
Proceedings of COBEM 2011
Copyright c© 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

NUMERICAL SIMULATION OF 3D VISCOELASTIC FREE SURFACE
FLOWS

Rafael Alves Figueiredo1, rafigueirdo22@gmail.com
Cassio Machiaveli Oishi2, cassiooishi@gmail.com
José Alberto Cuminato1, jacumina@gmail.com
1 Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos-SP, Brasil
2 Departamento de Matemática, Estatística e Computação, Universidade Estadual Paulista, Presidente Prudente, Brasil

Abstract. In this paper we present a finite differences method for solving three-dimensional viscoelastic incompressible
free surface flows governed by the single equation version ofthe Single eXtended Pom Pom (SXPP) model. These types of
flows have low Reynolds numbers, thus present severe stability constraints on the time step. To enhance the stability of the
numerical method, we employ a combination of the projectionmethod with an implicit technique for treating the pressure
on the free surface. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach
while simultaneously calculating the correct normal stress condition on the free surface. Numerical results include the
simulation of jet buckling.
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1. INTRODUCTION

Viscoelastic fluid flows are common in many important industrial applications, therefore the need to understand how
these flows are processed is of economic or technological interests. Several constitutive equations describing viscoelastic
fluids can be found at (Birdet al., 1987) for instance. However, none of them is satisfactory in describing the correct
behavior of nonlinear shear and elongational stress. A great step to overcome such weakness was made recently with
the Pom-Pom model (McLeish and Larson, 1998). An improvement of this model was the XPP (eXtended Pom-Pom),
proposed by (Verbeetenet al., 2001), besides several variants such as the SIPP (Single Improved Pom-Pom), the DIPP
(Double Improved Pom-Pom), the SXPP (Single eXtended Pom-Pom), the DXPP (Double eXtended Pom-Pom), the
λ2XPP, the mXPP (modified eXtended Pom-Pom) and the Semi-Linear SXPP. Numerical solution for this type of fluid
has taken much effort, of many authors as can be seen in recentpapers (Bishkoet al., 1999; Rubio and Wagner, 2000;
Wapperom and Keunings, 2001; Verbeetenet al., 2002; Bogaerdset al., 2002; Clemeuret al., 2004; Verbeetenet al.,
2004; Aboubacaret al., 2005; van Os and Phillips, 2005; Sirakovet al., 2005; Aguayoet al., 2006; Soulageset al., 2006;
Aguayoet al., 2007; Inkson and Phillips, 2007; Inksonet al., 2009; Baltussenet al., 2010b; Wanget al., 2010).

An additional difficulty appears when these models involve free surface, as seen in (Bogaerdset al., 2004; Martins,
2009; Oishiet al., 2011; Russo and Phillips, 2010; Baltussenet al., 2010a). Nevertheless, all these studies are restricted
to two-dimensional cases. On the other hand, there are models for free surface problem whose behavior needs a deeper
understanding for the three-dimensional case. Within thiscontext, this paper presents the study of numerical methodsto
simulate the SXPP model with free surface in three dimensions, which permits the study of problems that could not be
studied before.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Incompressible isothermal viscoelastic flows are governedby a system of equations consisting of the equations of
momentum and mass, together with the constitutive equation. The constitutive equation used in this paper is the single
extended pom-pom (SXPP) model (Verbeetenet al., 2001). Under such conditions, mass and momentum conservation
equations can be expressed in dimensionless form by

∇ · u = 0, (1)

∂u

∂t
+∇ · (uu) = −∇p+ β

Re
∇2u+∇ · τ + 1

Fr2
g, (2)

whereu is the velocity field,p is the pressure andτ is the polymeric contribution to the extra-stress tensor. Employing
the so called EVSS transformation (Rajagopalanet al., 1990), the extra-stress tensor is expressed in terms of itsviscous
and polymeric contributions by

T = τ +
2β

Re
D, (3)

whereD is the rate-of-deformation tensor

D =
1

2

[
∇u+ (∇u)

T
]
. (4)
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The constitutive equations for the SXPP model is given by

f (λ, τ) τ +We
∇

τ +
1− β

ReWe
(f (λ, τ) − 1) I+ α

ReWe

1− β
τ · τ = 2

1− β

Re
D, (5)

wheref (λ, τ) andλ are given by

f(λ, τ) =
2

γ

(
1− 1

λ

)
eQo(λ−1) +

1

λ2

[
1− α

3

(
ReWe

1− β

)2

tr (τ · τ)
]

(6)

and

λ =

√

1 +
1

3

(
ReWe

1− β

)
|tr (τ)|. (7)

In these equations, the Reynolds numberRe, the viscosity ratio parameterβ, the Weissemberg numberWe, the
parameterγ, the parameterQ and the Froude numberFr are defined by

Re =
ρUL

µ
, β =

µS
µ
, We =

λ1U

L
, γ =

λ2
λ1
, Q0 =

2

Q
, Fr =

U√
gL

, (8)

whereλ1 andλ2 are the orientation and backbone stretch relaxation times (Aboubacaret al., 2005),ρ is the density,
µ = µS +µP (solvent and polymeric viscosities, respectively),Q is the number of arms at the extremity of the Pom-Pom
molecule and the parameterα controls the anisotropic drag (Oishiet al., 2011). Also,L, U andg are length, velocity and
gravity scales, respectively.

The upper convected derivative of a tensorτ is defined by

∇

τ=
∂τ

∂t
+∇ · (uτ)− (∇u) · τ − τ · (∇u)T . (9)

In order to solve Eq. (1), Eq. (2) and Eq. (5) it is necessary toimpose boundary conditions for the velocity field and
non-Newtonian tensorτ . If the velocity at inflows is constant, then the non-Newtonian tensor is setτ = 0, while for
parabolic velocity at inflows the non-Newtonian tensorτ is defined as in the Oldroyd-B model (Aboubacaret al., 2005;
Oishi et al., 2011). At outflows the homogeneous Neumann conditions are employed. For the rigid wall, one uses the
no-slip conditionu = 0 andτ is computed from Eq. (5), directly.

Assuming a passive atmosphere, the correct boundary conditions for the free surface are given by (Batchelor, 1967)

~n · (σ · ~n) = 0, (10)

~t1 · (σ · ~n) = 0, (11)

~t2 · (σ · ~n) = 0, (12)

whereσ = −pI+2 β
Re
D+ τ is the total stress tensor and~n, ~t1 and~t2 are, respectively, unit normal and tangential vectors

to the free surface.

3. NUMERICAL METHOD

To solve the governing and constitutive equations of the SXPP model, it is employed a strategy proposed by (Oishi
et al., 2008) which combines projection methods with an implicit technique for the treatment of pressure on the free
surface. In addition, the GENSMAC method (GENeralized Simplified Marker-And-Cell) (Tomé and McKee, 1994) was
used to solve the governing equations on a staggered grid.

In many applications, involving viscoelastic fluid flows with low Reynolds numbers and in transient problems, explicit
methods have hard parabolic stability restrictions to define the time step. To avoid such restriction, we employed the
Crank-Nicolson method to approximate the governing equations. In this case, the discrete approximations in time for the
equations Eq. (1) and Eq. (2) can be written as

∇ · u(n+1) = 0 (13)

and

u(n+1) − u(n)

δt
+∇ · (uu)(n) +∇p(n+1) =

β

2Re

[
∇2u(n) +∇2u(n+1)

]
+∇ · τ (n+ 1

2
) +

1

Fr2
g(n), (14)

where

∇ · τ (n+ 1
2
) =

1

2

(
∇ · τ̃ (n+1) +∇ · τ (n)

)
. (15)
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The tensor̃τ (n+1) is calculated by the Runge-Kutta method of second order (RK21) (Butcher, 2003; Lambert, 1973)
by integrating equation Eq. (5). The RK21 scheme is implemented in two steps. In the first step a provisional tensor
τ̃ (n+1) is calculated from

τ̃ (n+1) − τ (n)

δt
= F (u(n), τ (n)), (16)

where, from Eq. (5),

F (u, τ) = 2ξD −
{
∇ · (uτ) −

[
(∇u) · τ + τ · (∇u)T

]}
− 1

We

{
f(λ, τ)τ + ξ(f(λ, τ) − 1)I+

α

ξ
τ · τ

}
. (17)

In the second step,τ (n+1) is calculated by the Trapezium Rule

τ (n+1) − τ (n)

δt
=

1

2

[
F (u(n), τ (n)) + F (u(n+1), τ̃ (n+1))

]
. (18)

This strategy of computing a provisional tensorτ̃ prevents that lagged values of the tensor be used in some parts of
the computational algorithm (Martins, 2009).

Assuming the pressure, the non-Newtonian contribution areknown in advance and that the velocity field satisfies
equation Eq. (1) att = tn, one can write the steps of the computational cycle, that provides the calculation ofu(n+1),
p(n+1) andτ (n+1) at tn+1 = tn + δt.

Following the methodology of GENSMAC and the solution strategy proposed by (Oishiet al., 2008; Martins, 2009),
the first step is to calculate of̃τ (n+1) from Eq. (16). Next, an intermediate velocity field̃u is calculated att = tn+1, by
solving

ũ(n+1) − ũ(n)

δt
+∇ · (uu)(n) +∇p̃(n+1) =

β

2Re

[
∇2ũ(n) +∇2ũ(n+1)

]
+∇ · τ (n+ 1

2
) +

1

Fr2
g(n), (19)

whereũ(n) = u(n) andp̃(n+1) = p(n).
From the Helmholtz-Hodge Decomposition Theorem (HHDT) (Chorin and Marsden, 2000), one applies the divergent

in equation

ũ(n+1) = u(n+1) +∇ψ, (20)

and substitute Eq. (13) into Eq. (20). It follows that

∇2ψ(n+1) = ∇ · ũ(n+1). (21)

Thus,ψ(n+1) is computed, from the solution of the Poisson equation Eq. (21).
Solving equations Eq. (19) and Eq. (21), we have, respectively, ũ(n+1) andψ(n+1), thus, one can calculate the correc-

tion of the velocity fieldu(n+1) from Eq. (20).
To obtain the expression for calculating the pressurep(n+1), we substitute Eq. (20) into Eq. (19) and compare the

resulting expression with Eq. (14). In this way, one gets

p(n+1) = p̃(n+1) +
ψ(n+1)

δt
− β

2Re
∇2ψn+1. (22)

Having foundu(n+1), τ (n+1) is calculated from Eq. (18).
Finally, the positions of the marker particles on the free surface are updated by solving

dx

dt
= u(x, t), (23)

ending the computational cycle of the algorithm.

4. IMPLICIT CALCULATION OF THE PRESSURE ON THE FREE SURFACE

The implicit boundary condition for the pressure on the freesurface is given by

p(n+1) = n2
x τ

xx|(n+1)
+ 2nxny τ

xy|(n+1)
+ 2nxnz τ

xz|(n+1)
+ n2

y τ
yy |(n+1)

+ 2nynz τ
yz|(n+1)

+ n2
z τ

zz |(n+1)
+ 2β

Re

[
n2
x
∂u
∂x

+ nxny

(
∂u
∂y

+ ∂v
∂x

)

+ nxnz
(
∂u
∂z

+ ∂w
∂x

)
+ n2

y
∂v
∂y

+ nynz

(
∂v
∂z

+ ∂w
∂y

)
+ n2

z
∂w
∂z

](n+1)

.
(24)
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It should be observed that this condition couples the velocity and pressure fields. The strategy to decouple these fields,
used in this work is to substitute equation Eq. (22) into Eq. (24). Thus, yielding

p̃(n+1) +
ψ(n+1)

δt
− β

2Re
∇2ψn+1 =

n2
x τ

xx|(n+1)
+ 2nxny τ

xy |(n+1)
+ 2nxnz τ

xz |(n+1)
+ n2

y τ
yy |(n+1)

+ 2nynz τ
yz|(n+1)

+ n2
z τ

zz |(n+1)
+ 2β

Re

[
n2
x
∂u
∂x

+ nxny

(
∂u
∂y

+ ∂v
∂x

)

+ nxnz
(
∂u
∂z

+ ∂w
∂x

)
+ n2

y
∂v
∂y

+ nynz

(
∂v
∂z

+ ∂w
∂y

)
+ n2

z
∂w
∂z

](n+1)

.

(25)

This strategy decouples the velocity and pressure fields, but note that in the computational algorithm whenψn+1 is
calculated,u(n+1) is not known.

To get around this situation, substitute equation Eq. (20) into Eq. (25), then one obtains

p̃(n+1) +
ψ(n+1)

δt
− β

2Re
∇2ψn+1 =

n2
x τ

xx|(n+1)
+ 2nxny τ

xy|(n+1)
+ 2nxnz τ

xz|(n+1)
+ n2

y τ
yy |(n+1)

+ 2nynz τ
yz |(n+1)

+ n2
z τ

zz |(n+1)
+ 2β

Re

[
n2
x
∂
∂x

(
ũ− ∂ψ

∂x

)

+ nxny

(
∂
∂y

(
ũ− ∂ψ

∂x

)
+ ∂

∂x

(
ṽ − ∂ψ

∂y

))
+ nxnz

(
∂
∂z

(
ũ− ∂ψ

∂x

)
+ ∂

∂x

(
w̃ − ∂ψ

∂z

))

+ n2
y
∂
∂y

(
ṽ − ∂ψ

∂y

)
+ nynz

(
∂
∂z

(
ṽ − ∂ψ

∂y

)
+ ∂

∂y

(
w̃ − ∂ψ

∂z

))
+ n2

z
∂
∂z

(
w̃ − ∂ψ

∂z

)](n+1)

.

(26)

Thus, in Eq. (26), isolatingψ(n+1) on the left hand side, one obtains the boundary condition forψ at the free surface;
more details can be found in (Oishiet al., 2008).

5. NUMERICAL TESTS

In this section the verification of the code implemented to simulate fluid flows with the model SXPP and some appli-
cations are presented.

5.1 Validation results

For transient problems, the model SXPP has no known analytical solution. In this case, to verify the numerical method
implemented to simulate such a model, we simulated the flow ina tube of radiusR and length10R (see Fig. 1) and studied
the convergence of the numerical solution at various spatial meshes.

R

z

y
x

10R

Figure 1. Geometry of the tube.

At the entrance of the tube a parabolic velocity profile is imposed with boundary condition for the non-Newtonian
tensorτ given as in the Oldroyd-B model (Aboubacaret al. (2005); Oishiet al. (2011)). At the rigid walls, no-slip
conditions are used, while at the outflows homogeneous Neumann conditions for the velocity and for the non-Newtonian
contribution are used. On the free surface one imposes the boundary conditions given by equations Eq. (10), Eq. (11) and
Eq. (12).

The following input parameters were employed:R = 1m, Re = 1, We = 2, α = 0.2, β = 0.5, γ = λ2

λ1
=

0.5, QQ0 = 2 and gravityg = 0. For the convergence analysis of the method, the following meshes were adopted:
M1− 10× 10× 50 cells (δh = 0.2) ,M2− 14× 14× 70 cells (δh = 0.1428),M3− 22× 22× 110 cells (δh = 0.0909)
andM4−38×38×190 cells (δh = 0.0526). The linear system of the momentum equation was solved using a Conjugate
Gradient method, while the linear system of the Poisson equation was solved using a Preconditioned BiConjugate Gradient
Stabilized method with toleranceǫ = 1.0× 10−10.

As the analytic solution for the SXPP model is not known, a reference solution in the finest gridM4 was considered.
First of all, fluid was injected in an empty pipe until the steady state has been reached. Due to the imposition of an
Oldroyd-B profile at the injector, the relative error had to be computed at cross-section nearest to the outflow (Aboubacar
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et al., 2005; Aguayoet al., 2004; Martins, 2009). Naturally, the computational domain needs to be long enough to ensure
that fully developed flow is reached at the outflow.

Figure 2 presents numerical plots for velocity, some components of the non-Newtonian tensor and the parameterλ the
cross-sectionz = 7.5R andx = R at timet = 60.
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Figure 2. Numerical solution of pipe flow of a SXPP fluid. Comparison of the numerical solutions obtained on meshes
M1,M2 andM3 with the numerical solution obtained on meshM4. a)w, b) τzz , c) τyz , d) τyy , e)λ .

To verify the convergence of the numerical method, one uses the results obtained with the meshesM1, M2 andM3
with the results of the meshM4 being the reference solution. The relative error is calculated using norm2

||E||2 =

√∑
ijk(SOLref − SOLnum)2

∑
ijk(SOLref )

2
, (27)
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whereSOLref denotes the solution obtained on meshM4 andSOLnum denotes the solutions obtained on meshes
M1−M3. Table 1 displays the calculated errors for the meshesM1,M2 andM3. It can be seen that the errors decrease
with mesh refinement, hinting the convergence of the numerical method.

Table 1. Errors on the meshesM1,M2 eM3.

Meshes E(w) E(τzz) E(τyz) E(τyy) E(λ)

M1 4.4372× 10−2 5.1176× 10−2 2.0483× 10−2 6.1409× 10−2 1.2782× 10−2

M2 2.4101× 10−2 2.8762× 10−2 1.1951× 10−2 3.4373× 10−2 7.2270× 10−3

M3 8.9730× 10−3 9.9690× 10−3 7.0070× 10−3 1.5686× 10−2 2.4660× 10−3

Moreover, one can estimate the order of convergence(Ni) of the implicit method from Tab. 1 and the formula

Ni =
log

(
E(w)Mi+1

E(w)Mi

)

log
(
δhi+1

δhi

) , i = 1, 2. (28)

Accordingly we obtainedN1 = 1.81 andN2 = 2.18, resulting inNm = N1+N2

2 ≃ 2.0.

5.2 Numerical simulation of jet buckling

For the verification of the formulation in section 3 including the SXPP model, for problems in three-dimensional, we
present numerical results for the Jet Buckling problem.

In order to simulate this phenomenon, we considered a box initially empty with dimensions3cm× 3cm× 2cm, and
an inflow of diameterD = 4mm and height from the bottom of the boxH = 6cm. HenceH/D = 15 > 7.2 and as
Re ≤ 1.2 we have satisfied the condition for buckling given in Cruickshank and Munson (1981). A mesh of60×60×120
cells(δx = δy = δz = 0.5mm) was employed and gravity was taken in the z-direction withg = 9.81. The dimensionless
input parameters used wereRe = 0.1, β = 0.5, α = 0.2, γ = 0.8, Q = 2 andWe = 5, 10, 15 and20. As in Tomé
et al. (2008) it can be seen in Fig. 3, Fig. 4, Fig. 5 and Fig. 6 that thecoiling effect appears in an apparently chaotic
fashion when the fluid achieves the bottom wall; more detailscan be found in Cruickshank and Munson (1981); Tomé
et al. (2008); Ville et al. (2010).

t = 0.4 t = 0.6 t = 0.8

t = 1.0 t = 1.2 t = 1.4
Figure 3. Numerical solution of the jet buckling withWe = 5
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t = 0.4 t = 0.6 t = 0.8

t = 1.0 t = 1.2 t = 1.4
Figure 4. Numerical solution of the jet buckling withWe = 10

t = 0.4 t = 0.6 t = 0.8

t = 1.0 t = 1.2 t = 1.4
Figure 5. Numerical solution of the jet buckling withWe = 15
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t = 0.4 t = 0.6 t = 0.8

t = 1.0 t = 1.2 t = 1.4
Figure 6. Numerical solution of the jet buckling withWe = 20

6. CONCLUDING REMARKS

This paper describes a semi-implicit method for solving flows governed by the SXPP model with free surface in three-
dimensions. The numerical method employed in this work was developed by Oishiet al.(2008) for simulating viscoelastic
fluid flows. The momentum equations were solved by the Crank-Nicolson method, the pressure was treated implicitly at
the free surface and the solution is obtained with a projection method. Moreover, the non-Newtonian extra-stress tensor
was calculated by a second order Rung-Kutta method. The numerical method was verified by solving a tube flow on
four different meshes. The convergence was verified using mesh refinement. The jet buckling problem was simulated to
further demonstrate the efficiency of the code on a three-dimensional problem, with full use of the free surface features
and with several values of the Weissenberg number. The numerical results showed that the coiling effect appeared in a
chaotic fashion, as it may be expected.
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