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Abstract. In this paper we applied two Bayesian filters to a solidification problem with the objective of estimate the 

location of the solidification front, as well as the intensity of a line heat sink. The main objective of this paper is to 

discuss and compare the performance of such two filters, namely: the SIR Filter (Sampling Importance Re-sampling 

Filter) and the ASIR (Auxiliary Sampling Importance Re-sampling) Filter. 
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1. INTRODUCTION  
 

Sequential Monte Carlo (SMC) or Particle Filter Methods, which have been originally introduced in the beginning 
of the 50's, became very popular in the last few years in the statistical and engineering communities. Such methods have 
been widely used to deal with sequential Bayesian inference problems in fields like economics, signal processing, and 
robotics, among others. SMC Methods are an approximation of sequences of probability distributions of interest, using 
a large set of random samples, named particles. These particles are propagated along time with a simple Sampling 
Importance distribution, SI [1], and re-sampling techniques as well. 

Hammersley and Hanscomb [2] presented a technique that used recursive Bayesian filters, together with Monte 
Carlo simulations, known as Sequential Importance Sampling (SIS). In such approach, the key idea was to represent the 
posterior probability function as a set of random samples associated with some weights, in order to calculate the 
estimates based on such samples and weights. Gordon et al. [3] added an extra step, named re-sampling, into the 
Sequential Importance Sampling method, to avoid the problem known as degeneration of particles. Such filter is known 
as Sampling Importance Re-sampling (SIR) Filter. In 2008, Orlande et al. [4] applied the SIR Filter to linear and non-
linear heat conduction problems. In 2009, Vianna et al. [5] applied the Kalman and particle filters to a heat transfer 
problem, where the authors estimated the temperature field in a pipeline. The authors compared the results obtained 
through both methodologies. Later in 2010, Vianna et al [6] applied the particulate filter to a Pipe-in-Pipe system used 
in deepwater oil extraction, during a production shutdown. In 2010, Silva et al [7] compared different particle filter 
algorithms, as applied to an inverse one-dimensional, transient, heat conduction problem.  
      In this paper we apply the Sampling Importance Re-sampling (SIR) Filter and the Auxiliary Sampling Importance 
Re-sampling (ASIR) Filter to a non-linear solidification problem, in order to estimate a transient line heat sink as well 
as the solidification front in a phase change process. Simulated temperature measurements were used in the inverse 
analysis. The methods are compared in terms of computational time and accuracy of the recovered unknown. 
 
 
 
2 PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 
 
        The physical problem analyzed in this paper consists of a one-dimensional transient heat solidification problem in 
a semi-infinite medium in cylindrical coordinates, as shown by Fig. 1. Initially, the entire medium is at a uniform 
temperature in the liquid phase and, at the initial time a heat sink is applied at r=0. The material then starts to solidify at 
r=0 and a solidification front moves away from the origin. The physical properties of liquid and solid phases are 
assumed constant. The material undergoing solidification is assumed to be a pure substance, so that phase change 
occurs at the temperature Tm. 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  
 

Solid Liquid

S(t)

Interface

0

T

L
in

e
 H

e
a
t

S
in

k

T (r,t)

 
Figure 1. Solidification Problem [8] 

 
 

The mathematical formulation for the solid phase is given as 
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while the liquid phase is described as 
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At the interface between liquid and solid phases, the following conditions must be satisfied 
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An analytical solution of this problem can be obtained for this physical problem and it is given by [8]:  
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where the eigenvalues λ and the solidification front S (t) are given by 
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In the above equations  iT  is the uniform initial temperature, mT  is the melting temperature of the material, L is the 

latent heat of solidification of the material,  ρ is the density,  sk  and lk are the thermal conductivities of the solid and 
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liquid phases, respectively, 
sα  and  

lα  are the thermal diffusivities of the solid and liquid phases, respectively, and  

sT  and 
lT  are temperatures of the solid and liquid phases, respectively. 

 
3. STATE ESTIMATION 

 
      State estimation problems, also designated as nonstationary inverse problems [9], are of great interest in 
innumerable practical applications. In such kinds of problems, the available measured data is used together with prior 
knowledge about the physical phenomena and the measuring devices, in order to sequentially produce estimates of the 
desired dynamic variables. This is accomplished in such a manner that the error is minimized statistically [10].  
      Consider a model for the evolution of the state variables x in the form 
 

( )1,x f x vk k k k−=
                                                      

 (4) 

 
      where f is, in the general case, a non-linear function of x and of the state noise or uncertainty vector given by 
vk∈R

n. The vector xk∈R
n is called the state vector and contains the variables to be dynamically estimated. This vector 

advances in time in accordance with the state evolution model (4). The subscript      k =1, 2, 3, …, denotes a time instant 
tk in a dynamic problem. 
       The observation model describes the dependence between the state variable x to be estimated and the measurements 
z through the general, possibly non-linear, function h. This can be represented by 
 

( ),z h x nk k k k=
                                                

(5) 

 
where zk∈R

nz

 are available at times tk, k=1, 2, 3,…. Eq. (5) is referred to as the observation/measurement model. The 
vector nk∈R

nz represents the measurement noise or uncertainty. 
As per equations (4) and (5), the evolution and observation models are based on the following assumptions [9, 18-23, 
28]. 
 
(a) The sequence xk for k=1, 2, 3, …, is a Markovian process, that is, 
 

( ) ( )0 1 1 1, , ,x x x x x xk k k kπ π− −=K                                                     (6.a) 

 
(b) The sequence zk for k=1, 2, 3, …, is a Markovian process with respect to the history of xk, that is, 

 

( ) ( )0 1, , ,z x x x z xk k k kπ π=K                                      (6.b) 

 
(c) The sequence xk depends on the past observations only through its own history, that is,  

 

( ) ( )1 1 2 1 1, , , ,x x z z z x xk k k k kπ π− − −=K
                                                   

(6.c)
 

where π(a|b) denotes the conditional probability of a when b is given. 
 
For the state and observation noises, the following assumptions are made [9, 18-23, 28]  
(a) For i≠j, the noise vectors vi and vj, as well as ni and ni, are mutually independent and also mutually independent of 

the initial state x0. 
(b) The noise vectors vi and nj are mutually independent for all i and j.  

 
Different problems can be considered for the evolution-observation models described above, such as [9, 18-23, 28]: 
 
(i) The prediction problem, when the objective is to obtain π(xk|z1:k-1); 
(ii) The filtering problem, when the objective is to obtain π(xk|z1:k); 
(iii) The fixed-lag smoothing problem, when the objective is to obtain π(xk|z1:k+p), where p≥1 is the fixed lag. 
(iv) The whole-domain smoothing problem, when the objective is to obtain π(xk|z1:K), where z1:K={zi,i=1,...,K} is the 

complete set of measurements. 
     We consider here the filtering problem. By assuming that π(x0|z0)= π(x0) is available, the posterior probability 
densityπ(xk|z1:k) is then obtained with Bayesian filters in two steps [9, 18-23, 28]: prediction and update, as illustrated in 
figure 2.  
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Figure 2. Prediction and update steps [28] 

 
           The most widely known Bayesian filter method is the Kalman filter [9, 18-22, 28-31]. However, the application 
of the Kalman filter is limited to linear models with additive Gaussian noises. Extensions of the Kalman filter were 
developed in the past for less restrictive cases by using linearization techniques. Similarly, Monte Carlo methods have 
been developed in order to represent the posterior density in terms of random samples and associated weights. Such 
Monte Carlo methods, usually denoted as particle filters among other designations found in the literature, do not require 
the restrictive hypotheses of the Kalman filter. Hence, particle filters can be applied to non-linear models with non-
Gaussian errors [9, 18-22, 28-31]. 
 The main idea in the particle filter is to represent the required posterior density function by a set of random samples 
with associated weights and to compute the estimates based on these samples and weights [9, 22-27,30,31]. Let  {x

i
k, 

i=0,...,N} be the particles with associated weights   {w
i
k, i=0,...,N} and x0:k={xj, j=0,...,k} be the set of all states up to tk, 

where N is the number of particles. The weights are normalized, so that Σi w
i
k=1. Then, the posterior density at tk can be 

discretely approximated by: 
 

    ( ) ( )
0:0: 1: 1 0:

1
k

I
i i

k k k k

i

x z w x xπ δ−
=

≈ −∑                                        (7) 

 
where δ(.) is the Dirac delta function. By taking hypotheses (6.a-c) into account, the posterior density in Eq. (7) can be 
written as π(xk|z1:k-1)≈ Σi w

i
k δ(xk-x

i
k).  

 A common problem with the Particle Filter method is the degeneracy phenomenon, where after a few states all but 
one particle may have negligible weight. The degeneracy implies that a large computational effort is devoted to 
updating particles whose contribution to the approximation of the posterior density function is almost zero. This 
problem can be overcome by increasing the number of particles, or more efficiently by appropriately selecting the 
importance density as the prior density π(xk|x

i
k-1). In addition, the use of the resampling technique is recommended to 

avoid the degeneracy of the particles [9, 22-27, 30, 31].  
 Resampling generally involves a mapping of the random measure {x

i
k,w

i
k}into a random measure {x

i*
k,N

-1}with 
uniform weights. It can be performed if the number of effective particles with large weights falls below a certain 
threshold number. Alternatively, resampling can also be applied indistinctively at every instant tk, as in the Sampling 

Importance Resampling (SIR) algorithm [22, 23]. This algorithm can be summarized in the steps presented in Table 1, 
as applied to the system evolution from tk-1 to tk. 
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Table 1 – SIR Algorithm [23]. 
Step 1 

For i=1,...,N draw new particles xk
i from the prior density 

π(xk|x
i
k-1) and then calculate some characterization of xk, 

given xi
k-1. 

Step 2 
For j=1,...,N draw particles xk

i use the likelihood density 
to calculate the correspondent weights w

j
k=π(zk|x

j
k) 

Calculate the total weight t=Σi w
i
k and then normalize the 

particle weights, that is, for i=1,...,N let wi
k = t-1 wi

k     
Step 3 

Resample the particles as follows : 
Construct the cumulative sum of weights (CSW) by 
computing ci=ci-1+wi

k for i=1,...,N, with c0=0 
Let i=1and draw a starting point u1 from the uniform 
distribution U[0,N-1]  
For j=1,...,N 
       Move along the CSW by making uj=u1+N

-1(j-1)
  

       While uj>ci make i=i+1 
        Assign sample xj

k=x
i
k 

        Assign sample wj
k=N-1 

Step 4 
Calculate the total weight t=Σj w

j
k and then normalize the 

particle weights, that is, for j=1,...,N let wj
k = t-1 wj

k     

 

 
 Although the resampling step reduces the effects of the degeneracy problem, it may lead to a loss of diversity and 
the resultant sample can contain many repeated particles. This problem, known as sample impoverishment, can be 
severe in the case of small evolution model noise. In this case, all particles collapse to a single particle within few 

instants k
t . Another drawback of the particle filter is related to the large computational cost due to the Monte Carlo 

method, which may limit its application only to fast computing problems.  
 Different algorithms for the implementation of the particle filter can be found in [31], including those that permit the 
simultaneous estimation of constant parameters appearing in the model and the transient states. One of such algorithms 
is the Auxiliary Sampling Importance Resampling (ASIR) Method, which is summarized in table 2. 
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Table 2 – ASIR Algorithm [22, 23] 
Step 1 

For i=1,...,N draw new particles xk
i from the prior density 

π(xk|x
i
k-1) and then calculate some characterization of xk, 

given xi
k-1, as for example the mean µi

k=E[xk|x
i
k-1]. Then 

use the likelihood density to calculate the correspondent 
weights wi

k=π(zk|µ
i
k)w

i
k-1 

Step 2 
Calculate the total weight t=Σi w

i
k and then normalize the 

particle weights, that is, for i=1,...,N let wi
k = t-1 wi

k     
Step 3 

Resample the particles as follows : 
Construct the cumulative sum of weights (CSW) by 
computing ci=ci-1+w

i
k for i=1,...,N, with c0=0 

Let i=1and draw a starting point u1 from the uniform 
distribution U[0,N-1]  
For j=1,...,N 
       Move along the CSW by making uj=u1+N-1(j-1)

  
       While uj>ci make i=i+1 
        Assign sample xj

k=x
i
k 

        Assign sample wj
k=N

-1 
        Assign parent i(j)=i 

Step 4 
For j=1,...,N draw particles xk

j from the prior density 

( )( )
k 1x i j

kxπ − , using the parent i(j), and then use the 

likelihood density to calculate the correspondent weights 

( )
( )

k

( )
k 1

z

z

j

kj

k i j

k

x
w

π

π µ −

=  

Step 5 
Calculate the total weight t=Σj w

j
k and then normalize the 

particle weights, that is, for j=1,...,N let wj
k = t-1 wj

k     
 
 

      In ASIR filter algorithm, the index i(j) are obtained by resampling ( i.e. after resampling the particles with higher 
weights and their index are obtained. These index are i(j), j = 1, .. N). According to [22], the advantage of the ASIR 
algorithm over the Sampling Importance Resampling (SIR) algorithm is that it naturally generates points from the 
sample at k-1, which, conditioned on the current measurement, are most likely to be close to the true state. Still, as 
described in [22], ASIR can be viewed as resampling at the previous time step, based on some point estimates µi

k that 
characterize π(xk|x

i
k-1). The use of ASIR is limited to small process noise. For a large process noise, a single point µi

k is 
not able to characterize π(xk|x

i
k-1).   

 
 

4. RESULTS AND DISCUSSIONS 
 
      The physical problem defined by Eqs. (1.a-f) was solved analytically, where we used the following data, 

corresponding to solidifying water: 25iT C= ° , 0
m

T C= ° , 
2

0.00118s

m

s
α = , 

2

0.000146l

m

s
α = , 2.22s

w
k

m c
=

°
, 

0.61
l

w
k

m c
=

°
, 

3
997.1

kg

m
ρ =  , J

80 
kg

L = . The line heat sink was supposed to have a constant value equals to W
Q = 50

m
. 

In this work, the measurements (for the observation model) were obtained at r=0.01 m. The simulated noisy 
measurements were uncorrelated, additive, Gaussian, with zero mean and constant standard deviation equal to 5% of the 
maximum temperature. Figures 3.a,b show the transient measurements obtained after applying such constant line heat 
sink, with and without errors, respectively. 
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(a)      (b) 

Figure 3: Simulated temperature measurements (a) errorless and (b) Gaussian with standard deviation of 5% of the 
maximum temperature 

 
 
      A random walk model was used for the evolution model involving the estimation of an unknown line heat sink, as 
given by Eq. (8.a). In this equation,  σ   is the standard deviation used to advance the line heat sink in time, taken to be 

equal to 0.25 W/m, while W are random numbers with normal distribution, zero mean, and unitary standard deviation. 
Equation (8.b) shows the evolution model for the solidification front, obtained by re-writing equation (3.b) in an 
appropriate form for the application of the particle filter algorithms presented above. Uncertainties in the evolution 

model for the solidification front were taken into account. The 
s

α  is standard deviation for ( )S t , used to advance the 

solidification front, was taken as 1% of the maximum value of the solidification front. 
 

      1( ) ( )k kQ t Q t Wσ−= +                                       (8.a) 

 
     ( )1 1( )  ( ) 2

k k s k k s
S t S t t t Wλ α σ− −= + − +                                             (8.b) 

 
      To better analyze the results generated we calculate the root mean square error between the simulated and observed 
values, as given by equation (8.c) 
 

     ( ) ( )( )
2

0
1

1 M

m

j

RMS X j X j
M =

= −∑                                                          (8.c) 

 

where  mX  represent the simulated values, 0X  represent the observed values and M  is the total points. 

      The two filters previously presented were applied to the problem of estimating the transient line heat sink as well as 
the solidification front. Table 3 summarizes the cases examined, as well as their results for CPU time and RMS errors. 
Table 3 shows that the SIR filter presented a computational time varying from 0.008  to 11.047 minutes, when the 
number of particles varied from 100 to 5000. Also, the variation of the RMS for the estimation of the solidification front 
varied from 9x10-3 m to 1x10-4 m. On the other hand, by applying the ASIR filter with only 100 particles, the 
computational time was of 0.161 minutes, with an RMS error of 2x10-5 m to estimate the solidification front. In this 
same table, one can notice that the RMS error for recovering the line heat sink also was much smaller for the ASIR 
filter than for SIR filter. Thus, the ASIR filter was more efficient in recovering the unknown quantities, with a much 
smaller number of particles than those required for the SIR filter.     
 
 

Table 3. Computational time and RMS errors 

Bayesian filter 
Number of Particles 

(NP) 
Time 

RMS error for the 

solidification front 

(m) 

RMS error for 

the line heat 

sink intensity 

(W/m) 

SIR 100 0.008 min. 9x10-3 1.55 
SIR 1000 0.997 min. 2x10-3 1.78 
SIR 5000 11.047 min. 1x10-4 0.34 

ASIR 100 0.161 min. 7.9x10-5 0.15 
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      Figures 4 and 5 show the estimated and real values for the transient variations of the solidification front and the line 
heat sink, respectively. It can be seen that the ASIR filter outperforms the SIR filter, even when a large number of 
particles is used in the later one. In these figure, the mean values are represented by the symbols, while de real values 
are represented by a continuous line. Error bars are also included, for a 99% confidence interval. Whereas the estimated 
location of the solidification front is reasonably well captured for all filters, the value of the line heat sink is completed 
overestimated by the SIR filter with 100 or 1000 particles. Only when the number of particles is increased to 5000, the 
real value of the line heat sink is located within the error bars of the estimated value. The ASIR filter, on the other hand, 
is able to capture the mean value of the line heat sink superbly well, even for a number of particles as small as 100. 
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Figure 4. Location of the solidification front 
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Figure 5. Line Heat Sink Intensity 

 
 
5. CONCLUSIONS 
 

In this paper we applied two Bayesian particle filters algorithms - the SIR and ASIR filters - to a one dimensional 
heat transfer problem with solidification. It was shown that the ASIR algorithm was substantially superior to the SIR 
algorithm, being capable of recovering both the solidification front and an unknown line heat sink, with a number of 
particles 50 times smaller than for the SIR filter. Also, the computational time involved in the use of the ASIR filter was 
much smaller than the SIR filter, for the same order of accuracy of the results. 
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