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Abstract. Curved ducts are present in many engineering systems, eg in heat exchangers and central air 

conditioning equipment. Relevant information for the design of these systems are the pressure drop caused by changes 

in flow direction and, in more detailed cases, the identification of the recirculation areas. An important characteristic 

present in the flow with high curvature is the emergence of coriolis forces, and a good numerical scheme should be 

able to ensure the quality of the results in situations like that. UNIFAES scheme has been shown quite robust for 

solving fluid flow problems in critical situations and this paper presents its application to flow with high curvature. 

The proposed case is the two dimensional 180
o
 curved duct with aspect ratio 1.0 and Reynolds number between 100 

and 500. Using the finite volume method, three discretization schemes were considered for comparison: UNIFAES, 

QUICK and 2nd Order Upwind. Numerical results were obtained with an algorithm developed by this first author and 

with FLUENT software.  
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1. INTRODUCTION  
 

 Some fluid flow situations are very common in engineering, which does not mean that this is a simple problem to be 

solved. Curved ducts can be found in a large number of systems like industrial piping, air conditioning distribution, 

refrigeration equipment, heat transfer devices, etc., and the importance of knowing all aspects of the flow in this kind of 

geometry is evident.  

 Curved ducts are geometrically simple and relatively easy to be molded and constructed. Curved ducts include 

helically coiled, spiraled, bended ducts with 90
o
 or 180

o
, wavy pipes, etc. with circular or non circular cross section. Of 

course, circular cross section should be the most common configuration found in industrial equipment but even in this 

simplest configuration the flow behavior is not simple. The curved geometry provides to the fluid flow some peculiar 

characteristics that are consequences of coriolis force that raises from the high curvature. Tsai and Sheu (2006) 

comment that in curved ducts, centrifugal and viscous instabilities may coexist and interact and these interactions has 

high influence in the secondary flow. Gauthier et al (2001) using laser technique visualization found flow instabilities in 

small aspect ratio ducts, 1/3<Rc/D<1/40, when Reynolds number ranges from 130<Re<340, which is a very low value 

considering industrial devices. 
 Today numerical simulation is a very important tool to analyze fluid flow structures due to its versatility, good 

results, financial costs compared to experimental models and quick engineering results. 

 

2. PROBLEM GEOMETRY, EQUATIONS AND BOUNDARY CONDITIONS 
 

The problem geometry is described in Fig. 1. It consists in an 180o curved duct with a slab cross section. The region 

of interest is located near the bend where recirculation, flow instabilities and the centrifugal forces are present. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Geometry and boundary conditions. 
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 The dimension L should be large enough to guarantee that inlet and outlet boundary conditions will not disturb the 

test section. Sugiyama and Hitomi (2005), when studying the flow inside a curved duct with circular cross section, 

Reynolds number 60000 and aspect ratio relation Rc/D=2,0 suggest that Linlet=100D is enough to guarantee fully 

developed turbulent flow and Loutlet=40D could be considered to save computational time. Ali Ali (2008), who covered 

a wide range of Reynolds number 56700<Re<10
5
 and aspect ratio number 0,65<Rc/D<3,357 using a rectangular cross 

section 180
o
 curved duct using FLUENT code with turbulence models, uses L=4D and L=5D for higher and smaller 

aspect ratios for numerical computations. Wojtkowiak and Popiel (2000) performed an experimental investigation of the 

pressure drop in a adiabatic wavy pipe considering L/D=39,7. 

In the present work the following geometrical ratios are considered: The aspect ratio is Rc/D=1,0; the inlet and 

outlet relative dimensions are. Linlet/D=4 and  Loutlet/D=20. The Reynolds number varies between 100 and 500. The 

Poiseuille fully developed profile is adopted at the inlet, and homogeneous Newman conditions are assumed at the 

outlet. The Dean number, defined as a relation between the aspect ratio and Reynolds number, for this problem was 

considered to range from 70.71 to 353.55. 

 

cR

D
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To solve fluid flow problems involving curved geometries an interesting procedure is the transformed coordinate 

idea. It can be done if the governing equations are written in generalized coordinates form and solved in a transformed 

plane. The governing equations are the incompressible two-dimensional Navier-Stokes and the continuity equations 

written in generalized coordinates. 
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Navier stokes η direction 

( ) ( ) ( ) ( )
∂

∂ξ
ρ

∂

∂η
ρ

∂

∂ξ

µ ∂

∂ξ

∂

∂η

∂

∂η

µ ∂

∂ξ

∂

∂η

∂

∂ξ

∂

∂η
~ ~uv vv

J
q

v
q

v

J
q

v
q

v
f p f p g Jy+ = +



















 + +



















 − +









 +11 12 21 22 12 22

                                (3b) 

where: 

ξ, η are generalized coordinates  

J is the transform Jacobian 

qij are transform coefficients 

u,v are cartesian velocities 

vu ~,~
 are covariant base velocities 

 

Equations (2) and (3) are solved for u, v and p in a rectangular, equally spaced transformed plane ξ, η and the 

geometric relations between physical and transformed planes are given by Jacobian J and qij coefficients. The use of 

generalized coordinates provides some positive aspects such as the transformed plane simplicity and easy to 

numerically calculate ∂/∂ξ, ∂/∂η terms in flow equations. A simple geometric correspondence between physical and 

transformed domains and velocities correspondence between cartesian and covariant base vector (e(1)e(2)) parallel ξ, η 

coordinate system can be seen in figure 2 where a structured grid is used to physical domain discretization. The key 

points ABCD are used to grid generation design. 
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Figure 2. Physical and transformed domain correspondence and covariant base vector 

 

3. NUMERICAL METHOD  
 

The Finite Volume method was used for the numerical discretization of the flow equations. 

For the numerical simulations two different codes were considered: the program FLOW, developed by, Vilela 

(2001) and the program FLUENT, a commercial simulation software incorporated by ANSYS. Program FLOW uses 

generalized coordinate with covariant velocities bases, velocity and pressure with non-staggered grid arrangement and 

three interpolation schemes: UNIFAES, originally presented by Figueiredo (1997), QUICK and the 2nd Order Upwind, 

both presented by Leonard (1979 and 1988). FLUENT code were uses QUICK and the 2nd Order Upwind schemes. 

Both codes uses the SIMPLE technique for the velocity-pressure coupling. The linear system of equations at each 

iteration is solved using the traditional TDMA (Tri-Diagonal Matrix Algorithm) in FLOW code and an AMG 

(Algebraic Multi Grid) technique in FLUENT code. 

The grid was generated using an algebraic method to provide an organized and regular distribution, as can be seen in 

detail in figure 3. 

 

     
Figure 3. Typical grid arrangement at straight and curved sections 

 

Table 2. Grid configurations used in the numerical simulations with FLOW and FLUENT codes. 

 
 Inlet section Curved section Outlet section Linlet Loutlet 

FLUENT 100 div in x direction 

150 div in y direction 
100 div in θθθθ direction 

150 div in R direction 

300 div in x direction 

150 div in y direction 

0,4 2,0 

FLOW grid#1 30 div in x direction 

90 div in y direction 
30 div in θθθθ direction 

90 div in R direction 

60 div in x direction 

90 div in y direction 

0,4 2,0 

FLOW grid#2 100 div in x direction 

150 div in y direction 
100 div in θθθθ direction 

150 div in R direction 

300 div in x direction 

150 div in y direction 

0,4 2,0 

 

The three discretization schemes considered here employ up to five nodes on each direction, two in each side of the 

central node. Indeed, they were all proposed as consequence of the well known limitations of the simpler schemes with 

three nodes on each direction. For the nodes close to the walls, the larger computation molecules require special 

considerations since there may be no pair of nodes upwind, as required by the three schemes. UNIFAES has a proper 

solution for this problem. In the cases of QUICK and Second Order Upwind Schemes, the central differencing scheme 

was adopted. 

 

4. RESULTS 

 
Figure 4 shows the velocity profiles at three different sections of the bend: at 0

o
 (entrance), at 90

o
 (symmetry) and at 

180
o
 (exit), for Reynolds number 500 using FLOW code with UNIFAES, QUICK and 2

nd
 Order Upwind schemes. 

 

ξ 

η 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

-0.04 0 0.04 0.08 0.12 0.16
"u" velocity

0.2

0.22

0.24

0.26

0.28

0.3

"y
" 

p
o

si
ti
o
n

u (2nd Order Upwind) grid#2

u (QUICK) grid#2

u (UNIFAES) grid#2

u (2nd Order Upwind) grid#1

u (QUICK) grid#1

u (UNIFAES) grid#1

0.2

0.22

0.24

0.26

0.28

0.3

-0.04 0 0.04 0.08 0.12 0.16

θ=0ο

Re=500
 "u" velocity

-0.04 -0.03 -0.02 -0.01 0
"v" velocity

0.2

0.22

0.24

0.26

0.28

0.3

"y
" 

p
o

s
it
io

n

v (2nd Order Upwind) grid#2

v (QUICK) grid#2

v (UNIFAES) grid#2

v (2nd Order Upwind) grid#1

v (QUICK) grid#1

v (UNIFAES) grid#1

-0.04 -0.03 -0.02 -0.01 0

0.2

0.22

0.24

0.26

0.28

0.3

θ=0ο

Re=500
 "v" velocity

 

0.44 0.48 0.52 0.56
"x" position

0

0.004

0.008

0.012

0.016

0.02

"u
" 

v
e
lo

c
it
y

0.44 0.48 0.52 0.56

0

0.004

0.008

0.012

0.016

0.02

u (2nd Order Upwind) grid#2

u (QUICK) grid#2

u (UNIFAES) grid#2

u (2nd Order Upwind) grid#1

u (QUICK) grid#1

u (UNIFAES) grid#1

θ=90ο

Re=500
"u" velocity

0.44 0.48 0.52 0.56
"x" position

-0.16

-0.12

-0.08

-0.04

0

"v
" 

v
e
lo

c
it
y

0.44 0.48 0.52 0.56

-0.16

-0.12

-0.08

-0.04

0

v (2nd Order Upwind) grid#2

v (QUICK) grid#2

v (UNIFAES) grid #2

v (2nd Order Upwind) grid#1

v (QUICK) grid#1

v (UNIFAES) grid#1

θ=90ο

Re=500
"v" velocity

 

-0.16 -0.12 -0.08 -0.04 0 0.04
"u" velocity

0

0.02

0.04

0.06

0.08

0.1

"y
" 

p
o

s
it
io

n

-0.16 -0.12 -0.08 -0.04 0 0.04

0

0.02

0.04

0.06

0.08

0.1

u (2nd Order Upwind) grid#2

u (QUICK) grid#2

u (UNIFAES) grid#2

u (2nd Order Upwind) grid#1

u (QUICK) grid#1

u (UNIFAES) grid#1

θ=180ο

Re=500
"u" velocity

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01
"u" velocity

0

0.02

0.04

0.06

0.08

0.1

"y
" 

p
o
s
it
io

n

-0.04 -0.02 0

0

0.02

0.04

0.06

0.08

0.1

v (2nd Order Upwind) grid#2

v (QUICK) grid#2

v (UNIFAES) grid#2

v (2nd Order Upwind) grid#1

v (QUICK) grid#1

v (UNIFAES) grid#1

θ=180ο

Re=500
"v" velocity

 
Figure 4. Velocity profile at 0

o
, 90

o
 and 180

o
. Re=500. 
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Figure 5 shows the streamlines and pressure distribution for various Reynolds number using FLOW and FLUENT 

codes. 

 

 

 

 
 

Figure 5. Streamlines and pressure distribution. Streamlines: Re=100 (A)Flow code UNIFAES scheme, (B) 

FLUENT code QUICK scheme, Re=200 (C) Flow code UNIFAES scheme, (D) FLUENT code QUICK scheme, (E) 

Yambangwai (2008), Re=300 (F) Flow code UNIFAES scheme, (G) FLUENT code QUICK scheme, (H) Yambangwai 

(2008), Re=500 (I)Flow code UNIFAES scheme, (J) FLUENT code QUICK scheme, Pressure distribution: Re=100 

(K)Flow code UNIFAES scheme, (L) FLUENT code QUICK scheme, Re=200 (M) Flow code UNIFAES scheme, (N) 

FLUENT code QUICK scheme, Re=300 (O) Flow code UNIFAES scheme, (P) FLUENT code QUICK scheme, 

Re=500 (Q)Flow code UNIFAES scheme, (R) FLUENT code QUICK scheme, 

 

 

 Two important parameters about curved ducts are the friction factor and the recirculation mapping.  Wojtkowiak 

and Popiel (2000) suggested that the Darcy friction factor wf , should also be applied for wavy pipes. 
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where ∆p is the pressure losses, p2-p1. 

 

Analogously, this friction factor was computed for the present configuration with the results obtained by numerical 

simulations with the FLOW code. Figure 6a, shows the friction factor dependence with Reynolds number for the three 

discretization schemes and figure 6b shows the flow separation and reattachment points.  
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(a)                                                                        (b) 

Figure 6. (a) Friction factor (Adapted from Yambangwai,2008 ), (b) Recirculation mapping. 

 

In order to evaluate and compare numerical stability between UNIFAES, QUICK and 2
nd

 Order Upwind schemes, 

the convergence history provides a panoramic view along numerical solutions. Figure 7 shows the convergence history 

for “u” velocity component and pressure obtained with FLOW code for all performed cases. Velocity component “v” 

shows similar behavior to velocity component “u”. 
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Figure 7. Convergence history - FLOW code. 
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Figure 7 (cont). Convergence history - FLOW code. 

 

 

 It can be seen that for all cases UNIFAES shows to have a smooth behavior and faster convergence. Figure 8, 

shows a typical history convergence graphic for FLUENT code results when convergence is achieved or not. 
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 (a)               (b) 

Figure 8. Convergence history - FLUENT code. (a) Re=100, (b) Re=500 

 

FLUENT code user manual, like many others commercial codes, consider that the solution is converged if the RMS 

monitor error goes under a specified tolerance or if this same monitor does not have considerable changes in time. 

Usually the last case happens when the solution is oscillating. For 100≤Re≤400 the convergence history are very similar 

to presented in Fig. 8a and only for Re=500 oscillating convergence appears just like Fig. 8b. 

  

 

4. CONCLUSION 
 

 Despite having simple geometry and boundary conditions, the U bend duct problem has shown to be a peculiar 

numerical problem to be solved. An extra effort was spent to achieve the numerical convergence, even when using a 

commercial code as FLUENT. Numerical instabilities were observed with FLOW and FLUENT codes, when the 

Reynolds number approach 500.  

However, flow instabilities were observed experimentally by Gauthier et al (2001) when Reynolds number 

approaches 300. Therefore, the instability observed at higher Reynolds numbers is not surprising, and can not be 

considered as numerical instability, since it may be the numerical expression of a physical instability. 

 Three interpolation schemes were used in this comparative paper: QUICK, 2nd Order Upwind and UNIFAES. In 

FLOW code two refinement grid levels were considered. For grid#2, the fine one, all schemes give visually coincident 

results. For grid#1, the coarse one, the results are somewhat different for the three schemes, especially at 90
o
 and 180

o
. 

The coarser results with UNIFAES are shown to be closer to the finer solution than QUICK and 2
nd

 Order Upwind, 

indicating the superior performance of UNIFAES. 

The greater difference found among the schemes was related to the convergence history. At Reynolds 100 up to 400, 

the mass residual and the pressure convergence histories for all schemes are very close, but looking to velocities 

components it’s easy to see that there are some important differences between UNIFAES and the other schemes 

behavior. All schemes shows an initial state of apparent numerical instability characterized by the high amplitude in 

convergence monitor, but UNIFAES shows to early achieve a second stage in convergence characterized by a smooth 

behavior. Even when UNIFAES still remains oscillating with high amplitude, for Reynolds 100, it´s happens when the 

monitor is in a range of 10-8 RMS. When UNIFAES convergence history suddenly stops, behavior observed in 

Reynolds 200 up to 500, it suddenly drops to a level under 10-15 RMS error. 

 Two typical convergence histories are presented for FLUENT. They show that if the numerical convergence is 

smooth, there is an initial stage of high convergence rate followed by a stagnation stage where the residual does not 

drop, even up to 10
4
 iterations,. On the other side if the numerical convergence is not smooth, the convergence monitor 

seems instable and the results seem to be very distant from those found by FLOW code. Again in FLUENT at this 

situation the residual does not drop but remains at very high  RMS error. 

 In the curved duct flow problem, there are two major aspects that can have great influence in numerical 

convergence: the coriolis force that appears with the high curvature flow and the mesh distortion. Related to numerical 

mesh, Xu and Zhang (1999) and Peric (1990) have noticed that SIMPLE and derivatives algorithms have convergence 

problems when the physical mesh becomes geometrically distant from the reference rectangle volume. This could be an 

important contribution to difficulties found in convergence history, but as the SIMPLE and others parameters were the 

same to for all cases, the difference between one and other is the discretization scheme. Based on that information, we 

can say that UNIFAES seems to have a more robust behavior to overcome this geometric issue. Vilela and Figueiredo 

(2002) presented some results that already pointed to this direction when compared various discretization schemes 

solving convective-diffusive problems using orthogonal and non-orthogonal meshes.  
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UNIFAES and 2
nd

 Order Upwind converged for the highest Reynolds number Re=500 but UNIFAES shows to be 

more stable and achieved convergence even using a coarser grid (20 div in y direction). Also, convergence with 

UNIFAES could easily be guaranteed by a minor adjustment of the relaxation factor, while QUICK and 2
nd

 Order 

Upwind could not achieved convergence by this means. 
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