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Abstract. The correct modeling for processes involving convectiagtimoumt introducing excessive artificial damping while
retaining high accuracy, stability, boundedness and sicitglof implementation continues being nowadays a chaiiem
task for the scientific CFD community. In this context, theotive of this study is to compare the performance of two new
TVD-based upwinding schemes, namely, TOPUS and SDPUSHEW&NO scheme in the discretization of convective
terms. These comparisons are done by the numerical resathined for two/three-dimensional hyperbolic conservati
laws, such as, 2D acoustics, 3D Burgers and 3D Euler equatiginally, as application, the TOPUS and SDPUS-C1
schemes are used for the computational simulation of 3Dnmressible fluid flows involving moving free surfaces.
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1. INTRODUCTION

It is well known that in the process of numerical solution @HB> which predominantly convective character the
accuracy of the solutions is significantly affected by theicé of the convection scheme. For instance, first order mgwi
schemes, such as First Order Upwind (FOU) of Spalding (1,9%2) unconditionally stable, but they have a diffusive
character that, in general, smoothed the solutions. Onrifer dland, classical high resolution schemes, such asatentr
difference schemes, the Quadratic Upstream Interpolédio@onvective Kinematics (QUICK) scheme (and its related
QUICK with Estimated Stream Terms - QUICKEST) of Leonard&&Pcan often produce unphysical oscillations which,
most of the time, can lead to numerical instability. A vergfus strategy that has been used nowadays is the non-linear
upwinding discretization which adjusts themselves adogrtb the local solution in order to maintain bounded bebavi

In this work, we present a two new polynomial upwinding sckenmamely: Third-Order Polynomial Upwind Scheme
(TOPUS) of Queiroz (2010) and Six-Degree Polynomial Upwsictieme of € class (SDPUS-C1) of Lima (2010). These
schemes were derived in the context of the Normalized VeriBiiagram (NVD) of Leonard (1988), by enforcing the
Total Variation Diminishing (TVD) constraint of Harten (83). Consequently, they satisfy the Convection Boundesines
Criterion (CBC) of Gaskell and Lau (1988).

The objective of this work is to compare the performance e$étwo new TVD-based upwinding schemes (TOPUS
and SDPUS-C1) with the well established third/fifth-ordeEMO schemes (see Balsara and Shu (2000), Titarev and Toro
(2004), Ketcheson and LeVeque (2006) and Zhang and Shu YR0D®e comparisons are done by using the numerical
results obtained for two/three-dimensional hyperbolicsgrvation law systems. In the 2D case, we consider therlinea
acoustics equations. For the 3D case, we consider nonlawgeservation laws, such as Burgers and Euler equations.
These conservation laws have been solved by mean of the @atiea LAW PACKage (CLAWPACK) of LeVequet
al. (2006) (equipped with TOPUS and SDPUS-C1 flux-limiter) asdktension called WENOCLAW of Ketcheson and
LeVeque (2006).

Finally, as application, the TOPUS and SDPUS-C1 schemesisée for the computational simulation of three-
dimensional incompressible fluid flows involving movingdreurfaces. For these simulation, we have been used the 3D
version of the Freeflow code of Castalbal. (2000) equipped with both TOPUS and SDPUS-C1 schemes.

2. TOPUS AND SDPUS-C1 SCHEMES

Before proceeding to the derivation of the TOPUS and SDPUSebemes, it is essential to present the Normalized
Variables (NV) of Leonard (1988) and the conditions requiiie the construction of a monotonic upwinding scheme (
see Leonard (1988) and Lin and Cheing (1991)) (using the TMIDGBC criteria).

In order to interpolate the numerical flux; at a boundary facg between two control volumes, we will use, in
one-dimensional case, three neighboring grid points, haB@vnstream ), Upstream {J) and Remote-upstreanky,
and the convecting velocity;, at this face (see Fig. 1). For multidimensional problerhis strategy is applied in the
same fashion, with each convective derivative approxithateng of the relevant variable (direction-by-directio8p,
the scheme is given by the function

or = o¢(dD, U, OR). 1)
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Figure 1. Interfaces and their related grid points for dateing an upwinding scheme.

To simplify the functional relationship given by Eq. (1) theginal variables are transformed in NV as

. P ]~ %R
¢[]_¢D_¢R- 2)

The advantage of this new formulation is that the va&y@epends oy only, sincepp = 1 andg = 0. Thus, Eqg. (1)
can be rewritten as

b = br(dv). 3)
According to Leonard (1988), far < ¢y < 1, itis possible to derive a non-linear monotonic third-or& scheme
imposing the following conditions on Eq. (3), namely;(1) = 1; ¢4(0) = 0; ¢5(1/2) = 3/4; and¢>}(1/2) = 3/4.

Leonard (1988) also recommends that for vaIueé@fg 0 or éU > 1, the scheme must be extended in a continuous
manner using the FOU scheme, which is defined by

b5 = du. (4)

In this context, Gaskell and Lau (1988) (see also Watersdrbetoninck (2007)) proposed the CBC criterion, which
is a necessary and sufficient condition for a scheme possgssundedness, namely:

du < p(du) <1 it Vou €0, 1]
¢y =0r(ov) =¢u if Yoy ¢10, 1] (5)
or(v) =1 and ¢;(0) = 0.
These conditions determine the CBC region (see Fig. 2).
Another important convective stability criterion is the D\tonstraint of Harten (1983), which ensures that spurious

oscillations are removed from the numerical solution. Immary, considering a sequence of discrete approximations
o(t) = ¢;(t) to a scalar, whereis an integer, the total variation (TV) at timef this sequence is defined by

TV($(t) = 3 |61 (t) = 9i(t)] (6)

Then, the scheme is TVD if the following conditions is satidfi
TV(¢"t!) <TV(¢"), Vn. (7)

In addition, the TVD concept was translated by Sweby (198%) a set of limitations for the behavior of a functional
relationship given by Eqg. (3), namely

{ o5 € [pu,20u] and d; <1, if v € [0,1],
¢f = ¢U7 if ¢U ¢ [Oa 1])
which led the TVD region foéf((jBU) (see Fig. 2).

After one to have developed a NVD/TVD-based upwind schengederive the associated flux-limiter by rewriting
the original scheme in the following way (see Sweby (1984 \Alaterson and Deconinck (2007)):

(8)

b = du + 501~ o), ©

wherey (r) is the flux-limiter that determines the level of antidifudi@de and- being a local shock sensor given by ratio
of consecutive gradients. In uniform meshes and inNig,given by

__¢%u .
1— ¢y

r

(10)
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In addition, the TVD concept was also translated by Sweb@4) ™to a set of limitations for dictating the behavior of
the flux-limiter function, given by

¥(r) =0, if <0,
{ 0 < ¢(r) <min{2,2r}, if r>0. (11)

Theses conditions define the TVD region {ofr) (see Fig. 2).
In summary, Fig. 2 shows geometrically the regions for thiedfstability criteria discussed before.
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Figure 2. Stability criteria: the CBC and TVD regions ﬂ»f((fBU) (left) and the TVD region fot)(r) (right).

2.1 Development of TOPUS and SDPUS-C1 schemes

In particular, the TOPUS and SDPUS-C1 schemes were denivédteicontext of NV of Leonard (1988) and TVD
constraint of Harten (1983). The numerical solutions otgdiby these schemes can be second or third order accurate
in the smooth parts of the solution, but first order near megiwith large gradients. The TOPUS scheme of Queiroz
(2010) was derived by assummg that the NV at the cell interfg gbf, is related tojy as a four- -degree polynomial
function of the formgbf = Zk —0 akgbU, for0 < ¢y < 1, and a linear function (the FOU scheme) given by Eqg. (4), for
du < 0or¢y > 1. Afree parameter (say, = «) is considered and the other coefficients are determinethpgsing
the four conditions of Leonard (1988) outlined above. Thd*8B3-C1 scheme of Lima (2010) is derived in the same
way as TOPUS scheme. For this case, it is considered a sihe@eglynomial function of the fornﬁf = 22:0 bk(jo’fj
for 0 < ¢y < 1, and the FOU scheme (Eq. (4)), fopy < 0 or ¢y > 1. We set a free parameter (sky = 7)
and determine the other coefficients by imposing the fouditmms of Leonard outlined above, plus the conditions of
continuous differentiability fot:bf = ¢>f(¢U) on the whole remains. In other works the six-degree polyabfanction
and Eq. (4) are linked on the poini$, 0) and(1, 1) with the same values for the first derivatives. Thus, the SBAdR
scheme is a continuously differentiable function. It is orant to note here that, according to Lin and Chieng (1991),
this property is not satisfied then convergence problemshbedgund in unsteady calculations when large time steps are
employed. In summary, the schemes are:

—TOPUS:
A AR @)
U, U s Ll
whereax is a free parameter.
— SDPUS-C1:
; { (=24 + 4) ¢ + (68 — 129)67+ (=64 + 139)d + (20 — 69)6% +7¢F + du, du € [0, 1],
b5 = A (13)
¢U7 ¢U ¢ [Oa 1])

wherev is a free parameter.
The corresponding flux-limiter functions for the TOPUS aaP&)S-C1 schemes are derived by combining, respec-
tively, Eg. (12) and Eq. (13), with Eq. (9) and Eq. (10) to abta

b(r) = maX{O, 0.5(]r] +r)[(1 — 0.521;& +a)r+ (3 —0.50)] } (14)
and
5(|r| 4+ r)[(— r3 — r? r
ot0) = ma{, SRS 2 (0 tr) s 20 )
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It is possible by mean of numerical tests to show that the T®Btheme is TVD fow € [0, 2] (see Queiroz (2010))
and SDPUS-C1 scheme fore [4,12] (see Lima (2010)). In this work, we considered= 2 and~ = 12. For these
values Queiroz (2010) and Lima (2010) have shown that b@f@®PUS and SDPUS-C1 schemes have presented good
results for problems with discontinuities. In Fig. 3 are idegd the TOPUS (forv = 2) and SDPUS-C1 (foty = 12)
scheme (left) and the their flux-limiters (right).
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Figure 3. The TOPUS (far = 2) and SDPUS-C1 (foty = 12) schemes (left) and flux-limiters in TVD regions (right).

3. NUMERICAL RESULTS

We now discuss the performance of the TOPUS and SDPUS-CIngshand compare their results with those of
WENO schemes. For this we used the 2D/3D hyperbolic conBerviaws. Then, as application, the TOPUS and
SDPUS-C1 schemes are used for simulating the 3D circulaiaoyid jump.

3.1 Conservation laws

Many problems in science and engineering involve quaatitiat are preserved and that lead to certain types of PDEs
called hyperbolic conservation laws. These laws are géperanlinear and time-dependent. In the three-dimendiona
case, they are defined by

99  OF(¢) , 0G(¢) , 9H(¢) _
E—i_ Ox - dy - 9z

where¢ = ¢(x,y, 2, t) is the vector of the conservation variables @n@) = F(¢(x,y, 2,t)), G(¢) = G(¢(z,y, 2, 1))
andH(¢) = G(¢(z,y, 2, 1)) are flux functions. In the two-dimensional case of these ldedi (¢) = H(¢(z,y,t))

is neglected, they, F(¢) and G(¢) respectively are given by = ¢(z,y,t), F(¢) = F(P(x,y,t)) andG(¢p) =
G(¢(x,y,t)). Here we consider three particular cases of these laws, Ipar@® acoustics, 3D Burgers and 3D Eu-
ler equations. In order to resolve these equations, theegtdblished CLAWPACK of LeVeque (2004) and its extension,
namely WENOCLAW of Ketcheson and LeVeque (2006), have besed uThese softwares packages and additional doc-
umentations are freely available in LeVeteal. (2006). The method implemented in CLAWPACK employs the énit
volume methodology and a wave propagation approach (Led/e204). In this work, we combine this method with
the TOPUS and SDPUS-C1 flux-limiter given by Eq. (14) and BH&)(respectively. The method employed in WENO-
CLAW combines the notions of wave propagation and line magl{&etcheson and LeVeque, 2006) . The WENOCLAW
is implemented based on CLAWPACK and makes use of Riemamersoin the same form required for this softwares
package (Ketcheson and LeVeque, 2006). The numericalaodfrom both codes, CLAWPACK and WENOCLAW, are
dimensionless (see LeVeque (2004) and Ketcheson and Le\({2§06) for more details).

0, (16)

3.1.1 2D acoustics equations

The acoustics equations are formulated by Eq. (16), withveetor of the conservation variables given py=
[p, u, v]T and flux functions by (¢) = [Ku,p/p,0]T andG(¢) = [Kv,0,p/p]T. Here[u,v]T is the velocity vector, and
K, p andp are bulk modulus of compressibility of the material, denaitd pressure, respectively (for details, the reader is
referred to LeVeque (2004)). This system is solved in theaiaff, 1] x [0, 1], where the interface line = 0.5 separates
two materials (one on the left and another on the right) wéhsity p and sound speedgiven byp, = 1, ¢, = 1, and
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pr = 4, cr = 0.5. Another datum for the simulation is the pulse for the pressvhich leads to a radially-symmetric
disturbance, namely

r=+/(x—0.25)2+ (y — 0.4)2. (17)
The initial conditions are

1+0.5|cos(E=—) —1],if r<0.1,

w@y,0) = v(@,y,0) =0, p(x,y,0) = { 0, oo (52) =1 otherwise
Zero-order extrapolation is considered on the boundary.

For the simulation of this problem, we calculated the refegesolution by using the CLAWPACK code, where the
Godunov method with the correction term (containing the Btonized central-difference (MC) flux-limiter) is used.rFo
this, we consided00 x 400 computational cells and the Courant numBer 0.45 (see LeVeque et al. (2006)). The
numerical solutions are obtained with the same Godunovadetiut using the TOPUS and SDPUS-C1 flux-limiters. For
these solutions, a mesh sizeldf0 x 100 computational cells§ = 0.45 andf = 0.9 are used. The results for WENO
scheme are obtained by using WENOCLAW code in the same mé8tx (100 computational cells) and Courant numbers
(# = 0.45 andf = 0.9).

In Fig. 4 and Fig. 5, we presented at final time of simulatiea 0.5 the pressure variation as a function of distance
from the origin (iep on liney = 0). In these figures we compared the TOPUS, SDPUS-C1 and WEN&rszs with the
MC reference solution. It is possible to see that in the cége-o 0.45 the WENO scheme provides better results than
those obtained with TOPUS and SDPUS-C1 schemes (see Fighié)occurs principally in the capture of the peak and
valley in the range: € [0.5, 0.7]. On the order hand, in the casefof 0.9, the TOPUS and SDPUS-C1 schemes provide
the best results in the domain (see Fig. 5).

(18)
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Figure 4. Solutions for 2D acoustics equations obtainett WWENO, TOPUS and SDPUS-C1 schemes,fan line
y =0, att = 0.5 andf = 0.45.

Figure 6 shows the results of the SDPUS-C1 scheme for cexsis from the simulation of the pressuretat 0,
t = 0.5 andt = 1. The other results obtained with the TOPUS and WENO schemsasnaitted due to their similarities.
One can also observe from this figure that when the pressise hits the interface, it is partially reflected and palgial
transmitted.
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Figure 5. Solutions for 2D acoustics equations obtainett WWENO, TOPUS and SDPUS-C1 schemes,fan line
y =0, att =0.5andd = 0.9.
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Figure 6. Solutions for 2D acoustics equations obtainedmy$S-C1 scheme for cross-section of th&tt = 0,¢ = 0.5
andt =1.

3.1.2 3D Burgers equation

The 3D Burgers equations correspond to Eq. (16) with theovedit the conservation variables given by= u
and flux functionsF'(¢) = G(¢) = H(¢) = su®. Hereu is the velocity vector. These equations are defined in
[—3,3] x [-3, 3] x [-3, 3], supplemented with the initial data

u(z,y,2,0) = 0.3+ 0.7sin (g(x—i—y—i—z)) (19)
and periodic boundary conditions.

This hyperbolic system is solved by using CLAWPACK code. Tékerence solution is obtained on a mesh size of
100 x 100 x 100 computational volumes by using the Godunov method with tiveection term employing the MC
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flux-limiter (see LeVeque (2004)). The numerical solutians calculated by using of the TOPUS and SDPUS-CL1 flux-
limiters, on a uniform mesh di0 x 50 x 50 finite volumes. For both cases (humerical and referencejzomsidered
6 = 0.27. The result for WENO scheme was obtained from the articl@@fzhang and Shu (2009).

In Fig. 7 itis depicted the reference and numerical solutiion theu component at = -, on linez = y andz = 0.
We can observe, from this figure, that the solutions with TSPEDPUS-C1 and WENO schemes are similar, presenting
non-oscillatory results and capturing very well the shddkwever, the WENO scheme presents two solution-points on
shocks, while both the TOPUS and SDPUS-C1 show only one gingiit is depicted the result obtained with the TOPUS
scheme fon velocity inz | y (left) andx L y L z (right). The results with the SDPUS-C1 and WENO scheme are
omitted due their similarities with the result with TOPU$ieme. We can see for this figure that the results are in good
agreement with the solutions of Zhang and Shu (2009).
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Figure 7. Solutions for the 3D Burgers equations obtaineddigg the WENO, TOPUS and SDPUS-C1 schemes(left)

and a expansion of the results (right), fgron line nx = y andz = 0, att = %
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Figure 8. Solutions for the 3D Burgers equations obtainedheyTOPUS scheme far, on line naz L y (left) and
x Ly L z=0/(right)att = 3

T2

3.1.3 3D Euler equations

The Euler equations are given by Eq. (16), where= [p, pu, pv, pw, E]T is the vector of conserved quantities,
F(¢) = [pu, pu*+p, puv, puw, (E+p)ul™, G(¢) = [pv, puv, pv*>+p, pvw, (E+p)v]” andH (¢) = [pw, puw, pvw, pw>+
p, (B + p)w]T are flux functions; being, u, v, w, pu, pv, pw, E andp the density, the:-velocity, they-velocity, the
w-velocity, thex-momentum, the;-momentum, thav-momentum, the total energy and the pressure, respectiely
order to close the system, the ideal gas equation of staté\ — 1)(E — $p(u? +v? +w?)) with A = 1.4 is considered.

We consider the so-called spherical explosion test as aseptative problem for 3D Euler equations (see Titarev and
Toro (2004)). The problem consists of two regions, sepdrayea sphere of radius 4, with values for gas parameters
differents. The problem is solved in the doméirl, 1] x [—1, 1] x [—1,1], and the Euler equations are supplemented
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with the initial conditions

1.0, 1.0)T if r<0.4
S B T TRar T A1 20)

whereu = v = w = 0,72 = 22 + y2 + 22. Zero-order extrapolation on the boundary is assumed.

The reference solution is obtained by applying the strapggposed by Toro (1999) in the 1D version of the CLAW-
PACK code. The first-order Godunov method on 1000 computaticells and) = 0.27 have been used. The numerical
solutions are calculated via 3D version of CLAWPACK, usihg Godunov method with the correction term containing
the TOPUS and SDPUS-CL1 flux-limiters. A mesh sizé(@fx 100 x 100 computational cells angl= 0.27 are employed.
The results with WENO scheme were obtained from Titarev awd [2004). Figure 9 depicts the solutions (reference
and numerical) for the density along thexis (y = z = 0) at timet¢ = 0.25. It can clearly see from this figure that the
results with TOPUS, SDPUS-C1 and WENO schemes are similarariillustration, we present in Fig. 10 the results
obtained with the SDPUS-C1 scheme fon x L y, att = 0, ¢t = 0.25 andt = 0.5 with § = 0.27. The results obtained
with TOPUS and WENO schemes are not presented due to sityilathe results generated by the SDPUS-C1 scheme.

— Reference _

x  WENO M \I?IEL%ence
o TOPUS o TOPUS

* SDPUS-C1 * SDPUS-C1

Expansion

0 | | | | | | | |

0 0.2 0.4 0.6 0.8 1 05 0.6 0.7 0.8
T xT

Figure 9. Solutions for the 3D Euler equations obtained ey WENO, TOPUS and SDPUS-C1 schemes (left) and
expansion of results (right) forin x axis att = 0.25 andf = 0.27.
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Figure 10. Results generated by SDPUS-C1 schemeifor: L y att = 0, ¢ = 0.25 andt = 0.5 with § = 0.27.

3.2 Navier-Stokes equations

From now on, we examine the capability of the TOPUS and SDRWSchemes for solving complex 3D flow prob-
lems involving moving free surfaces. For this, we considexeertical free jet impinging perpendiculary onto an imper
meable rigid surface (under the gravitational field), legdb the formation of a curious phenomenon, observable-in ev
eryday life, known as circular hydraulic jump (see refeeeBtiegaard et al. (1996) for more details on the phenomenon)
For the simulation of this free surface flow, we have used @& sion Freeflow code of Castedd al. (2000) equipped
with both TOPUS and SDPUS-C1 schemes. The governing eqsaie Navier-Stokes and mass conservation equations
and they are given, respectively, by

Ou

n +V-(uu) = —Vp+vViu+yg, (21)
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V-u=0, (22)

whereu = [u(z,y, z,t), v(z,y, 2,t) w(z,y, z,t)]T is the velocity vector fieldp is the pressure; gravitational field and
v is the viscosity coefficient (constant).

The circular hydraulic jump may arise when a free jet of wé#ling vertically at moderate Reynolds number strikes
a horizontal rigid surface. A better understanding of thermimenon and the instabilities, at least in its turbulermfo
is of commercial interest, since jet impingement is ofteadus cooling systems and the flow of the fluid beyond the
jump can degrade the efficiency of the system. Therefore, &uiilent hydraulic jump constitutes an excellent test
for validating codes based on front tracking techniquesortier to solve this phenomenon, we consider a domain of
0.6 m x 0.6 m x 0.6 m, where the diameter and height (from inlet to the rigid stejeof inlet are given by) = 0.05m
andH = 0.001 m, respectively. In addition, we employed the following ddtee velocity scaley = a0 = 1.0m/s
(injection speed); length scale = 0.05; coefficient of kinematic viscosity = 5 x 10~° m/s and gravitational constant
g = 9.81m/s%. The Reynolds number is based on the injection speed ancttbawf the inlet, namelyize = % =
1000.

Figure 11 shows a qualitative comparison between the axpetal results of Ellegaaret al. (1996) and the results
obtained with TOPUS and SDPUS-C1 schemes. One can clearfymse this figure that our numerical method equipped
with these high resolution polynomial upwind schemes aagtthe complete physical mechanism of this complex free
surface flow.

Experimental result of Ellegaast al. (1996)

Numerical result with SDPUS-C1

Figure 11. 3D qualitative comparison between the experiatend numerical results for a turbulent hydraulic jummgsi
TOPUS and SDPUS-C1 schemes.

4. CONCLUSIONS

In this paper, two high resolution polynomial upwinding sofes (TOPUS and SDPUS-C1) were compared with
WENO schemes (Balsara and Shu (2000), Titarev and Toro j2@@&tcheson and LeVeque (2006) and Zhang and
Shu (2009)). By using these schemes, various test problemsufated by two/three-dimensional conservation laws,
such as, 2D acoustics, 3D Burgers and 3D Euler equations sedved. With these results, we may conclude that
both the polynomial schemes provide similar results toehgsnerated by WENO schemes (which is well established
class of schemes in the literature). It can be observed ifitdrature (see the papers in the reference section) tkeat th
WENO schemes are, from computational point of view, moresaesjve than the TOPUS (Queiroz, 2010) and SDPUS-C1
(Lima, 2010) schemes. So, we have in hand two new upwindihgmes which are computationally simpler than the
WENO schemes and provide us similar results to the WENO sebherfds an application, the TOPUS and SDPUS-C1
schemes were used to simulate three-dimensional incosible#lows involving free surfaces. Once more, the results
demonstrated that these upwinding schemes are effectil@ far studying complex fluid dynamics problems. For the
future, the authors are planning to apply SDPUS-C1 schentieetmumerical solution of three-dimensional turbulent
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viscoelastic free surface flows.
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