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Abstract. The present paper proves that an adequate formulation of the thermomechanical couplings may lead to a ther-
modynamically admissible hyperbolic heat equation even if the Fourier Law is taken into account. The main assumption
is that the intrinsic dissipation is not only a function of the state variables, but also of the temperature time rate. Various
alternative models have been proposed to lead to a finite thermal wave speed. Generally they try to replace the classical
Fourier heat conduction assumption. Nevertheless, most of these alternative heat conduction assumptions clearly violate
the principle of objectivity. Besides, it is very difficult to assure that the resulting governing equations are thermodynam-
ically admissible.
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1. Introduction

The classical linear equation for heat conduction based on Fourier’s law is a parabolic equation in terms of the tem-
perature field. Although this parabolic equation leads to an adequate description of heat conduction in most engineering
applications, it predicts an infinite wave speed of heat conduction what is physically unrealistic. Consequently, any ther-
mal disturbance exerted on a body is instantaneously felt through the whole body. It is now accepted that in situations
involving very short times, extreme thermal gradients or temperatures near absolute zero may lead to a finite thermal wave
speed. Finite thermal wave speed must be considered in the study of microelectronic devices such as IC chips (Xu, 1995),
in the use of heat sources such as lasers and microwaves and scientific research (e.g., measuring physical properties of
thin films, exhibiting microscopic heat transport dynamics). Lasers and microwaves are used in numerous applications
related to material processing (e.g., surface annealing, welding and drilling of metals, and sintering of ceramics, see (Liu,
2009), for instance). In applications involving high heating rates induced by a short-pulse laser, the typical response time
is in the order of picoseconds (Al-Nimr, 1997, 1999; Qiu, 1992). Lasers are also routinely used in medicine.

Various alternative models have been proposed to lead to a finite thermal wave speed. Generally they try to replace the
classical Fourier heat conduction assumption. Some of them clearly violate a notion of the second law of thermodynamics
since the heat may flow from cold to hot regions during finite time periods. For some of them it is very difficult to assure
the resulting governing equations are thermodynamically admissible or the principle of objectivity is satisfied.

Vernotte (Vernotte, 1958), and Cattaneo (Cattaneo, 1958), based on the concept of heat transmission by waves, inde-
pendently introduced an alternative equation aiming at describing problems involving high rates of temperature change,
heat flow in an extremely short period of time or very low temperatures near absolute zero. After the pioneer works of
Vernotte and Cattaneo, a number of research contributions have been dedicated to the study of problems involving hyper-
bolic heat conduction (Jackson, 1971; Narayanamurti, 1972; Joseph, 1990b,a; Kaminski, 1990; Rubin, 1992; Tien, 1993;
Özisik, 1994; Guillemet. P., 1997; Barletta, 1997; Christov, 2005; Tibullo, 2011).

This study proves that an adequate thermomechanical formulation can lead to a hyperbolic heat equation even if we
use the Fourier law. The main idea is that the Helmholtz postulate is not necessarily valid outside the states of equilibrium.
Note that the idea here is not to say that other models are wrong and that the model proposed here is the only physically
realistic that provides heat waves of finite speed. The main objective is to show an alternative approach that cannot be
neglected in future experimental studies.

2. Some remarks about the first and second laws of thermodynamics

The basic thermodynamic framework and the main definitions necessary to the analysis are summarized on this section.
In order to present the formal theoretical arguments, it is considered as a system an arbitrary part P of a body B that
occupies a region Pt ⊂ R3 at each time instant is taken as mechanical system. By definition, the boundary of the region
Pt will be called ∂Pt.

Noting U(Pt) , K(Pt) , Pext(Pt) and Pℎ(Pt) , respectively, the internal energy, the kinetic energy , the power of the
external forces and the non mechanical power (heat) of the system P at instant t, the first law of thermodynamics (FLT)
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for the system can be expressed as an energy balance:

U(Pt) =

∫
Pt

�e dV (1)

K(Pt) =
1

2

∫
Pt

�(v ⋅ v) dV (2)

Pext(Pt) =

∫
∂Pt

(f ⋅ v) dS +

∫
Pt

b ⋅ vdV (3)

Pℎ(Pt) =

∫
∂Pt

(q ⋅ n) dS +

∫
Pt

�r dV (4)

FLT =⇒ dU(Pt)

dt
+

dK(Pt)

dt
= Pext(Pt) + Pℎ(Pt) (5)

Where � is the mass density, e the internal energy per unit mass, v the velocity, f the contact force applied on the
boundary on ∂Pt, b the body force applied on Pt, q the heat flux vector, n the unit outward normal to the surface ∂Pt and
r a heat supply or source per unit mass and unit time. If the principle of virtual power is taken into account, the following
relation holds:

K(Pt)

dt
= Pint(Pt) + Pext(Pt) (6)

Pint(Pt) =

∫
Pt

(T : ∇v) dV (7)

With T being the Cauchy stress tensor. From equations (1) and (7) it comes that the FLT can be expressed as:

FLT =⇒ dU(Pt)

dt
= Pint(Pt) + Pℎ(Pt) (8)

Under suitable regularity assumption, using the balance of mass equation, equation (8) and the symmetry of the Cauchy
stress tensor, it is possible to obtain the following classical local version of the FLT:

�ė = −∇ ⋅ q+T : D+ �r (9)

Where �̇ denotes the material derivative of (�). The tensor D is the symmetrical part of ∇v and is usually called the
deformation rate tensor. Another alternative way to express the first law of thermodynamics is by introducing directly the
concept of entropy balance. In this case, the entropy and the absolute temperature are introduced as primitive quantities.
Noting S(Pt) , H1(Pt), H2(Pt) and H3(Pt), respectively, the entropy of the system, the variation of entropy due to
internal dissipative mechanisms, the entropy flux at the boundaries and an entropy source, it is possible to write:

S(Pt) =

∫
Pt

�s dV (10)

H1(Pt) =

∫
Pt

d

�
dV (11)

H2(Pt) = −
∫
∂Pt

(q ⋅ n)
�

dS (12)

H3(Pt) =

∫
Pt

�r

�
dV (13)

SLT =⇒ dS(Pt)

dt
= H1(P, t) +H2(P, t) +H3(P, t) (14)

Where s is the entropy per unit mass, � the absolute temperature and d the rate of energy dissipation per unit volume.
Using the balance of mass equation and the symmetry of the Cauchy stress tensor, it is possible to prove that, in order to
have equivalence between (9) and (14), must have the following form:

d = T : D− � (ė− �ṡ)− 1

�
q ⋅ ∇� (15)
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The second law of thermodynamics (SLT) can then be stated simply as:

SLT =⇒ H1(P, t) ≥ 0 (16)

SLT =⇒ d ≥ 0 (17)

The second law of thermodynamics makes a distinction between possible (d ≥ 0) and impossible (d < 0) processes.
The possible processes may be reversible (the rate of energy dissipation is always equal to zero) or not. This local version
of the SLT does not exclude the possibility of unusual behaviors such as a decreasing temperature if heat is added to the
medium. To exclude the possibility of such kind of unusual behavior, here we only consider fluids that always satisfy a
further restrictive constraint:

d1 = T : D− � (ė− �ṡ) ≥ 0 (18)

d2 = −1

�
q ⋅ ∇� ≥ 0 (19)

Obviously, if the above relations are satisfied, then the local version of the SLT presented in (17) will also be satisfied.
It is also simple to verify that the expression in (19) leads to the classical heat conduction inequality −q ⋅ ∇� ≥ 0
since the absolute temperature � is a positive quantity. This relation implies that heat flows in the direction of decreasing
temperature when q is parallel to the temperature gradient. The quantity d1, defined in (18), is usually called the intrinsic
dissipation and the quantity d2, the thermal dissipation.

A convenient local form for the first law of thermodynamics which will be useful in the next sections can be obtained
introducing the definition of the intrinsic dissipation d1 in (9):

−∇ ⋅ q = �ṡ� − d1 − �r (20)

It will be also convenient to use the Helmholtz free energy per unit mass  in the place of the internal energy per unit
mass e:

 = e− �s (21)

d1 = T : D− �
(
 ̇ + s�̇

)
(22)

3. Basic constitutive assumptions

The main constitutive assumption considered in this paper is:

1. The classical Fourier heat conduction assumption is valid

q = −k∇� (23)

Where k is a positive function of � , usually called the thermal conductivity. Using (23) it is simple to verify that:

d2 = −1

�
q ⋅ ∇� = k

�
∇� ⋅ ∇� ≥ 0 (24)

Since the absolute temperature � is a positive quantity and k is a positive function of �. Therefore, in order to
assure the equations are thermodynamically admissible, it is only necessary to propose sufficient conditions to
assure the inequality (d1 ≥ 0) is automatically satisfied in any process. The additional information about the
material behaviour is obtained from two thermodynamic potentials: the Helmholtz free energy  and the dissipation
potential �̂ . To simplify the discussion, the demonstration is restricted to an incompressible material (∇ ⋅ v = 0)
such that:

T = −pI (25)

Where p is the hydrostatic pressure, which is a Lagrange multiplier related to the incompressibility constraint(∇ ⋅
v = tr(D) = 0) and I is the second order unity tensor. It is important to emphasize that such a simplifying assump-
tion is adopted only to reduce the paper size and that it is not necessary in order prove that an adequate formulation
of the thermomechanical couplings may lead to a thermodynamically admissible hyperbolic heat equation even if
the Fourier Law is taken into account. Besides the hypothesis H1, the following additional constitutive assumptions
are taken into account:
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2. The Helmholtz Free Energy is a differentiable function of absolute temperature:

 =  ̂(�) (26)

3. The rate of energy dissipation d1 has the following form:

d1 =
∂�̂(�̇, �)

∂�̇
�̇ (27)

It is simple to verify that, for an incompressible material, the product T : D = 0 since:

T : D = −pI : D = −p ⋅ tr(D) = 0 (28)

Hence, introducing (26) and, (27) into the definition of the intrinsic dissipation in (22), it is possible to obtain:

�

(
s+

∂ ̂(�)

∂�
+

1

�

∂�̂(�̇, �)

∂�̇

)
�̇ = 0; ∀ �̇ (29)

Consequently, the following constitutive relation must hold:

s = −

(
∂ ̂(�)

∂�
+

1

�

∂�(�̇, �)

∂�̇

)
(30)

In order to assure that equations (23), (25), (30) are thermodynamically admissible, the following additional condi-
tion is considered:

4. The potential �̂ is a differentiable, positive and strictly convex function of the variable �̇ and � such that �̂(�̇ =
0, �) = 0, ∀ �.

�̂ = �̂(�̇, �) (31)

If these conditions hold, a classical result of Convex Analysis (Ekeland, 1976; Rockafellar, 1970) is that:

∂�̂(�̇, �)

∂�̇
�̇ ≥ 0 (32)

In this case, these conditions are sufficient to assure that equations (23), (25), (30), form a complete set of thermody-
namically admissible constitutive equations, i.e., for any particular set of constitutive equations obtained within the
context proposed on this paper, the inequalities (d1 ≥ 0) and (d2 ≥ 0) (and hence the Clausius-Dühen inequality
d ≥ 0) are automatically satisfied in any process.

4. Heat Equation

The heat equation is a version of the first law of thermodynamics for the materials described by the constitutive theory
presented in the previous section. From (30) it is possible to obtain:

ṡ = −

(
∂2 ̂(�)

∂�2
�̇ +

1

�

∂2�̂(�̇, �)

∂�̇2
�̈ +

1

�

∂2�̂(�̇, �)

∂�∂�̇
�̇

)
(33)

Introducing the previous equation into the local version (20) of the FLT, it comes that

−∇ ⋅ q = �

(
−∂

2 ̂(�)

∂�2
�̇ − 1

�

∂2�̂(�̇, �)

∂�̇2
�̈ − 1

�

∂2�̂(�̇, �)

∂�∂�̇
�̇

)
� − d1 − �r (34)

Finally, combining equations (23), (27) with (34) it is possible to conclude that:

∇ ⋅ (k∇�) =

(
−�∂

2 ̂(�)

∂�2
� − ∂2�̂(�̇, �)

∂�∂�̇
� − ∂�̂(�̇, �)

∂�̇

)
�̇ +

(
−∂

2�̂(�̇, �)

∂�̇2
�

)
�̈ − �r (35)
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Equation (35) allows a hyperbolic description of heat transfer, depending on the choice of the potentials  ̂ and �̂. For
instance, it is possible to the following particular form for the dissipation potential �̂.

�̂(�̇, �) =
�

�
f(�̇) (36)

With � being a nonnegative constant and f a convex function that assures H4 is verified. In this case, a strong
simplification can be made in the heat equation (35) since

∂�̂(�̇, �)

∂�̇
=
�

�
f ′(�̇) (37)

∂2�̂(�̇, �)

∂�∂�̇
� = −�

�
f ′(�̇) (38)

Thus form equations (37) and (38):

∂�̂(�̇, �)

∂�̇
+
∂2�̂(�̇, �)

∂�∂�̇
� = 0 (39)

Thus, from (35), (36) and (39), the following simpler expression for the heat transfer equation is obtained

∇ ⋅ (k∇�) = �ĉ�̇ − �̂ �̈ − �r (40)

Where:

ĉ = −�∂
2 

∂�2
(41)

�̂ = �
∂2�(�̇,�)

∂�̇2
= �f ′′(�̇) (42)

If equations (41) and (42) holds, ĉ and �̂ can be related to the reversible and irreversible parts (sr, sir) of the entropy
s (given in (30)) trough the following relations:

s = sr + sir (43)

Where:

sr = −∂ ̂(�)
∂�

(44)

sir = −1

�

∂�̂(�̇, �)

∂�̇
(45)

From the (44) and (45)

ĉ = −�∂
2 

∂�2
= �

∂sr

∂�
(46)

�̂ = �
∂2�(�̇,�)

∂�̇2
= ��

∂sir

∂�
(47)

The particular choice of �̂ made in (36) and condition H4 imply that �̂ is always nonnegative. The expression for
the variable ĉ in (41) is exactly the same found for the specific heat in the classical parabolic theory in which. Different
expressions can be chosen for f(�̇) and for  ̂. Possible choices of f(�̇) and  ̂ are:

f(�̇) =
�̇2

2
(48)

 ̂(�) =  ̂0 −
∫ �

�0

�1log(�)d� −
1

2
�2(� − �0)2 (49)

With  ̂0 being a positive material constant and c and �, nonnegative material constants. Hence

sr = −∂ ̂(�)
∂�

= c (log(�)− log(�0)) + � (� − �0) (50)
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And, therefore

ĉ = �
∂sr

∂�
= c+ �� (51)

Besides, from the definition of �̂ , equation (42), and f(�̇), equation (48):

�̂ = �f ′′(�̇) = � (52)

The constitutive equations proposed by Green and Naghdi, (Green, 1977), using a very different framework for hy-
perbolic heat conduction lead to a heat transfer equation which is exactly the one obtained from (35), using (36), (48) and
(49), assuming a constant thermal conductibility k and taking � = 0 and r = 0 (no heat supply or source).

k∇2� = �
(
c�̇ − ��̈

)
(53)

Where the symbol∇2 denotes the Laplacian operator with respect to the present position and � = �/�.

5. Conclusion

This theoretical study proves that an adequate thermomechanical formulation can lead to a hyperbolic heat equation
even if the Fourier law is taken into account. The main idea is that intrinsic dissipation d1 is also a function of the
temperature rate �̇ . Various alternative models have been proposed in the literature trying to obtain a finite thermal wave
speed.

Generally the classical Fourier heat conduction assumption (q = −k∇�) is replaced by alternative laws, such as the
Cattaneo-Vernotte equation (q + � q̇ = −k∇�). Nevertheless, most of these alternative heat conduction assumptions
clearly violate the principle of objectivity. Besides, it is very difficult to assure that the resulting governing equations are
thermodynamically admissible, since heat may flow from cold to hot regions during finite time periods.

The main objective is to show an alternative approach that cannot be neglected in future experimental studies. The
generalization of the demonstration to more complex material behaviours can be performed by considering a more sophis-
ticated constitutive theory under the framework of thermodynamics of irreversible processes. All constitutive equations
obtained in (Costa Mattos, 2009) in the case of inelastic damageable solids undergoing small transformations, and in
(Costa Mattos, 1998) in the case of non Newtonian fluids, can be extended to account for hyperbolic heat transfer even if
the classical Fourier heat conduction assumption is adopted. The key in all cases is to consider that the intrinsic dissipation
is not only a function of the state variables, but also of the temperature rate .
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