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Abstract. In this paper we present a finite differences method for sgltiiree-dimensional viscoelastic incompressible
free surface flows governed by the single equation versitdmedbingle eXtended Pom Pom (SXPP) model. These types of
flows have low Reynolds numbers, thus present severe stabitistraints on the time step. To enhance the stabilitiyeof t
numerical method, we employ a combination of the projeatiethod with an implicit technique for treating the pressure
on the free surface. This strategy is invoked to solve themawy equations within a Marker-and-Cell type approach
while simultaneously calculating the correct normal stresndition on the free surface. Numerical results incluz t
simulation of jet buckling.
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1. INTRODUCTION

Viscoelastic fluid flows are common in many important indiasgpplications, therefore the need to understand how
these flows are processed is of economic or technologieakists. Several constitutive equations describing viaste
fluids can be found at (Bir@t al,, 1987) for instance. However, none of them is satisfactorgiéscribing the correct
behavior of nonlinear shear and elongational stress. Atgtea to overcome such weakness was made recently with
the Pom-Pom model (McLeish and Larson, 1998). An improvedroéthis model was the XPP (eXtended Pom-Pom),
proposed by (Verbeetest al, 2001), besides several variants such as the SIPP (Singl®wed Pom-Pom), the DIPP
(Double Improved Pom-Pom), the SXPP (Single eXtended Pom}Pthe DXPP (Double eXtended Pom-Pom), the
A2XPP, the mXPP (modified eXtended Pom-Pom) and the Semi-t B¥&P. Numerical solution for this type of fluid
has taken much effort, of many authors as can be seen in rpapats (Bishket al., 1999; Rubio and Wagner, 2000;
Wapperom and Keunings, 2001; Verbeegtral, 2002; Bogaerdst al, 2002; Clemeuet al,, 2004; Verbeetert al,,
2004; Aboubacaet al., 2005; van Os and Phillips, 2005; Siraketval., 2005; Aguayeet al., 2006; Soulagest al., 2006;
Aguayoet al., 2007; Inkson and Phillips, 2007; Inksenal,, 2009; Baltusseet al., 2010b; Wanget al,, 2010).

An additional difficulty appears when these models invohezfsurface, as seen in (Bogaeedsl., 2004; Martins,
2009; Oishiet al,, 2011; Russo and Phillips, 2010; Baltussgral, 2010a). Nevertheless, all these studies are restricted
to two-dimensional cases. On the other hand, there are sémdiree surface problem whose behavior needs a deeper
understanding for the three-dimensional case. Withindbigext, this paper presents the study of numerical mettwods
simulate the SXPP model with free surface in three dimessishich permits the study of problems that could not be
studied before.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Incompressible isothermal viscoelastic flows are goveitned system of equations consisting of the equations of
momentum and mass, together with the constitutive equafibe constitutive equation used in this paper is the single
extended pom-pom (SXPP) model (Verbeeteral, 2001). Under such conditions, mass and momentum congervat
equations can be expressed in dimensionless form by

V-u=0, (1)
ou B 8 s 1
o TV ) =Vt VPt VTt g, (@)

whereu is the velocity field,p is the pressure andis the polymeric contribution to the extra-stress tensenp®Bying
the so called EVSS transformation (Rajagopatal., 1990), the extra-stress tensor is expressed in terms wabiteus
and polymeric contributions by
2B
T = —D 3
™+ 5D, 3)
whereD is the rate-of-deformation tensor

D= % [Vu—f— (vu)T|. 4)
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The constitutive equations for the SXPP model is given by

1-8 ReWe 1-p
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In these equations, the Reynolds numiper, the viscosity ratio parametet, the Weissemberg numbé¥e, the
parametety, the parametef) and the Froude numbétr are defined by
Hs MU Ao 2 U
Re = ——, =—, We=——, = T =—, Fr= ) 8
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where\; and \, are the orientation and backbone stretch relaxation tirAesbacaret al, 2005),p is the density,
= us + pp (solvent and polymeric viscosities, respectivey)is the number of arms at the extremity of the Pom-Pom
molecule and the parametercontrols the anisotropic drag (Oisétial, 2011). Also,L, U andg are length, velocity and
gravity scales, respectively.

The upper convected derivative of a tensas defined by

0

7v'=8—;+V-(UT)—(VH)-T—T-(VH)T. 9)

In order to solve Eq. (1), Eq. (2) and Eq. (5) it is necessaiynwose boundary conditions for the velocity field and
non-Newtonian tensor. If the velocity at inflows is constant, then the non-Newgsniensor is set = 0, while for
parabolic velocity at inflows the non-Newtonian tensds defined as in the Oldroyd-B model (Aboubaeaal., 2005;
Oishi et al, 2011). At outflows the homogeneous Neumann conditionsapayed. For the rigid wall, one uses the
no-slip conditionu = 0 andr is computed from Eq. (5), directly.

Assuming a passive atmosphere, the correct boundary eomglfor the free surface are given by (Batchelor, 1967)

i (o) =0, (10)
t1-(o-7) =0, (11)
ty-(0-i1) =0, (12)

wheres = —pl + Q%D + 7 is the total stress tensor afdt; andt; are, respectively, unit normal and tangential vectors
to the free surface.

3. NUMERICAL METHOD

To solve the governing and constitutive equations of the BXdel, it is employed a strategy proposed by (Oishi
et al, 2008) which combines projection methods with an implietthtnique for the treatment of pressure on the free
surface. In addition, the GENSMAC method (GENeralized Sified Marker-And-Cell) (Tomé and McKee, 1994) was
used to solve the governing equations on a staggered grid.

In many applications, involving viscoelastic fluid flows Wwilbw Reynolds numbers and in transient problems, explicit
methods have hard parabolic stability restrictions to @efire time step. To avoid such restriction, we employed the
Crank-Nicolson method to approximate the governing equatiln this case, the discrete approximations in time fer th
equations Eq. (1) and Eq. (2) can be written as

V.oumth = (13)
and
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1
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The tensofr("+1) is calculated by the Runge-Kutta method of second order (RKRutcher, 2003; Lambert, 1973)
by integrating equation Eq. (5). The RK21 scheme is implastin two steps. In the first step a provisional tensor
7(n+1) is calculated from

Fn+1) _ (n)
ot
where, from Eq. (5),

— Fu™, r™), (16)
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In the second step;"*+1) is calculated by the Trapezium Rule

(n+1) _ +(n) 1
% =3 [F(u<n>,7<n>) 4 F(u("+1),?("+1))} , (18)

This strategy of computing a provisional tensoprevents that lagged values of the tensor be used in sonseqgfart
the computational algorithm (Martins, 2009).

Assuming the pressure, the non-Newtonian contributionkamvn in advance and that the velocity field satisfies
equation Eq. (1) at = t,,, one can write the steps of the computational cycle, thatiges the calculation ofi("*1),
p" ) andr ("t att,, = t, + ot.

Following the methodology of GENSMAC and the solution stggt proposed by (Oistat al., 2008; Martins, 2009),
the first step is to calculate @t"+1) from Eq. (16). Next, an intermediate velocity fieldis calculated at = ¢, 1, by
solving

a1l — g
ot

wheret(™ = u(™ andpt1) = p().
From the Helmholtz-Hodge Decomposition Theorem (HHDT)d@mand Marsden, 2000), one applies the divergent
in equation
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At = u( D vy, (20)
and substitute Eq. (13) into Eq. (20). It follows that
V2t — v .t (21)

Thus,»*1 is computed, from the solution of the Poisson equation EL). (2

Solving equations Eq. (19) and Eq. (21), we have, respéygtia€’t!) andy) "+ thus, one can calculate the correc-
tion of the velocity fieldu(™*+1 from Eq. (20).

To obtain the expression for calculating the pressiifé!), we substitute Eq. (20) into Eq. (19) and compare the
resulting expression with Eq. (14). In this way, one gets

(n+1)
(n+1) _ =ty L T B oo ”
P P + 5 RQV P (22)

Having foundu(™*1 7(»+1) js calculated from Eq. (18).
Finally, the positions of the marker particles on the fredasie are updated by solving

dx
dt
ending the computational cycle of the algorithm.

=u(x,t), (23)

4. IMPLICIT CALCULATION OF THE PRESSURE ON THE FREE SURFACE
The implicit boundary condition for the pressure on the Bedace is given by

p(nJrl) _ ni Txx|(n+1) + 2nxny Txy|(n+1) + 2n.n, sz|(n+1) + nz Tyy|(n+1)
+ 2nyn, Tyz|("+1) + n? TZZ|("+1) + 12?—6 {ni% + ngpny (g—; + %)
i|(77,+1) (24)

ou w 2 v v ow 2 dw
+onens (52 + Gp) Hnygy Fnyns (z T a—y) TN e
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It should be observed that this condition couples the vsl@aid pressure fields. The strategy to decouple these fields,
used in this work is to substitute equation Eq. (22) into 2¢)(Thus, yielding

~(n+1) N 1/,(5+1) 5 V2t —
t 2Re
n2 T”“'”“'|("+1) + 2n,n, sz|("+1) + 2NN, T“|("+1) + ni Tyy|("+1)
+ 2nyn. 7—yz|(n+1) +n? Tzz|(n+1) 4 %i [nz du T a_Z 4 %

} (n+1)
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This strategy decouples the velocity and pressure fields)dite that in the computational algorithm wheh*! is
calculatedu(™*1) is not known.

To get around this situation, substitute equation Eq. (2@ Eq. (25), then one obtains

~(n+1) Lyt (D) iv%nﬂ _

ot 2Re
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Thus, in Eq. (26), isolating("+1) on the left hand side, one obtains the boundary conditiogfat the free surface;
more details can be found in (Oiséti al., 2008).

5. NUMERICAL TESTS

In this section the verification of the code implemented mowate fluid flows with the model SXPP and some appli-
cations are presented.

5.1 Validation results

For transient problems, the model SXPP has no known analgiidution. In this case, to verify the numerical method
implemented to simulate such a model, we simulated the fl@atue of radiug? and lengthl0 R (see Fig. 1) and studied
the convergence of the numerical solution at various Spagahes.

10R

Figure 1. Geometry of the tube.

At the entrance of the tube a parabolic velocity profile is @sgd with boundary condition for the non-Newtonian
tensorr given as in the Oldroyd-B model (Aboubacatr al. (2005); Oishiet al. (2011)). At the rigid walls, no-slip
conditions are used, while at the outflows homogeneous Neameanditions for the velocity and for the non-Newtonian
contribution are used. On the free surface one imposes thedaoy conditions given by equations Eq. (10), Eqg. (11) and
Eq. (12).

The following input parameters were employel: = 1m, Re = 1, We = =02, 06=05~v= % =
0.5, QQo = 2 and gravityg = 0. For the convergence analysis of the method the followieghmas were adopted
M1—-10x10 x50 cells 0h = 0.2) , M2 —14 x 14 x 70 cells 0h = 0.1428), M3 — 22 x 22 x 110 cells ¢~ = 0.0909)
andM4 —38 x 38 x 190 cells ¢k = 0.0526). The linear system of the momentum equation was solvedastonjugate
Gradient method, while the linear system of the Poissontamjuaas solved using a Preconditioned BiConjugate Gradien
Stabilized method with toleranee= 1.0 x 1010,

As the analytic solution for the SXPP model is not known, amerfice solution in the finest grid4 was considered.
First of all, fluid was injected in an empty pipe until the stgastate has been reached. Due to the imposition of an
Oldroyd-B profile at the injector, the relative error had ®odomputed at cross-section nearest to the outflow (Aboubaca
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et al, 2005; Aguaycet al,, 2004; Martins, 2009). Naturally, the computational damre@eds to be long enough to ensure
that fully developed flow is reached at the outflow.
Figure 2 presents numerical plots for velocity, some coreptsiof the non-Newtonian tensor and the parametke

cross-section = 7.5R andz = R at timet = 60.
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Figure 2. Numerical solution of pipe flow of a SXPP fluid. Comigpan of the numerical solutions obtained on meshes
M1, M2 and M 3 with the numerical solution obtained on meght. a) w, b) 7%%, ¢) 7Y%, d) 7YY, €) X .

To verify the convergence of the numerical method, one usesgsults obtained with the meshed, M2 and M 3
with the results of the mesh 4 being the reference solution. The relative error is catedlasing norn2

SOL,e; — SOLpym)?

|wm=¢zﬁ(

Zijk (SOLref)2

?

(27)
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where SOL,.; denotes the solution obtained on mesht and SOL,,.,,, denotes the solutions obtained on meshes
M1 — M3. Table 1 displays the calculated errors for the mestiés M/ 2 andM 3. It can be seen that the errors decrease
with mesh refinement, hinting the convergence of the nurabemethod.

Table 1. Errors on the meshé&$1, M2 e M 3.

Meshes E(w) E(1%%) E(7Y%) E(rvv) E(\)
M1 44372 x 1072 51176 x 10=2  2.0483 x 1072  6.1409 x 102 1.2782 x 102
M2 24101 x 1072 2.8762x 1072 1.1951 x 1072 3.4373 x 1072 7.2270 x 1073
M3 8.9730 x 1072  9.9690 x 10~2  7.0070 x 10~2 1.5686 x 1072  2.4660 x 103

Moreover, one can estimate the order of convergénge of the implicit method from Tab. 1 and the formula

E(w)IMH»l

log ( ” )
Ny = N B )y (28)
Ohit1
log (T)
Accordingly we obtainedV; = 1.81 andN, = 2.18, resulting inN,,, = 24582 ~ 2.0,
5.2 Numerical simulation of jet buckling

For the verification of the formulation in section 3 includithe SXPP model, for problems in three-dimensional, we
present numerical results for the Jet Buckling problem.

In order to simulate this phenomenon, we considered a baallgiempty with dimension8cm x 3e¢m x 2em, and
an inflow of diametetD = 4mm and height from the bottom of the bdX = 6¢m. HenceH/D = 15 > 7.2 and as
Re < 1.2 we have satisfied the condition for buckling given in Crultkisk and Munson (1981). A mesh@if x 60 x 120
cells(dz = 0y = dz = 0.5mm) was employed and gravity was taken in the z-direction with 9.81. The dimensionless
input parameters used wefeze = 0.1, 8 = 0.5, = 0.2, v = 0.8, Q = 2 andWe = 5,10,15 and20. As in Tomé
et al. (2008) it can be seen in Fig. 3, Fig. 4, Fig. 5 and Fig. 6 thatcihiéng effect appears in an apparently chaotic
fashion when the fluid achieves the bottom wall; more details be found in Cruickshank and Munson (1981); Tomé
et al.(2008); Ville et al. (2010).

t=1.0 t=1.2
Figure 3. Numerical solution of the jet buckling withie = 5
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t=1.0 t=12 t=14
Figure 4. Numerical solution of the jet buckling withie = 10

t=1.0 t=12 t=14
Figure 5. Numerical solution of the jet buckling withie = 15
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t=1.0 t=1.2 t=1.4
Figure 6. Numerical solution of the jet buckling with'e = 20

6. CONCLUDING REMARKS

This paper describes a semi-implicit method for solving @everned by the SXPP model with free surface in three-
dimensions. The numerical method employed in this work veaglbped by Oishét al.(2008) for simulating viscoelastic
fluid flows. The momentum equations were solved by the Craickisbn method, the pressure was treated implicitly at
the free surface and the solution is obtained with a prajeatiethod. Moreover, the non-Newtonian extra-stress tenso
was calculated by a second order Rung-Kutta method. The meehenethod was verified by solving a tube flow on
four different meshes. The convergence was verified usirghmefinement. The jet buckling problem was simulated to
further demonstrate the efficiency of the code on a threesdgional problem, with full use of the free surface features
and with several values of the Weissenberg number. The ncaheesults showed that the coiling effect appeared in a
chaotic fashion, as it may be expected.
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