. 181–216.

Navarra, A., 1994. “Reduction of the gibbs oscillation in spectral model simulation”. Journal of Climate, Vol. 7, pp.
1169–1183.

Nós, R.L., 2007. Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de
campo de fase. Ph.D. thesis, Universidade de São Paulo, São Paulo.

Peskin, C.S., 1977. “Numerical analysis of blood flow in the heart”. Jounal of Computatinonal Physics, Vol. 25, p. 220.
Peskin, C.S. and Mcqueen, D.M., 1980. “Modeling prosthetic heart valves for numerical analysis of blood flow in the

heart”. Journal of Computational Physics, Vol. 37.
Silveira-Neto, A., 2002. Apostila da Disciplina Mecânica dos Fluidos do Programa de Pós-Graduação da Universidade

Federal de Uberlândia. Uberlândia: UFU.
Takahashi, D., 2006. “A hybrid mpi/openmp implementation of a parallel 3-d fft on smp clusters”. Proc. 6th International

Conference on Parallel Processing and Applied Mathematics (PPAM 2005), Lecture Notes in Computer Science, Vol.
3911, pp. 970–977.

Unverdi, S.O. and Tryggvason, G., 1992. “A front-tracking method for viscous, incompressible, multifluid flows”. Journal
of Computational Physics, Vol. 100, pp. 25–37.

Villar, M., Ceniceros, H., Roma, A. and Silveira-Neto, A., 2010. “A robust, fully adaptive hybrid level-set/front-tracking
method for two phase flows with an accurate surface tension computation”. Communication in Computer Physics,
Vol. 8, pp. 51–94.

Villela, M.S., 2011. MODELAGEM MATEMÁTICA DE ESCOAMENTOS BIFÁSICOS USANDO O MÉTODO ESPEC-
TRAL DE FOURIER. Universidade Federal de Uberlândia-Faculdade de engenharia Mecânica.

8. Responsibility notice

The authors are the only responsible for the printed material included in this paper


