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Abstract. It is reported here the experiments of scaled T cross-section beams subjected to transversal impact load. The 
full-size structure (prototype) is four times larger than the scaled specimen (model), and it will be shown that when the 
usual scaling laws are applied, the model behaves differently from the prototype when dynamically loaded. In order to 
compensate for this distortion of similarity, the initial impact velocity is changed in a rational way, leading to a model 
response similar to the prototype. Quasi-static tests are also carried out so as to compare the static and dynamic 
behaviour of the scaled structure. It is also discussed here the implications of the scaled structure and the prototype to 
be made of different materials. 
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1. INTRODUCTION 
 

Impact tests carried out on real size structures (prototype) can be very expensive and time consuming when dealing 
with large compounds such as airplanes, ships, trains, bridges, towers, etc. Accordingly, scaled specimens (models or 
replicas) can be employed to study the corresponding prototype behaviour. The technique of reproducing the structure 
response in different scales is termed similarity or similitude, and it has been analysed in many works (Booth et al., 
1983; Gregory, 1995; Hu, 2000; Jiang et al., 2006; Li and Jones, 2000; Mazzariol et al., 2010; Me-Bar, 1997; Neuberger 
et al., 2007; Oshiro and Alves, 2004; Schleyer et al., 2004). 

In the case of structural impact, if prototype and model are made of the same material, the factors of the 
phenomenon can be expressed as a function of the scaling factor, model prototype  L L , being L  a geometric dimension 
of the structure. The main relations for the problem of collision of structures are recapitulated in Tab. 1 (Baker et al., 
1991; Fox and McDonald, 1998; Murphy, 1950; Jones, 1997; Skoglund, 1967; Szirtes, 1997). In the present work, the 
model which uses the factors described in Tab. 1 will be referred to as MLT since these factors are derived from the 
dimensional analysis based on the usual MLT (mass-length-time) basis. 
 

Table 1. Scaling factors relating the main structural model variables to the prototype ones. Factors obtained from the 
usual scaling laws (MLT). 

 
variable factor variable factor 

length, L    time, t    
displacement,     velocity, V  1  

mass, G  3  strain rate,   1   
strain,   1  acceleration, A  1   
stress,   1  energy, E  3
force, F  2   

 
However, some structures subjected to dynamic loads do not comply with the usual scaling laws, Tab. 1. Some of 

the effects that can contribute with this distortion are material strain rate sensitivity, material failure, gravity, etc. When 
the model behaviour is different of the prototype one, the similarity is named imperfect. Many works reported this 
problem. Booth et al. (1983) performed drop tests on one-quarter scale to full-scale thin plated mild steel and stainless 
steel structures. The tests revealed that weld fracture and tearing were considerably more pronounced in the prototype 
specimens than in the smaller ones. It was also noticed that the prototype reached about 2.5 times the deformation of the 
1/4 model at analogous points. Another sample is the work of Schleyer et al. (2004). They analysed the scaling of some 
mild steel square plates with different edge restrains subjected to uniformly distributed triangular pressure pulse 
loading. Large inelastic deformations were produced, but no tearing or rupture was noticed. The study observed that the 
transient response of the plates exhibits some divergence from the laws of geometrically similar scaling. Drazetic et al. 
(1994) conducted a numerical and experimental study on the scaling of a beam under transverse impact. The scaled 
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models exhibited some small imperfections, i.e. initial velocity, geometry, and material properties did not strictly follow 
the linear scaling laws. In order to take these aspects into account, a technique termed non-direct similitude was applied. 
After correction, the final deformed shape of the model and prototype could be directly compared. Snyman (2010) 
studied the scaling technique applied to various blast loading experiments. The analysis indicated the importance of 
material properties such as yield strength and strain rate sensitivity. The author also reported different material 
properties for the plates used in the tests, although they were made of the same material. This issue is also noticed in the 
present work. 

One of the most prominent features that contribute to the distortion of the scaling laws is the strain rate,  , which 
may affect the material yielding stress. This behaviour is not predicted by the usual scaling laws, as it can be noticed in 
Tab. 1,  = 1. In order to take this effect into account, Oshiro and Alves (2009) presented a technique that 
compensates for the   effect in scaled structures. Instead of using a single scaling factor,  , a factor for the initial 
impact velocity, V , was employed. One important characteristic of this method is that the factor V  is calculated 
without a priori knowledge of the structure response; it relies only on the material properties. A similar approach as 
presented by Oshiro and Alves (2009) is here applied, as outlined in section 2. The tests setup and material 
characterization are detailed in section 3, with the main results summarized in section 4. Section 5 discusses the main 
findings of this investigation, and section 6 closes the paper with the main conclusions. 
 
2. SCALING FACTORS 
 
 As previously mentioned, a scaled structure made of a strain rate sensitive material does not comply with the 
standard similarity laws. Moreover, the sheets used in the tests exhibited different material properties, as will be shown 
in section 3. Therefore, an adaptation of the method delineated in Oshiro and Alves (2009) is developed in the present 
work. Instead of the relations presented in Tab. 1, a new set of factors between model and prototype variables are 
generated. They are valid for models whose material is assumed to be rigid perfectly plastic, and the dynamic yielding 
stress, d , given by the Norton equation (Lemaitre and Chaboche, 1991), 
 

 d 0 0      q
,  (1) 

 
q  being a material constant and 0 , the static yielding stress at a strain rate of reference, 0 . 
 As a means to calculate the factors, a basis comprised by impact velocity, 0V , dynamic yielding stress, d , and 
impact mass, G , is used to generate the dimensionless numbers (Oshiro and Alves, 2009) 
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standing   for displacement,   for strain rate, A  for acceleration, t  for time,   for stress, F  for force, and E  for 
energy. 
 From the dimensionless numbers 1  and 2 , the factors for dynamic yielding stress, 

d   dm dp  , and strain 
rate, m p     , are generated 
 

d

d
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and 
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referring the subscript m to the model and p to the prototype. 
 In section 3, it will be seen that even though the structures of model and prototype are made of the same material, 
the quasi-static yielding stress, 0 , is different. Therefore, the very definition of 

d  provides 
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being 
0 0m 0p   . 

 By inserting Eq. (4) into Eq. (5), it follows that 
 

 d 0     q
V ,  (6) 

 
which, together with Eq. (3) provides 
 

 0

1/(2 )
  


qq

V .  (7) 

 
 Equation (7) is the impact velocity factor that takes 

0  1 and strain rate in a scaled structure into consideration. 
As a result of this modification, a new set of factors is generated by developing the dimensionless numbers 2  to 7  
and applying Eq. (6) and (7); they are summarized in Tab. 2. A model based on the relations of Tab. 2 will be referred 
to as VSG-m. It can be noticed that in the case of 

0  1 (identical material), the factors of Tab. 2 are reduced to those 
developed in Oshiro and Alves. In the case of q 0 (strain rate insensitive material), Tab. 2 is equal to Tab. 1. 
 

Table 2. Scaling factors relating the main structural model variables to the prototype ones. The structure is made of 
strain rate sensitive material, and 

0  1 (VSG-m). 
 

variable factor variable factor 

length, L    time, t   
0

1 21 2 / q
      

displacement,     velocity, V   
0

1 2/ qq
      

mass, G  3  strain rate,    
0

1 22 / q
      

strain,   1  acceleration, A   
0

1 22 2 / qq
       

stress,    
0

2 2/ qq
      energy, E   

0

1 22 6 5 / qq
    

force, F     
0

2 22 1 / qq
       

 
3. EXPERIMENTAL SETUP AND MATERIAL CHARACTERIZATION 
 
3.1. TENSILE TESTS 
 
 Low carbon steel 1006 was used to manufacture the T cross-section beams. The reference structure (prototype) was 
made with a 1.00 mm thick sheet, whereas the model used a 0.25 mm thick sheet – a scaling factor of 1/4. The material 
stress-strain curve was measured via standard tensile tests, ASTM sheet-type rectangular tension test (ASTM E8). For 
low velocities, an Instron 3369 testing machine was used with strain rates ranging from 0.00001 s-1 to 0.05 s-1. As it can 
be seen in Fig. 1 (a), although the material of the sheets is nominally the same, the 0.25 mm one is significantly sturdier. 
The continuous line presents the response of the 1.00 mm thick specimen, and the dotted line is the 0.25 mm specimen. 
The pointed line shows the 0.25 mm curve adjusted by a factor of 

0
1   0.8212, being 

0 0m 0p   . This relation, 
as shown in section 2, is required to calculate the velocity factor which relates model to prototype.  
 In order to corroborate the curves obtained in the tensile test, a digital image correlation (DIC) was employed to 
acquire the strain data. A sequence of 167 images was captured along the entire test using a Nikon D90 camera; one 
photo taken every 50 s at 12.3 MP resolution and 12 bits colour depth. True strain and instantaneous area values were 
measured near the neck by analysing a 10 mm x 40 mm area with 2500 quadrilateral elements, Fig. 1 (b). The results 
confirmed the exponential form, previously assumed for the stress-strain plastic curve of the 1006 steel, for true strain 
values up to 60.8%, when the specimen presented failure. 
 The material parameters obtained in the quasi-static tests are: elastic modulus, 200 GPa, hardening modulus, 402 
MPa, and quasi-static yielding stress, 168 MPa (for the 1.00 mm thick sheet) and 220 MPa (0.25 mm thick sheet). The 
factor 

0 = 1.2177 was determined by adjusting the true – true  curve of the 0.25 mm thick sheet to the response of the 
1.00 mm thick sheet specimen, Fig. 1 (a). Mass density of the material is 7850 kg/m3. 
 
3.2. MATERIAL STRAIN RATE PARAMETERS 
 
 A split Hopkinson pressure bar was used to obtain the properties of the material at high values of strain rate. Discs 
of 6 mm diameter and 1 mm thick were employed in the tests, and the strain rate ranged from 3000 s-1 to 9000 s-1. The 
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  (d) (e) 
 

Figure 6. Results of the experimental impact tests. (a) indenter displacement. (b) reaction force. (c) indenter 
acceleration. (d) total kinetic energy. (e) indenter velocity. 
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7), hence it was possible to evaluate the results. If dissimilar deformation were developed, the responses could not be 
compared since they represent different phenomena. The method studied in the present work compensates for the 
strengthening of the material due to strain rate and discrepancy in 0  by changing the kinetic energy, i.e. it corrects the 
global response of the structure. Consequently, it can be applied to structures whose collapse configuration is always the 
same. Also, an analysis of Fig. 6 (a) shows that the vertical displacement of VSG-m follows the behaviour of the 
prototype up to the maximum value, but after that, these curves started to present a slight divergence. It is explained by 
the elastic part of the material: since this feature was not contemplated in the method, some difference commenced to 
take place with the material elastic recovery during the unloading. 
 

Table 4. Results for the experimental tests. 
 

 max  (mm) maxA  (m/s2) maxF (kN) averageF (kN) totalt (ms) 

prototype 15.58 442.33 6.79 5.25 8.92 

MLT 13.16 500.43 7.81 6.10 7.72 

VSG-m 15.57 455.37 7.11 5.39 8.83 

 
Comparison with previous works: some of the data here generated can be compared with the results of Mazzariol et al. 
(2010). They tested experimentally the same structure of 1 mm thickness and extrapolated the results to a 20 times 
larger prototype by using numerical simulations. The strengthening of the material due to strain rate effect was 
considered by changing the impact mass – instead of the impact velocity as done in the present work. A representative 
consistency between the results can be observed after the transformation factors are accordingly applied to the data 
generated in both works. 
 A related technique that takes the material dissimilarity into account was developed in Alves and Oshiro (2006). The 
difference to the present work is that Alves and Oshiro (2006) employed a distinct method to calculate the velocity 
factor, V , and the dependence of the dynamic yielding stress to strain rate was given by Cowper-Symonds constitutive 
relation, Eq. (8). In that study, the material parameters 0 , q , and D  of the model could be different of the prototype 
ones. Conversely, although the method did not rely on any data of the prototype, it required an estimation of the strain 
rate of the model. For complex structures it can be intricate to be calculated. In contrast, the velocity factor developed in 
the present work, Eq. (7), is rather simple. 
 The study presented by Drazetic et al. (1994) also considered the strain rate effect and distortion of material 
properties in the model. However, the structure response was necessary to generate the correspondence between the 
scaled model and the prototype. 
 
6. CONCLUSION 
 
 As discussed in section 5, the sheet that composes the 1/4 model exhibited a quasi-static yielding stress 21.77% 
higher than the material of the prototype, even though they are nominally the same (low carbon steel 1006). It 
represented an increase in the velocity factor of 10.35% when it was calculated according to Eq. (7). The other effect 
studied in the present work, strain rate, contributed with 3% for V value, an increase of 6% in total kinetic energy. The 
velocity factor was calculated through Eq. (7), and relied on the material property, q , and the scaling factor,  . The 
prototype specimen was tested only to examine the MLT and VSG-m performance, but any data of the tests was used to 
determine V . 

Even though the material did not match the requirements of the similarity theory (rigid perfectly plastic material), 
the VSG-m generated a considerable improvement in the results to predict the prototype behaviour when its 
performance is compared to the MLT, Fig. 6 and Tab. 4. The difference between the real-size structure and the MLT 
can be more pronounced in models with lower scaling factors or made of materials more sensitive to strain rate. The 
value of  = 1/4 used in the present work is rather high. 
 The main objective of this work was to analyse the similarity method delineated in section 2. A new set of scaling 
factors was developed, and they were employed to predict the prototype behaviour through the model response. It is 
primarily motivated by the fact that many experiments of scaled structures subjected to impact loads do not comply 
with the usual scaling laws. This technique is rather simple, and it can handle restrictions that the MLT is not able to 
overcome. 
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