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Abstract: This work compares two ways for treating the slagty which appears in the integral of the fundarted
solution of the problem of the sound radiation byigd cylinder. The singularity is solved using ampression
obtained by a coordinates system change and byngatiie number of Gauss’ points used in the intégnaprocess.
The numerical technique employed is the boundagmehts method. A comparison of the obtained resfilthe
computational simulations show that the resultsaotgd when the coordinates system is changed are precise
and closer to those of the analytical solution whenumber of Gauss’ points is altered.
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1.INTRODUCTION

Let's consider an infinite cylinder of radius= a, whose surface vibrates in the monopole way, iletates
uniformly with an amplitudeV,, radiating sound waves at all the directions. Thaeinregion of the cylinder is
represented b, the exterior one b§,, and the boundary B In this work, the medium is considered homogesgou
without losses or viscosity effects, hence the cigjoof the particles of the fluid can be expresasdhe gradient of a
scalar function, the velocity potential, designgdpb The velocity potentiap (p)satisfies the Helmholtz equation, at a
point p(x,y) of the boundary or of the outer regiof,, Ziomek (1995).

0%¢(p) + x*¢(p) =0 M
As the surface of the cylinder is considered rigldumann’s condition is satisfied:
0¢(p)
2=V 2
an 0 )

In Equation (2),V, is the fluid velocity amplitude at the cylinderssirface and its value was fixed as 1. The
analytical solutions for the velocity potential gigen by the following expression, Morse (1986):

Ar.6)=-=: Hz((KR)), ©)

In Equation (3)Ho( ) le(Ka) xa and kR are respectively the Hankel's functions and themadized

frequencies.
The integral formulation for the velocity potenti¢|( p) radiated by the infinite cylinder is given by tfadlowing
expression, Mariat al.(2010):

“on
Igs)lj:quauon (4),G(p q) is the Green's function for bi-dimensional problerasd has the expression, Ziomek

G(p.a)=H,(xR) )
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In the above equatiofR is the distance between the observation pqnﬁx, y) of the radiated velocity potential

and the source poilq(X, y). In this work, the observation points are placed the cylinder's surface. As

99(p) =V, =1, itis allowed to write:
on
oG(p,
3900+ [0l Vs (. s ®

2. THE SINGULARITY IN THE FUNDAMENTAL SOLUTIONS

When the observation poirp(X, y) and the source poinq(X, y) are located at the same element and coincide,

the distanceR between them is null, a singularity in the Greduntsction G( P, q) occurs. In this work, the surface of

the cylinder is discretized using a mesh of corisgaments. In order to obtain an expression fersihgular integral of
the fundamental solution, a change in the coordiegstem is made, as shown in Fig. 1.
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Figure 1- Coordinate system at the elements

The integral of the fundamental soluti(ﬁ(p, q) in a given element of the mesh used in the diszatdin
procedure of the cylinder’s surface has the foltaygxpression:

point 2 point2
G, = IG(D, Cl)dS =2 IHé(KR)dR (7)

pointl node

KL
If the substitutiorR = ?f is made, Eq. (7) can be rewritten:

_iL gt L
G =7, jOH;[KEfjdf 8)

The Hankel's functionHé(KR) is defined a#d é(KR) = JO(KR)+ 1Y, (KR) Integrating the functions]O(KR)

and Yy (KR) an expression for the singular integka), is obtained as following:

[y

" )

m=1
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In Equation (9),L represents the size of the constant element osgiddretize the cylinder’s surface. The singular
integral Gii can be evaluated by using Eq. (9) or by usinggtessian quadrature method and changing the nushber

gauss’ points used in order to get a more accwaltgion for the problem of the acoustic radiatibnthis work, two
ways for evaluating the singular integral are comagand the variation of the number of Gauss’stgaih the surface
and for points located in the exterior region a&f dylinder was used.

2.1. THE INFLUENCE OF THE FREQUENCY IN THE VALUE OF THE VELOCITY POTENTIAL AT THE
CYLINDER'S SURFACE

The value of the velocity potential was numericalbtained for points at the cylinder’s surfaceradfiuskR = 1 by
using a mesh of 32 constant elements. Simulatie@rs wade for frequencies of 75, 100, 115, 160, 236, 425, 590
and 670 hertz using 2, 4, 6 and 8 gauss’ point& Jdiution of the acoustic radiation problem usihg singular
integral is compared with the solution obtainedvayying the number of gauss’ points to treat timgsiarity problem.
The obtained results are presented in Fig. 2.
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Figure 2- Velocity potential evaluated for seveBaluss points

In Figure 2, the analytical expression of the viyopotential is represented by the continuous blkge, the
velocity potential obtained with the use of the regsion for the singularity is represented by thee Bine and the
values of the velocity potential obtained by 26and 8 gauss’ points are represented respectiyetiie red, yellow,
green and gray lines.

Analyzing the results presented by Fig. 2, it cambticed that the results obtained for the singualagral are more
precise than those obtained with different gaussits. This conclusion is confirmed by the analysighe relative
error, defined by:

e = |¢A _¢N| (10)

A

In Equation (1O)¢Aand ¢N are, respectively, the analytical and numericéles of the velocity potential in each

point. The relative errors for the results obtaibgdhe values of the velocity potential using btfté singular integral
and varying the number of gauss’ points are contpdrethis test, the minor and the major value tfeg frequency
range considered in this work were used, whichrarklz and 670 Hz. The results are shown in the ingutes.

Analyzing the results plotted in Fig. 3 and Figit4an be observed that the relative error dinhiessas the number
of gauss’ points used becomes greater. Howevesetbgors are always greater than the relativeniotained with
the use of the integral singular expression. Amaase of the number of gauss’ points establistggeater distance of
the origin in which the singularity occurs, diminiisg the relative error.
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Figure 3- Comparing the relative errors for thejfrency of 75 Hz
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Figure 4 - Comparing the relative errors for tregjfrency of 670 Hz.

2.2. THE INFLUENCE OF THE CILYNDER'S RADIUS SIZE IN THE VALUE OF THE RADIATED
VELOCITY

A further analysis showed how the radiated velopibyential is affected by the variation of the oger's radius
size. The radius’ values chosen for the tests @aniesteps of 1 meter, from 1 to 10 m, indepengeuitithe frequency.
The boundary surfaces were also discretized usB®)@nstant elements mesh. The analytical solditibthe acoustic
radiation problem was compared with the numeriohlt®n obtained with the variation of the numbégauss’ points.
The results of those computational simulationspaesented in the graphics shown in Fig. 5.

In Figure 5 the black line represents the analitiedocity potential; the dark blue line represetite radiated
velocity potential got by the use of the singulagkpression and the numerical results of the tadigelocity potential,
using 2, 4, 6 and 8 gauss’ points are respectheglyesented by the blue, red, green and yellow.line
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Figure 5. Comparing numerical velocity potentiatidferent values of the cylinder’s radius

The analysis of the graphic plotted in Fig 5 shdotwe increasing the cylinder’s radius producesngneiasing of the
oscillation of the value of the radiated velocitential. This oscillation occurs due to the insiag of the cylinder’'s
radius size without the corresponding increasinghef number of the elements of the mesh used furetize the
cylinder’s surface. However, increasing the nundfegauss’ points used in the solution of the siagiritegral reduces
the oscillation, making the results more precise vérify the efficiency of the way of treating theegral singularity,

the solution which uses the expression for singulagral was compared with the solution contairBngauss’ points
and the results are presented in Fig. 6.
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Figure 6: The velocity potential for different vakiof the cylinder’s radius.

In Figure 6, the black line represents the anayti@locity potential, the red line represents plagential got by
using the expression for the singularity integrad she blue line represents the value of the vglqmitential obtained
by using 8 gauss’ points.

The analysis of Fig. 6 shows the results obtaingdiding the singular integral expression are moeeipe than
those got by varying the number of gauss’ points.

3. CONCLUSIONS

The computational simulations show that the resnitteined by using the singular integral expressimm more
precise than those got by varying the number ofgguoints. For a fixed value of the radius and/iray the frequency,
the relative error decreased with the increasinthefnumber of gauss’ points used, but it was grehgn the relative
error obtained by using the expression of the dargintegral. Fixing the frequency and varying ttagius, the
numerical values of the velocity potential oscéktaround the analytical values of the velocityeptidl as the
cylinder’s radius increases. However, the velogibtential values obtained by using the singulaexpression are
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closer to those of the analytical values got byivay the number of gauss’ points. These conclusemmgirm that the
expression for the singular integral is more eéfitithan the variation of the number of the gapsints to solve the
sound radiation problem by using the Boundary Elgs#&lethod.
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