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Abstract. The correct modeling for processes involving convection, without introducing excessive artificial damping while
retaining high accuracy, stability, boundedness and simplicity of implementation continues being nowadays a challenging
task for the scientific CFD community. In this context, the objective of this study is to compare the performance of two new
TVD-based upwinding schemes, namely, TOPUS and SDPUS-C1, with WENO scheme in the discretization of convective
terms. These comparisons are done by the numerical results obtained for two/three-dimensional hyperbolic conservation
laws, such as, 2D acoustics, 3D Burgers and 3D Euler equations. Finally, as application, the TOPUS and SDPUS-C1
schemes are used for the computational simulation of 3D incompressible fluid flows involving moving free surfaces.
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1. INTRODUCTION

It is well known that in the process of numerical solution of PDEs which predominantly convective character the
accuracy of the solutions is significantly affected by the choice of the convection scheme. For instance, first order upwind
schemes, such as First Order Upwind (FOU) of Spalding (1972), are unconditionally stable, but they have a diffusive
character that, in general, smoothed the solutions. On the order hand, classical high resolution schemes, such as central
difference schemes, the Quadratic Upstream Interpolationfor Convective Kinematics (QUICK) scheme (and its related
QUICK with Estimated Stream Terms - QUICKEST) of Leonard (1988) can often produce unphysical oscillations which,
most of the time, can lead to numerical instability. A very useful strategy that has been used nowadays is the non-linear
upwinding discretization which adjusts themselves according to the local solution in order to maintain bounded behavior.

In this work, we present a two new polynomial upwinding schemes, namely: Third-Order Polynomial Upwind Scheme
(TOPUS) of Queiroz (2010) and Six-Degree Polynomial UpwindScheme of C1 class (SDPUS-C1) of Lima (2010). These
schemes were derived in the context of the Normalized Variable Diagram (NVD) of Leonard (1988), by enforcing the
Total Variation Diminishing (TVD) constraint of Harten (1983). Consequently, they satisfy the Convection Boundedness
Criterion (CBC) of Gaskell and Lau (1988).

The objective of this work is to compare the performance of these two new TVD-based upwinding schemes (TOPUS
and SDPUS-C1) with the well established third/fifth-order WENO schemes (see Balsara and Shu (2000), Titarev and Toro
(2004), Ketcheson and LeVeque (2006) and Zhang and Shu (2009)). The comparisons are done by using the numerical
results obtained for two/three-dimensional hyperbolic conservation law systems. In the 2D case, we consider the linear
acoustics equations. For the 3D case, we consider nonlinearconservation laws, such as Burgers and Euler equations.
These conservation laws have been solved by mean of the Conservation LAW PACKage (CLAWPACK) of LeVequeet
al. (2006) (equipped with TOPUS and SDPUS-C1 flux-limiter) and its extension called WENOCLAW of Ketcheson and
LeVeque (2006).

Finally, as application, the TOPUS and SDPUS-C1 schemes areused for the computational simulation of three-
dimensional incompressible fluid flows involving moving free surfaces. For these simulation, we have been used the 3D
version of the Freeflow code of Casteloet al. (2000) equipped with both TOPUS and SDPUS-C1 schemes.

2. TOPUS AND SDPUS-C1 SCHEMES

Before proceeding to the derivation of the TOPUS and SDPUS-C1 schemes, it is essential to present the Normalized
Variables (NV) of Leonard (1988) and the conditions required for the construction of a monotonic upwinding scheme (
see Leonard (1988) and Lin and Cheing (1991)) (using the TVD and CBC criteria).

In order to interpolate the numerical fluxφf at a boundary facef between two control volumes, we will use, in
one-dimensional case, three neighboring grid points, namely Downstream (D), Upstream (U ) and Remote-upstream (R),
and the convecting velocity,Vf , at this face (see Fig. 1). For multidimensional problems, this strategy is applied in the
same fashion, with each convective derivative approximated along of the relevant variable (direction-by-direction). So,
the scheme is given by the function

φf = φf (φD, φU , φR). (1)
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Figure 1. Interfaces and their related grid points for determining an upwinding scheme.

To simplify the functional relationship given by Eq. (1) theoriginal variables are transformed in NV as

φ̂[ ] =
φ[ ] − φR

φD − φR

. (2)

The advantage of this new formulation is that the valueφ̂f depends on̂φU only, sinceφ̂D = 1 andφ̂R = 0. Thus, Eq. (1)
can be rewritten as

φ̂f = φ̂f (φ̂U ). (3)

According to Leonard (1988), for0 ≤ φ̂U ≤ 1, it is possible to derive a non-linear monotonic third-order NV scheme
imposing the following conditions on Eq. (3), namely:φ̂f (1) = 1; φ̂f (0) = 0; φ̂f (1/2) = 3/4; andφ̂

′

f (1/2) = 3/4.

Leonard (1988) also recommends that for values ofφ̂U ≤ 0 or φ̂U ≥ 1, the scheme must be extended in a continuous
manner using the FOU scheme, which is defined by

φ̂f = φ̂U . (4)

In this context, Gaskell and Lau (1988) (see also Waterson and Deconinck (2007)) proposed the CBC criterion, which
is a necessary and sufficient condition for a scheme possessing boundedness, namely:







φ̂U ≤ φ̂f (φ̂U ) ≤ 1 if ∀φ̂U ∈ [0, 1]

φ̂f = φ̂f (φ̂U ) = φ̂U if ∀φ̂U /∈ [0, 1]

φ̂f (φ̂U ) = 1 and φ̂f (0) = 0.

(5)

These conditions determine the CBC region (see Fig. 2).
Another important convective stability criterion is the TVD constraint of Harten (1983), which ensures that spurious

oscillations are removed from the numerical solution. In summary, considering a sequence of discrete approximations
φ(t) = φi(t) to a scalar, wherei is an integer, the total variation (TV) at timet of this sequence is defined by

TV (φ(t)) =
∑

i

|φi+1(t) − φi(t)|. (6)

Then, the scheme is TVD if the following conditions is satisfied

TV (φn+1) ≤ TV (φn), ∀n. (7)

In addition, the TVD concept was translated by Sweby (1984) into a set of limitations for the behavior of a functional
relationship given by Eq. (3), namely

{

φ̂f ∈ [φ̂U , 2φ̂U ] and φ̂f ≤ 1, if φ̂U ∈ [0, 1],

φ̂f = φ̂U , if φ̂U /∈ [0, 1],
(8)

which led the TVD region for̂φf (φ̂U ) (see Fig. 2).
After one to have developed a NVD/TVD-based upwind scheme, we derive the associated flux-limiter by rewriting

the original scheme in the following way (see Sweby (1984) and Waterson and Deconinck (2007)):

φ̂f = φ̂U +
1

2
ψ(r)(1 − φ̂U ), (9)

whereψ(r) is the flux-limiter that determines the level of antidifusividade andr being a local shock sensor given by ratio
of consecutive gradients. In uniform meshes and in NV,r is given by

r =
φ̂U

1 − φ̂U

. (10)
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In addition, the TVD concept was also translated by Sweby (1984) into a set of limitations for dictating the behavior of
the flux-limiter function, given by

{

ψ(r) = 0, if r ≤ 0,
0 ≤ ψ(r) ≤ min{2, 2r}, if r > 0.

(11)

Theses conditions define the TVD region forψ(r) (see Fig. 2).
In summary, Fig. 2 shows geometrically the regions for the three stability criteria discussed before.
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Figure 2. Stability criteria: the CBC and TVD regions forφ̂f (φ̂U ) (left) and the TVD region forψ(r) (right).

2.1 Development of TOPUS and SDPUS-C1 schemes

In particular, the TOPUS and SDPUS-C1 schemes were derived in the context of NV of Leonard (1988) and TVD
constraint of Harten (1983). The numerical solutions obtained by these schemes can be second or third order accurate
in the smooth parts of the solution, but first order near regions with large gradients. The TOPUS scheme of Queiroz
(2010) was derived by assuming that the NV at the cell interface f , φ̂f , is related toφ̂U as a four-degree polynomial
function of the formφ̂f =

∑4
k=0 akφ̂

k
U , for 0 ≤ φ̂U ≤ 1, and a linear function (the FOU scheme) given by Eq. (4), for

φ̂U < 0 or φ̂U > 1. A free parameter (saya4 = α) is considered and the other coefficients are determined by imposing
the four conditions of Leonard (1988) outlined above. The SDPUS-C1 scheme of Lima (2010) is derived in the same
way as TOPUS scheme. For this case, it is considered a six-degree polynomial function of the form̂φf =

∑6
k=0 bkφ̂

k
U ,

for 0 ≤ φ̂U ≤ 1, and the FOU scheme (Eq. (4)), for̂φU < 0 or φ̂U > 1. We set a free parameter (sayb2 = γ)
and determine the other coefficients by imposing the four conditions of Leonard outlined above, plus the conditions of
continuous differentiability for̂φf = φ̂f (φ̂U ) on the whole remains. In other works the six-degree polynomial function
and Eq. (4) are linked on the points(0, 0) and(1, 1) with the same values for the first derivatives. Thus, the SDUPS-C1
scheme is a continuously differentiable function. It is important to note here that, according to Lin and Chieng (1991),if
this property is not satisfied then convergence problems maybe found in unsteady calculations when large time steps are
employed. In summary, the schemes are:
– TOPUS:

φ̂f =

{

αφ̂4
U + (1 − 2α)φ̂3

U + (−10+5α)
4 φ̂2

U + (10−α)
4 φ̂U φ̂U ∈ [0, 1],

φ̂U , φ̂U /∈ [0, 1],
(12)

whereα is a free parameter.
– SDPUS-C1:

φ̂f =

{

(−24 + 4γ)φ̂6
U + (68 − 12γ)φ̂5

U +(−64 + 13γ)φ̂4
U + (20 − 6γ)φ̂3

U + γφ̂2
U + φ̂U , φ̂U ∈ [0, 1],

φ̂U , φ̂U /∈ [0, 1],
(13)

whereγ is a free parameter.
The corresponding flux-limiter functions for the TOPUS and SDPUS-C1 schemes are derived by combining, respec-

tively, Eq. (12) and Eq. (13), with Eq. (9) and Eq. (10) to obtain,

ψ(r) = max

{

0,
0.5(|r| + r)[(1 − 0.5α)r2 + (4 + α)r + (3 − 0.5α)]

(1 + |r|)3

}

(14)

and

ψ(r) = max

{

0,
0.5(|r| + r)[(−8 + 2γ)r3 + (40 − 4γ)r2 + 2γr]

(1 + |r|)5

}

. (15)
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It is possible by mean of numerical tests to show that the TOPUS scheme is TVD forα ∈ [0, 2] (see Queiroz (2010))
and SDPUS-C1 scheme forγ ∈ [4, 12] (see Lima (2010)). In this work, we consideredα = 2 andγ = 12. For these
values Queiroz (2010) and Lima (2010) have shown that both the TOPUS and SDPUS-C1 schemes have presented good
results for problems with discontinuities. In Fig. 3 are depicted the TOPUS (forα = 2) and SDPUS-C1 (forγ = 12)
scheme (left) and the their flux-limiters (right).
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Figure 3. The TOPUS (forα = 2) and SDPUS-C1 (forγ = 12) schemes (left) and flux-limiters in TVD regions (right).

3. NUMERICAL RESULTS

We now discuss the performance of the TOPUS and SDPUS-C1 schemes and compare their results with those of
WENO schemes. For this we used the 2D/3D hyperbolic conservation laws. Then, as application, the TOPUS and
SDPUS-C1 schemes are used for simulating the 3D circular hydraulic jump.

3.1 Conservation laws

Many problems in science and engineering involve quantities that are preserved and that lead to certain types of PDEs
called hyperbolic conservation laws. These laws are generally nonlinear and time-dependent. In the three-dimensional
case, they are defined by

∂φ

∂t
+
∂F (φ)

∂x
+
∂G(φ)

∂y
+
∂H(φ)

∂z
= 0, (16)

whereφ = φ(x, y, z, t) is the vector of the conservation variables andF (φ) = F (φ(x, y, z, t)), G(φ) = G(φ(x, y, z, t))
andH(φ) = G(φ(x, y, z, t)) are flux functions. In the two-dimensional case of these lawstheH(φ) = H(φ(x, y, t))
is neglected, theφ, F (φ) andG(φ) respectively are given byφ = φ(x, y, t), F (φ) = F (φ(x, y, t)) andG(φ) =
G(φ(x, y, t)). Here we consider three particular cases of these laws, namely: 2D acoustics, 3D Burgers and 3D Eu-
ler equations. In order to resolve these equations, the wellestablished CLAWPACK of LeVeque (2004) and its extension,
namely WENOCLAW of Ketcheson and LeVeque (2006), have been used. These softwares packages and additional doc-
umentations are freely available in LeVequeet al. (2006). The method implemented in CLAWPACK employs the finite
volume methodology and a wave propagation approach (LeVeque, 2004). In this work, we combine this method with
the TOPUS and SDPUS-C1 flux-limiter given by Eq. (14) and Eq. (15), respectively. The method employed in WENO-
CLAW combines the notions of wave propagation and line methods (Ketcheson and LeVeque, 2006) . The WENOCLAW
is implemented based on CLAWPACK and makes use of Riemann solvers in the same form required for this softwares
package (Ketcheson and LeVeque, 2006). The numerical solutions from both codes, CLAWPACK and WENOCLAW, are
dimensionless (see LeVeque (2004) and Ketcheson and LeVeque (2006) for more details).

3.1.1 2D acoustics equations

The acoustics equations are formulated by Eq. (16), with thevector of the conservation variables given byφ =
[p, u, v]T and flux functions byF (φ) = [Ku, p/ρ, 0]T andG(φ) = [Kv, 0, p/ρ]T . Here[u, v]T is the velocity vector, and
K, ρ andp are bulk modulus of compressibility of the material, density and pressure, respectively (for details, the reader is
referred to LeVeque (2004)). This system is solved in the domain [0, 1]× [0, 1], where the interface linex = 0.5 separates
two materials (one on the left and another on the right) with densityρ and sound speedc given byρL = 1, cL = 1, and
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ρR = 4, cR = 0.5. Another datum for the simulation is the pulse for the pressure which leads to a radially-symmetric
disturbance, namely

r =
√

(x− 0.25)2 + (y − 0.4)2. (17)

The initial conditions are

u(x, y, 0) = v(x, y, 0) = 0, p(x, y, 0) =

{

1 + 0.5
[

cos
(

π· r
0.1

)

− 1
]

, if r < 0.1,
0, otherwise.

(18)

Zero-order extrapolation is considered on the boundary.
For the simulation of this problem, we calculated the reference solution by using the CLAWPACK code, where the

Godunov method with the correction term (containing the Monotonized central-difference (MC) flux-limiter) is used. For
this, we consider400 × 400 computational cells and the Courant numberθ = 0.45 (see LeVeque et al. (2006)). The
numerical solutions are obtained with the same Godunov method, but using the TOPUS and SDPUS-C1 flux-limiters. For
these solutions, a mesh size of100 × 100 computational cells,θ = 0.45 andθ = 0.9 are used. The results for WENO
scheme are obtained by using WENOCLAW code in the same mesh (100×100 computational cells) and Courant numbers
(θ = 0.45 andθ = 0.9).

In Fig. 4 and Fig. 5, we presented at final time of simulationt = 0.5 the pressure variation as a function of distance
from the origin (ie,p on liney = 0). In these figures we compared the TOPUS, SDPUS-C1 and WENO schemes with the
MC reference solution. It is possible to see that in the case of θ = 0.45 the WENO scheme provides better results than
those obtained with TOPUS and SDPUS-C1 schemes (see Fig. 4).This occurs principally in the capture of the peak and
valley in the rangex ∈ [0.5, 0.7]. On the order hand, in the case ofθ = 0.9, the TOPUS and SDPUS-C1 schemes provide
the best results in the domain (see Fig. 5).
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Figure 4. Solutions for 2D acoustics equations obtained with WENO, TOPUS and SDPUS-C1 schemes, forp on line
y = 0, at t = 0.5 andθ = 0.45.

Figure 6 shows the results of the SDPUS-C1 scheme for cross-section from the simulation of the pressure att = 0,
t = 0.5 andt = 1. The other results obtained with the TOPUS and WENO schemes are omitted due to their similarities.
One can also observe from this figure that when the pressure pulse hits the interface, it is partially reflected and partially
transmitted.
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Figure 5. Solutions for 2D acoustics equations obtained with WENO, TOPUS and SDPUS-C1 schemes, forp on line
y = 0, at t = 0.5 andθ = 0.9.

Figure 6. Solutions for 2D acoustics equations obtained by SDPUS-C1 scheme for cross-section of thep at t = 0, t = 0.5
andt = 1 .

3.1.2 3D Burgers equation

The 3D Burgers equations correspond to Eq. (16) with the vector of the conservation variables given byφ = u
and flux functionsF (φ) = G(φ) = H(φ) = 1

2u
2. Hereu is the velocity vector. These equations are defined in

[−3, 3] × [−3, 3]× [−3, 3], supplemented with the initial data

u(x, y, z, 0) = 0.3 + 0.7sin
(π

3
(x+ y + z)

)

(19)

and periodic boundary conditions.
This hyperbolic system is solved by using CLAWPACK code. Thereference solution is obtained on a mesh size of

100 × 100 × 100 computational volumes by using the Godunov method with the correction term employing the MC
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flux-limiter (see LeVeque (2004)). The numerical solutionsare calculated by using of the TOPUS and SDPUS-C1 flux-
limiters, on a uniform mesh of50 × 50 × 50 finite volumes. For both cases (numerical and reference), weconsidered
θ = 0.27. The result for WENO scheme was obtained from the article of the Zhang and Shu (2009).

In Fig. 7 it is depicted the reference and numerical solutions for theu component att = 5
π2 , on linex = y andz = 0.

We can observe, from this figure, that the solutions with TOPUS, SDPUS-C1 and WENO schemes are similar, presenting
non-oscillatory results and capturing very well the shock.However, the WENO scheme presents two solution-points on
shocks, while both the TOPUS and SDPUS-C1 show only one. In Fig. 8, it is depicted the result obtained with the TOPUS
scheme foru velocity in x ⊥ y (left) andx ⊥ y ⊥ z (right). The results with the SDPUS-C1 and WENO scheme are
omitted due their similarities with the result with TOPUS scheme. We can see for this figure that the results are in good
agreement with the solutions of Zhang and Shu (2009).
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Figure 7. Solutions for the 3D Burgers equations obtained byusing the WENO, TOPUS and SDPUS-C1 schemes(left)
and a expansion of the results (right), foru, on line nx = y andz = 0 , at t = 5

π2 .

Figure 8. Solutions for the 3D Burgers equations obtained bythe TOPUS scheme foru, on line nx ⊥ y (left) and
x ⊥ y ⊥ z = 0 (right) att = 5

π2 .

3.1.3 3D Euler equations

The Euler equations are given by Eq. (16), whereφ = [ρ, ρu, ρv, ρw,E]T is the vector of conserved quantities,
F (φ) = [ρu, ρu2+p, ρuv, ρuw, (E+p)u]T ,G(φ) = [ρv, ρuv, ρv2+p, ρvw, (E+p)v]T andH(φ) = [ρw, ρuw, ρvw, ρw2+
p, (E + p)w]T are flux functions; beingρ, u, v, w, ρu, ρv, ρw, E andp the density, thex-velocity, they-velocity, the
w-velocity, thex-momentum, they-momentum, thew-momentum, the total energy and the pressure, respectively. In
order to close the system, the ideal gas equation of statep = (λ− 1)(E− 1

2ρ(u
2 + v2 +w2)) with λ = 1.4 is considered.

We consider the so-called spherical explosion test as a representative problem for 3D Euler equations (see Titarev and
Toro (2004)). The problem consists of two regions, separated by a sphere of radius0.4, with values for gas parameters
differents. The problem is solved in the domain[−1, 1] × [−1, 1] × [−1, 1], and the Euler equations are supplemented
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with the initial conditions

(ρ(x, y, z, 0), p(x, y, z, 0))T =

{

(1.0, 1.0)T if r ≤ 0.4
(0.125, 0.1)T if r > 0.4,

(20)

whereu = v = w = 0, r2 = x2 + y2 + z2. Zero-order extrapolation on the boundary is assumed.
The reference solution is obtained by applying the strategyproposed by Toro (1999) in the 1D version of the CLAW-

PACK code. The first-order Godunov method on 1000 computational cells andθ = 0.27 have been used. The numerical
solutions are calculated via 3D version of CLAWPACK, using the Godunov method with the correction term containing
the TOPUS and SDPUS-C1 flux-limiters. A mesh size of100×100×100 computational cells andθ = 0.27 are employed.
The results with WENO scheme were obtained from Titarev and Toro (2004). Figure 9 depicts the solutions (reference
and numerical) for the density along thex axis (y = z = 0) at timet = 0.25. It can clearly see from this figure that the
results with TOPUS, SDPUS-C1 and WENO schemes are similar. As an illustration, we present in Fig. 10 the results
obtained with the SDPUS-C1 scheme forρ in x ⊥ y, at t = 0, t = 0.25 andt = 0.5 with θ = 0.27. The results obtained
with TOPUS and WENO schemes are not presented due to similarity to the results generated by the SDPUS-C1 scheme.
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Figure 9. Solutions for the 3D Euler equations obtained by the WENO, TOPUS and SDPUS-C1 schemes (left) and
expansion of results (right) forρ in x axis att = 0.25 andθ = 0.27.

Figure 10. Results generated by SDPUS-C1 scheme forρ in x ⊥ y at t = 0, t = 0.25 andt = 0.5 with θ = 0.27.

3.2 Navier-Stokes equations

From now on, we examine the capability of the TOPUS and SDPUS-C1 schemes for solving complex 3D flow prob-
lems involving moving free surfaces. For this, we considered a vertical free jet impinging perpendiculary onto an imper-
meable rigid surface (under the gravitational field), leading to the formation of a curious phenomenon, observable in ev-
eryday life, known as circular hydraulic jump (see reference Ellegaard et al. (1996) for more details on the phenomenon).
For the simulation of this free surface flow, we have used the 3D version Freeflow code of Casteloet al. (2000) equipped
with both TOPUS and SDPUS-C1 schemes. The governing equations are Navier-Stokes and mass conservation equations
and they are given, respectively, by

∂u

∂t
+ ∇ · (uu) = −∇p+ ν∇2

u + g, (21)
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∇ · u = 0, (22)

whereu = [u(x, y, z, t), v(x, y, z, t)w(x, y, z, t)]T is the velocity vector field,p is the pressure,g gravitational field and
ν is the viscosity coefficient (constant).

The circular hydraulic jump may arise when a free jet of waterfalling vertically at moderate Reynolds number strikes
a horizontal rigid surface. A better understanding of the phenomenon and the instabilities, at least in its turbulent form,
is of commercial interest, since jet impingement is often used in cooling systems and the flow of the fluid beyond the
jump can degrade the efficiency of the system. Therefore, a 3Dturbulent hydraulic jump constitutes an excellent test
for validating codes based on front tracking techniques. Inorder to solve this phenomenon, we consider a domain of
0.6m× 0.6m× 0.6m, where the diameter and height (from inlet to the rigid surface) of inlet are given byD = 0.05m
andH = 0.001m, respectively. In addition, we employed the following data: the velocity scaleu0 = umax = 1.0m/s
(injection speed); length scaleD = 0.05; coefficient of kinematic viscosityν = 5× 10−5m/s and gravitational constant
g = 9.81m/s2. The Reynolds number is based on the injection speed and diameter of the inlet, namely,Re = u0 D

ν
=

1000.
Figure 11 shows a qualitative comparison between the experimental results of Ellegaardet al. (1996) and the results

obtained with TOPUS and SDPUS-C1 schemes. One can clearly see from this figure that our numerical method equipped
with these high resolution polynomial upwind schemes captured the complete physical mechanism of this complex free
surface flow.

Experimental result of Ellegaardet al. (1996)

Numerical result with TOPUS Numerical result with SDPUS-C1

Figure 11. 3D qualitative comparison between the experimental and numerical results for a turbulent hydraulic jump using
TOPUS and SDPUS-C1 schemes.

4. CONCLUSIONS

In this paper, two high resolution polynomial upwinding schemes (TOPUS and SDPUS-C1) were compared with
WENO schemes (Balsara and Shu (2000), Titarev and Toro (2004), Ketcheson and LeVeque (2006) and Zhang and
Shu (2009)). By using these schemes, various test problems formulated by two/three-dimensional conservation laws,
such as, 2D acoustics, 3D Burgers and 3D Euler equations weresolved. With these results, we may conclude that
both the polynomial schemes provide similar results to those generated by WENO schemes (which is well established
class of schemes in the literature). It can be observed in theliterature (see the papers in the reference section) that the
WENO schemes are, from computational point of view, more expensive than the TOPUS (Queiroz, 2010) and SDPUS-C1
(Lima, 2010) schemes. So, we have in hand two new upwinding schemes which are computationally simpler than the
WENO schemes and provide us similar results to the WENO schemes. As an application, the TOPUS and SDPUS-C1
schemes were used to simulate three-dimensional incompressible flows involving free surfaces. Once more, the results
demonstrated that these upwinding schemes are effective tools for studying complex fluid dynamics problems. For the
future, the authors are planning to apply SDPUS-C1 scheme tothe numerical solution of three-dimensional turbulent
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viscoelastic free surface flows.
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