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Abstract. Most structural components have notches, or geometric transition details such as holes, slots, grooves, key-
ways, shoulders, corners, threads, weld chords, reinforcements, etc., which are required to fix and/or to operate them. 
These notches locally concentrate (increase) the nominal stresses that would act in their location, if they were not 
there. Stress concentration effects are of primordial importance in many failure mechanisms, such as fatigue crack ini-
tiation or fracture of brittle components, and must be accounted for in structural analysis. However, the usual constant 
radius notch tip roots, used in most structural members to alleviate their stress concentration effects, do not minimize 
them. In fact, natural structural members, such as tree branches and bones, after many million years of evolution have 
learned to use variable tip radii instead of the fixed radius typical of engineering notches. This problem has been rec-
ognized for a long time, but variable radius notches optimized to minimize their deleterious influence on fatigue 
strength still are not widely used in mechanical design. The usual practice is to specify notches with as large as possi-
ble constant radius roots, since they can be easily fabricated in traditional machine tools. However, notches with prop-
erly specified variable radius can have much lower stress concentration factors than those obtainable by fixed notch 
root radii. Therefore, such improved notches can be a good design option to augment fatigue lives without significantly 
affecting structural components global dimensions and weight. Moreover, these improved notches are certainly more 
useful than ever, as nowadays they can be economically specified and manufactured in many structural components, 
due to the wide availability of CNC machine tools. This paper quantifies the stress concentration improvements achiev-
able by two variable radius notches traditional receipts, and presents a numerical routine developed to improve notch 
shapes for components which work under the general multiaxial loading case. 
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1. INTRODUCTION  
 

Notches are geometric details such as holes, slots, grooves, keyways, shoulders, corners, and threads, inevitably 
found in structural components. Despite being necessary for their functionality, such details locally change the stress 
distribution increasing, or concentrating, the nominal stresses around their roots. This effect is quantified by the notch 
stress concentration factor (SCF) Kt = σmax/σn, where σmax is the maximum stress at its root and σn is the nominal stress 
which would act there if the notch had no effect on the stress distribution. High Kt values can have a very deleterious 
effect on failure mechanisms such as fatigue crack initiation and brittle fracture. To mitigate such effects, abrupt geo-
metrical transitions should be avoided, in particular by seeking to smooth notch tip roots. Designers commonly use cir-
cular profiles to do so. Kt values for these standard profiles may be conveniently obtained from the literature (see Pilkey 
1997, e.g.), but they might not be the best choice to minimize deleterious notch effects.  

For example, instead of being constant, the notch tip curvature may be numerically optimized to reach a uniform 
tangential stress along at least part of the curve boundary. An optimization algorithm, such as the so-called gradientless 
algorithm, may be used to iteratively add material where the stresses are high and to remove it where the stresses are too 
low (Heller et al, 1999, Waldman et al, 2000, Taylor et al, 2010).  In fact, variable radii notches may be often found in 
old cast components. Apparently, old machine designers intuitively designed using variable radius instead of a constant 
one. In recent days, the shape of trees inspired Mattheck (1990, 2006) to better understand how nature biologically im-
proves their roots, barks and branches. He showed that this concept could be also applied to mechanical components. 
Much earlier Grodzinski in 1941 (Pilkey, 1997) developed a simple purely graphical method for creating a variable ra-
dius curve that may also lead to lower Kt than the circular traditional profile. Despite its simplicity, this variable curve 
concept has being neglected by most modern designers. However, these two methodologies, if correctly applied, can 
considerably reduce stress concentration effects at notch roots, and therefore, increase the fatigue life of structural com-
ponents, leading to very significant economic savings.  

The purpose of this paper is to systematically compare Mattheck and Grodzinkis’ notch root shapes against the tra-
ditional constant radius profile using 2D finite element analysis, to quantify how they behave when subjected to tension 
and bending loads.  

 
2. QUANTIFICATION OF THE STRESS CONCENTRATION FACTOR 

 Some few stress concentration factors can be analytically calculated using Theory of Elasticity concepts. Kirsh’s so-
lution for the circular hole in an infinite plate under pure tension, which induces a Kt = 3, is relatively simple to repro-
duce. Inglis’ elliptical hole SCF in an infinite plate is also well known in its simplest version, the plate under pure ten-
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sion perpendicular to the ellipsis semi-axis a: its Kt = 1 + 2a/b = 1 + 2√(a/ρ), where b is the other semi-axis of the el-
liptical hole, which has a tip radius ρ = b2/a. This classical formula illustrates why sharp notches are inadmissible in 
mechanical design, and justifies the need to increase notch tip radii, but the Inglis’ plate general solution is much more 
involved. More complex geometries are not analytically treatable, and most Kt values listed in classical handbooks 
(Pilkey, 1997) were experimentally measured, usually by photoelastic techniques.  

Some classical approximations may be useful to deal with unlisted geometries. For example, in absence of better in-
formation, McClintock says that Kt can be estimated to be in the range t1 0.5 a K 1 2 aρ ρ+ ≤ ≤ +  for most ge-
ometries, with a and ρ defined in Fig. 1. Higher tK 1 2 a ρ≅ +  values should be used for shallow severe notches (ρ 
and a << D) with parallel faces under tension. Smaller Kt values, tK 1 0.5 a ρ≅ + , are appropriate for gentler notches, 
with large tip radius and face angle, under bending or torsion loads. The range 0.5 to 2 is quite large, and the notch se-
verity is subjectively judged, but a crude estimate is better than no estimate at all (Castro and Meggiolaro, 2009). 

      
Fig 1: Characteristic dimensions used in McClintock’s estimate, and double U-notches for Neuber estimate. 

According to Neuber, SCF Kts for shallow notches, with depth much smaller than their residual ligaments, can be es-
timated by the Inglis formula Kts ≅ 1 + 2√(a/ρ), where ρ is the notch tip radius and a is its depth or length. SCF for deep 
notches Ktd, on the other hand, depends on ρ and on b, the residual ligament size, and can be estimated by: 

[ ]{ } [ ]{ }dtK 2 b 2 (b 2 ) 1 (b 2 ) 1 atan b 2 b 2ρ ρ ρ ρ≅ ⋅ + + + ρ             (1) 

The Kt for any notch, large or small, can be estimated from Kts and Ktd by: 

d s d s
2t t t tt 2K 1 ( K 1) ( K 1) ( K 1) ( K 1)≅ + − ⋅ − − + −                 (2) 

This estimate was developed for plates with two U notches loaded in mode I, see Fig. 1, but it can be used to esti-
mate Kt values for several other geometries. The double U notches have parallel sides, but V notches with angles up to 
about 90o in plates or 60o in shafts induce Kt values just a bit smaller than the U notches. These estimates assume that 
the nominal stress σn acts in the residual ligament, or in the liquid area (Castro and Meggiolaro, 2009). 

Creager and Paris (1967) proposed a way to estimate notch SCF Kt from the stress intensity factors (SIF) KI of 
cracks geometrically similar to them. They showed that LE stress fields around elongated notches with tip radius ρ can 
be estimated from the corresponding cracks KI-controlled stress fields (when loaded in mode I,) if the coordinated axis r 
and θ origin is moved to ρ/2 inside the notch, see Fig. 2. This is no surprise, since notches are similar to blunt cracks, or 
to cracks with rounded tips, which radii ρ ≠ 0. In this way, Kt for notches loaded in mode I can be estimated by: 

I ntK 2 K σ πρ⎡≅ ⋅⎣ ⎤⎦                              (3) 

 
Fig. 2: Coordinates used in Creager and Paris’ model. 

However, nowadays complex linear elastic stress concentration problems can be conveniently tackled using standard 
finite element (FE) procedures. FE is a global method of analysis which calculates the whole displacement, strain, 
and/or stress fields in structural components, using a proper mesh to subdivide them in small parts (or finite elements,) 
and then forcing the FE to remain compatible after the loading (Bathe 1982). But it is worthwhile to mention that in Kt 
calculations by FE, the mesh around the notch root must be properly refined, using elements much smaller than its ra-
dius ρ, to resolve the local stresses. It is interesting to compare such estimates with the FE solution for a non-elementary 
SCF problem, an un-cracked C(T) specimen shown in Fig. 3 (Castro and Meggiolaro, 2009). 
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Fig. 3: C(T) specimen, with a blunt notch of length a = 10mm and tip radius ρ = 1mm. 

 
A powerful numerical tool specially developed to model by FE fatigue crack propagation problems in arbitrary two-

dimensional (2D) geometries, named Quebra2D was used in this calculation. This program automatically calculates KI 
and KII and the generally curved crack paths using special quarter point crack tip elements, appropriated criteria to pre-
dict the crack increment direction, robust and efficient auto-adaptative remeshing algorithms, and a friendly interface 
(Miranda et al, 2003). Fig. 3 shows the mesh used in this analysis. Note its refinement around the notch tip (the mesh 
must be subdivided there until the value of σmax calculated at the notch tip converges.) The calculated SCF in this case is 
Kt = 4.78, considering that the nominal stress (which would act there if the notch did not affect the stress field around 
the notch tip) is defined by the sum of the tensile and bending stresses given by: 

( )N M
2n n n 6 P aP bt b 2 tbσ σ σ += + = +                     (4) 

Assuming FE calculations can be used as a reference, McClintock estimation Kt ≅ 1 + α⋅√(a/ρ), with 0.5 ≤ α ≤ 2, for 
this C(T) notch has α = 1.20. This non-intuitive value is due to the bending predominance, which tends to reduce the 
estimation parameter α. The Neuber estimate, using a =10, b = 30 and ρ = 1, is given by: 

s

d s

d d s

t

t t
t 2 2t t t

K 1 2 a 7.32

b b ( K 1 ) ( K 1 )2 1 K 12 2
K 4.96 ( K 1 ) ( K 1 )b b b1 atan

2 2 2

ρ

ρ ρ

ρ ρ ρ
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⎪

⎡ ⎤⎪ − ⋅ −⎪ ⋅ +⎢ ⎥ ⇒ ≅ + =⎨ ⎣ ⎦≅ =⎪ − + −⎡ ⎤⎪ + +⎢ ⎥⎪ ⎣ ⎦⎩

4.36         (5) 

Compared to FE, Kt is underestimated by Neuber in about 9%, a non-conservative result, and overestimated by Ktd 
in about 4%, a smaller and conservative error. By Creager and Paris, using the C(T) KI, the estimated Kt is: 

( ) ( ) ( ) ( )2 3 4
I 1.5

I
t

n

2 1 4P 1 1 1 1K 0.886 4.64 13.3 14.7 5.6 0.78 t4 4 4 4( 1 1 4)t 40
2 K 2 0.78 P/ tK 4.40

( 0.2 P/ t ) 1σ πρ π

+⎧ ⎡ ⎤
= + − + −⎪ ⎢ ⎥⎣ ⎦⎪ −

⎨
⋅ ⋅⎪ ≅ = =

⎪ ⋅ ⋅ ⋅⎩

P= ⇒
         (6) 

Thus, when compared with the FE solution, the C(T) Kt is underestimated in nearly 8%, confirming that Creager and 
Paris  is useful, but must be used with care. These interesting comparisons are useful and representative, but they can-
not, of course, be generalized for all practical cases. 

 
3. VARIABLE RADII NOTCHES 
 

Mattheck noticed that nature does not use constant radii notches, and found a smarter way to improve the structural 
integrity of the trees. He observed that organic material grows where the stress concentrates in the tree structure, as il-
lustrated in Fig. 4.      
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Fig. 4: Tree geometry optimization (Mattheck 2006, modified)  

 
Mattheck proposed to apply these concepts nature to actual mechanical components. He developed a simple, but ef-

ficient graphical way of creating variable radius fillets, called the method of tensile triangles, see figure 5. 
 

 
Fig. 5: Mattheck’s tensile triangle method 

 
Grodzinski proposed another graphical method of creating a variable radius curve, by dividing the available space 

for the fillet in the same number of equally spaced intervals and connecting then by straight lines, as shown in figure 6.    
 

 
Fig. 6: Grodzinski’s variable radius curve 

 
Both methods use graphically generated curves. Nevertheless, these improved fillet profiles significantly reduce Kt 

values. A few decades ago it would not be feasible to automatically generate and analyze such graphically generated 
variable fillets, but CAE/CAM tools are becoming more and more available, and manufacturing a component with vari-
able curve exactly as specified by the designer is nowadays a simple task. Therefore, the designer has at his/her disposal 
three quick ways of smoothing sharp edges without any calculation whatsoever: the circular, Mattheck, and Grodzin-
ski’s fillets, see fig. 7. In addition to the difference of the curve profiles, it is clearly seen that these curves also differ in 
their geometry size along the x and y direction. Fortunately, one of the advantages of these geometrical method is that 
these curve may be easily scaled up or down according to meet the geometrical limitations, such as interference with 
other components (e.g. roller bearings) during its assembly. 
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Fig. 7: Geometrical profiles for constant radius, Mattheck, and Grodzinski fillets. 

Figure 8 shows a hypothetical flat bar subjected to a remote pure tension loading of 10 kN along the edges. As it 
may be seen, its shoulder has an abrupt change in geometry that would lead to severe stress concentration effects around 
its root, which must be avoided by properly smoothing its profile.  

 
Fig. 8: Flat bar subjected to tension loading  

 
The designer must specify an appropriate curve to smooth out this notch root geometry. The challenge is to take into 

account not only the stress concentration reduction but also the geometric constrains. Depending on the application of 
the component, the extension of the smoothing curve along the shoulder may be limited. This geometry was modeled in 
a standard commercial finite element software, to study the effect of three different notch root smoothing curves effec-
tiveness: constant radius, Mattheck and Grodzinski.  

 
Fig. 9: Constant radius geometry - Finite element plot for von Mises stress (a) and Peterson’s curve (b) for stress con-

centration factor of a flat tension bar with shoulder fillet (modified) 
 

When the notch is smoothed with a shoulder fillet of constant radius, the stress concentration factor, obtained from 
the finite element analysis, is approximately 1.83. This value is corroborated by Peterson’s chart for a flat tension bar 
with shoulder fillet. Figure 10 shows the stress plot results for von Mises stress and the stress concentration variation 
along the curve profile for Mattheck’s and Grodzinskis’s curve respectively.  
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Fig. 10: Mattheck (a) and Grodzinski’s (b) variable radius geometry fillets under tensile loading.  

 
Figure 11 shows a comparison of the stress concentration effect calculated along the bar upper edge for the constant 

tip radius notch, and for the Mattheck and Grodzinski’s improved notch profiles. Their stress concentration factors are, 
respectively, 1.83, 1.22, and 1.26. Thus, the ratio between the SCF Kt induced by the traditional circular profile and the 
one associated to the Grodzinski’s curve is approximately 1.45, and between the circular profile and Mattheck’s curve is 
about 1.5, demonstrating that they do introduce an improvement that is certainly far from negligible.   

 

 
Fig.: 11. Kt for the constant radius, Mattheck’s and Grodzinski’s curve for a flat be under pure tension loading 

 
Let the same hypothetical component be now subjected to a remote pure bending load in its plane, as sketched in 

figure 12. 

 
Fig. 12: Hypothetical geometry  

 
When the notch root is smoothed with a constant radius fillet, this shoulder SCF, obtained from this bent plate FE 

analysis, is approximately 1.46. This value is also corroborated by Peterson’s chart for a flat bar with shoulder fillet un-
der such a bending load, see figure 13.  
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Fig. 13: Constant radius geometry - Finite element plot for the Mises stress distribution (a) and (b) Peterson’s curve for 

the stress concentration factor of flat bars with fixed radii shoulder fillets bent in their own plane. 
 
Figure 14 show the Mises stress fields in the whole plates, and the stress concentration effect along the plates upper 

edges, described by their σ/σn ratio departing from the fillet profile staring point, for the plates with improved notches 
designed following Mattheck’s and Grodzinskis’s receipts, loaded by pure in plane bending moments. It is important to 
emphasize that such plates, as well as the plates illustrated in figure 10, have notch root profiles with same end points, 
as despised in figure 7. Moreover, their notches roots have the same 7.5 mm height of the circular tip studied in figures 
9 and 13. In this way, the improvement introduced by the variable root radii notches can be reasonably well compared. 
Even thou these simple smoothing receipts do not optimize the notch profile, in the sense of minimizing their Kt values, 
they are remarkably efficient, and should not be ignored by structural designers.  
 

       
Fig. 14: Plate with (a) Mattheck and (b) Grodzinski’s shoulder fillets with variable radius geometries under in plane 

bending loads, and their respective Kt values calculated by FE. 
 
Figure 15 compares the three Mises to nominal stress σ/σn ratios, calculated along the plates upper edges for the 

shoulders with constant radius, Mattheck and Grodzinski’s profiles, as shown in figures 13 and 14. Their SCF are, re-
spectively, Kt = 1.46, Kt =1.10, and Kt =1.07. The ratio between the SCF introduced by traditional circular notch root 
and the Grodzinski’s variable radius profile is approximately 1.36, whereas the ratio between the fixed radius and the 
Mattheck SCF is about 1.33.   
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Fig. 15: Kt for the constant radius, Mattheck’s and Grodzinski’s curve for a flat be under pure bending loading 

 
   A more practical example further illustrates these variable notch radii profiles potential. Offshore structures, for 

instance, FPSO and semisubmersible platforms, contain innumerable plate–like components with openings, frequently 
used to reinforce girders and other structural members. An inspection window cut-out on a steel plate may be used as a 
good example of such components. This hole concentrates stresses around its corners, from where fatigue cracks can 
depart and eventually lead the structure to ruin. Keeping this in mind, the designer is challenged to specify an adequate 
geometry to reduce the stress concentration there. In order to illustrate the behavior of this discontinuity, figure 16 
shows a generic example of an inspection window cutout on a plate subjected to a generic constant remote pure tension 
load.         

 

 
Fig. 16: Example of an inspection window cutout subject to pure tension loading  

 
The corners of this inspection window may be smoothed out by a circular fillet or by a variable radius curve, follow-

ing, e.g., Mattheck’s receipt, see figure 17. It is important to note that a spline is adjusted to Mattheck’s points, to 
smooth out the corner profile.  

 

   Fig. 17: Comparison between Mattheck and Grodzinski’s smoothing curves 
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Fig. 18: von Mises stress plot for Mattheck (a) and Grodzinski’s (b) geometry for an illustrative inspection window 

subjected to pure tension loading 
 

The Mises stress around the inspection window cutout for both the constant and variable radius were extracted form 
the finite element model analysis results and are plotted in the same chart, to aid the comparison between them. The 
stress calculation starts in the node indicated in figure 19 and proceeds counterclockwise along the cutout edge. The 
stress reduction obtained by the variable curve is approximately 19% lower than the obtained by the constant one. 

 

 
Fig. 19: Example of an inspection window cutout subject to pure tension loading  

 
The purpose of this example is to enhance the considerable SCF reduction that can be achieved with such little ef-

fort. It is important to point out, though, that this is not the optimum solution for this problem. It is rather an improved 
solution based on heuristic geometrical models. However, this methodology is quite useful for those who need a quick 
and efficient solution to improve the geometry and minimize the stress concentration problem. For instance, this geo-
metrical improvement could be easily employed in the early stages of the component design, and also when reworking 
an existing one by reshaping its geometry to a more suitable profile in order to considerably extend its fatigue life. 
Moreover, it may also be used to remove highly stressed material, in which fatigue damage may have accumulated.     

However, if the designer wants to obtain the optimum solution for the root profile (the “best” curve that uniforms 
the tangential stress and, consequently, minimizes the stress concentration,) he/she should use an optimization shape 
procedure, such as the gradientless algorithm, see for example, Heller et al. (1999) and Waldman and Heller (2000).  

 
Fig. 20: Gradientless shape optimization method in a loaded plate. Waldman and Heller (Modified)    
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To summarize, the gradientless method seeks a constant boundary tangential stress by iteratively moving the fillet 
curve boundary nodes an amount proportional to the tangential stress obtained in a previous analysis, until the uniform 
tangential stress along the curvature is achieved. This methodology basically follows the same rule that Mattheck pro-
posed: add material where the stress is high, and remove it where the stress is low.  

 
3. CONCLUSIONS 

 
Fatigue is one of the most common fracture mechanisms that may occur during the life time of structural compo-

nents subjected to cycling loading. Fatigue failures initiate at the spot where the stress is higher, that is, almost always at 
notch roots, where the nominal stress is highly increased by their geometrical discontinuities. Fortunately, there are effi-
cient ways of reducing such stress concentration by smoothing out sharp notches. The notch may be smooth out by find-
ing a geometry that seeks a uniform tangential stress along its root profile. On the one hand, this geometry may be much 
improved by simple curves such as those proposed by Mattheck and Grodzinski, which do not result in the optimum so-
lution for this problem, but nevertheless result in much smaller stress concentration effects. The stress reduction may 
result in a significant increase in the fatigue life of the component and, consequently, in the substantial reduction of the 
costs of repair or replacement of damaged and fractured components, providing customers with a reliable product at the 
lowest cost possible. 
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