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Abstract. It is known that forced or natural aeration are linked to the self-purification capacity of water bodies. It is 
also know that the use of less aggressive oxidizing substances results in lower toxicity, and, thus, results on general 
better characteristics of the final waters. The dissolution of oxygen into water is an important step in the processing of 
wastewaters. Different equipments can be used to attain adequate levels of dissolved oxygen in water. In the present 
study, the dissolution is performed in the so called aeration units (tanks) where air is bubbled through the liquid, while 
the last moves in a continuous flow regime. This research considers the phenomenological modeling of the oxygen 
transfer from the air bubbles to the liquid, and the numerical simulation of the Ordinary Differential Equations (ODEs) 
and Partial Differential Equations (PDE) that govern the mass transfer phenomena and the fluid flow. Experimental 
results obtained from this study and also from the literature will be compared with the simulation data. We understand 
that such models can contribute to the understanding of the turbulent transport of scalar components in fluids in a 
practical way, as well as can be used to help in the monitoring of   water resources or in control operations during 
wastewater treatments in treatment plants. 
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1. INTRODUCTION  
 

The mechanisms involving the movements of air bubbles in water are important for the understanding and modeling 
of the phenomena related to oxygen dissolution. 

Oxygen dissolution is the fundamental step in the processing of pollutant effluents. The degrading microorganisms 
need oxygen to oxidize organic compounds and mineralize them to substances less aggressive to the environment and to 
human health. In nature the dissolution takes place through the air-water interface, depending on the turbulent condition 
in the water bodies.  In the nature the transfer efficiency can be low, but the contact area is generally big. 

To recreate these dissolution conditions in a controlled environment, where the free exposed interface area does not 
have satisfactory proportions, the easiest way is to bubble air in the flowing liquid medium to enhance oxygen transfer. 
The so called “aerator” (aeration tank or channel) is the unit responsible for this process and its configurations are 
extensive and operated in several different ways. The reason for so many variations is the searching for the highest 
possible efficiency in oxygen transfer to the water. 

 Aeration is an “old problem”, and  many contributions  has been made to the theme, but there  are still  many open 
questions and optimizations to be explored, mainly when more phases or components are present, like  processes 
involving activated sludge. The flows in nature are essentially turbulent, and all transfer mechanisms depend on the 
intensity of the mixture caused by the eddies. Thus, the oxygen absorption is also a function of the turbulence intensity.  
Correlations involving  the turbulent Schmidt number (

TAB

T
DSc ν= ), in which νT is the  turbulent viscosity  and DABT is 

the turbulent diffusivity,  allow to estimate the turbulent diffusity  needed for the quantification  of mass transfer in 
projects , modeling, process control, among other objectives. 

Considering the statement above, we tried to evaluate the turbulent viscosity in forced aeration systems applying the 
laser velocimetry technique, and developing  oxygen transfer  models,   contributing to the knowledge on recuperation 
of water quality. 
 The current research considers, thus, forced aeration phenomena, turbulence, and the use of the laser velocimetry 
technique (PIV). 

The flow structure in the turbulent regime is characterized by random tridimensional movements of fluid particles, 
added to the main movement. We naturally infer that more agitated flows transfer higher quantities of movement than 
less agitated flows. This is because there are macroscopic volumes of fluid that randomly move through the flow with 
higher velocities. Therefore, it is concluded that the turbulent viscosity is a function of the turbulent agitation in the 
flow. This characteristic is relevant because it shows that the proportionality coefficient in the transport equation can be 
a function of the position in the flow. That is, a flow can present a turbulent viscosity profile (SCHULZ, 2003) instead 
of a single characteristic value. 
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The PIV technique is used to obtain images to determine instantaneous velocity fields and to determine bubble sizes 
in a bi-dimensional flow field. The PIV technique consists of a beam of light that illuminates the suspended particles in 
the flow that pass through the bi-dimensional beam.  The luminosity of the light source highlights the particles that 
follow the fluid movement, which may then be photographed by a high speed camera (a high number of frames per 
second). The correlation between sequential   images furnishes the local velocities of the fluid.  
The correlation of these data provides the local fluid velocities. Countless studies using the PIV technique can be found 
[Liu e Zheng (2006), Pereira (2006), Salla (2006), Sousa et al (2006), Fan et al (2005), Baldi e Yianneskis (2004), Fan 
et al (2004), Bao e Dallamann (2003), Dellauré et al (2003), Weitbretch et al (2002), Cheng e Law (2001), Pan e Meng 
(2001), Law e Wang (2000), Orlins e Gulliver (2000), Tokuhiro et al (1998), Jun et al (1993)], but few depict the 
drainage subject to aeration, so this study is to contribute to towards this. 

 
 

2. MATERIALS AND METHODS 

 
The experiments were conducte in the Laboratory of Environmental Hydraulics, located in the Centro de Recursos 

Hídricos e Ecologia Aplicada (CRHEA) in the Escola de Engenharia de São Carlos, Universidade de São Paulo. 
 The experimental device was composed by a cross-flow aerator without mechanical agitation. The channel was 5m 

long, 350mm tall and 200mm wide, made of acrylic, which makes it easier to visualize the flow of the bubble plumes 
subjected to turbulent movements.  The tank was fed with local supply water and neutral talc powder was used as 
particles tracer. 

The particle image velocimetry (PIV) technique was used to obtain velocity profiles inside the channel. In this 
technique a light beam in a blade format (light sheet) originated from a cooper vapor laser (Oxford Laser LS-20-10 
20W) cuts the tank in the longitudinal direction, and a CCD camera on the side of the tank captures images in the 
illuminated area. The captured images were then treated in a specific program (Visiflow) which provided velocity 
values in a number of points of the flow. The use of the laser source illuminated well the flow, allowing to obtain good 
pictures and to calculate the Reynolds stresses data that are essential for the turbulent flow  studies.  With these data it is 
possible to define an aeration rate, aiming to validate possible models. The main objective of this work is to evaluate the 
turbulent viscosity and the subsequent turbulent diffusivity accordingly to the basic model of the transport equation 
(presented here in x coordinate): 
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(2) 

 
The terms between parentheses in the first member involve a parcel that represents the  molecular diffusion of 

momentum , while the  parcel that involves the turbulent fluctuations  represents the turbulent diffusion  of momentum. 
It is possible to define the coefficient of turbulent transfer of momentum (turbulent viscosity), written below (with a 
positive sign): 
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By comparison with the terms in Eq. 2, we have: 
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From equations 3 and 4 we obtain, immediately: 
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It is worthy to observe that the desired Reynolds stresses are given by yx  v'v'ρ , in which x v'  e yv'  are velocity 

fluctuations following the x and y directions in the Cartesian system. Having the turbulent viscosity, the turbulent 
diffusivity follows generally from simple proportionalities involving adequate values for the turbulent Schmidt number. 
 
 

3. PRELIMINARY RESULTS 

The results were obtained by the analysis of the velocity data. The visual quality of the data can be attested when 
exposing them in vectorial fields, considering the sector studied in the channel. The studies were carried out considering 
two dimensions, the height and the length of the channel.  

The fluctuating velocities compose the Reynolds stresses ''
yxvvρ , which allow to calculate the turbulent viscosity.  

The results for the turbulent viscosity are described in Figures (1), (2), (3), (4). 
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Fig. 1: Turbulent viscosity disposition  in the Y direction 

xxtµ medium in X. Scale in Pa.s. 
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Fig. 2: Turbulent viscosity disposition in the X direction xxtµ medium in Y 
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Fig. 3: Turbulent viscosity disposition in the Y direction yytµ medium in X 
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Fig. 4: Turbulent viscosity disposition in the X direction yytµ medium in Y 
 
  

The good quality of the data points to the convenience of a numerical model to reproduce the experimental results 
and to allow predictions for different flow conditions. Further investigations considering the dispersion of the bubbles 
are intended. 
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