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Abstract. A hybrid finite volume / finite element method was developed a few years ago to solve the radiative transfer
equation. In this method, the radiation intensity is approximated as a linear combination of basis functions, dependent
only on the angular direction. The coefficients of the approximation are unknown functions of the spatial coordinates.
This Galerkin-like approximation is introduced into the radiative transfer equation. Then, this is multiplied by the nth
basis function and integrated over all directions, i.e., over a solid angle of 47z yielding a set of differential equations.
The spatial discretization is carried out using the finite volume method, like in the discrete ordinates and finite volume
methods, transforming the differential equations into algebraic equations. The angular discretization is accomplished
using a methodology similar to that employed in the finite element method. In previous works, the basis functions were
taken as the bilinear basis functions used in the finite element method. In the present work, spherical triangular basis
functions are employed, and the results are compared with those computed using bilinear basis functions, as well as
with results reported in the literature using other methods. Two-dimensional enclosures containing an emitting-
absorbing, non-scattering, grey medium with prescribed temperature or in radiative equilibrium are considered. It is
shown that the spherical triangular elements yield results dightly better than those calculated using bilinear elements,
except in the case of optically thick media, where both elements perform similarly. The results of the hybrid method are
less sensitive to the angular discretization than those obtained using the discrete ordinates method.

Keywords: Thermal Radiation, Radiative Transfer Equation, Finite Volume Method, Finite Element Method, Angular
Discretization

1. INTRODUCTION

Thermal radiation is an important heat transfer enod many physical and engineering processes. atiative
transfer equation (RTE) describes the propagatioadiation in a participating medium that emitssarbs and scatters
radiation. This equation is difficult to solve, &ds an integro-differential equation, and invadveeven independent
variables in the most general case, since thetradiatensity may depend on the spatial coordmeaaegular direction,
wavelength and time. Many numerical methods haes lokeveloped to solve the RTE, as described in Btd@€03).

A hybrid finite volume / finite element method, eefed to as HYDRA (HYbrid Discretization for RAdian) was
developed in Coelho (2005a, 2005b) to solve the .RITte fundamentals of the method for one-dimensipreblems
are reported in Coelho (2005a) while the extensdomultidimensional problems in Cartesian coordisas addressed
in Coelho (2005b). In this method, the radiatioteirsity is approximated as a linear combinatiomadis functions,
dependent only on the angular direction, while toefficients of the approximation are unknown fimes of the
spatial coordinates. The key difference betwees tiethod and the well known discrete ordinates (D@t finite
volume methods is that while in these methods #ukation intensity is constant over a solid angtethe present
method the radiation intensity is a continuouslyyirag function, because the basis functions vamtiooiously within
the control angle elements. Further developmentse weported in Coelho and Aelenei (2008), who ubéagh
resolution discretization schemes for the spatistrdtization, and in Coelho (2006), who compareel accuracy of
bilinear and biquadratic elements for the angulacrétization, and of the STEP and CLAM schemestlier spatial
discretization. Recently, Coelho (2008) extendesl tiethod to non-grey media, while Coelho (2009)liagdpthe
method to enclosures of complex geometry.

Two other works based on a finite element apprdacithe angular discretization were recently présgnBecker
et al. (2010) solved the even-parity form of the RTEngsa finite element approximation for both the spatnd the
angular discretizations. The angular domain wasrelized using triangular linear basis functionsidier et al.
(2008) approximated the radiation intensity by aste product where the coefficients (unknowns) ratgtiplied by
piecewise linear basis functions dependent on phaéiad location and piecewise constant basis fonstdependent on
the direction. They employed a least-squares aphraaing weight functions that depend also on patial location
and direction, and proposed a sparse tensor pregpcboximation to reduce the number of degreesesidom and so
decrease the computational requirements. The andoiaain was discretized into triangular elemeAtsther distinct
feature of their work is the use of wavelet firllement functions rather than standard finite elgme
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In the present work, triangular spherical elemearts used along with the HYDRA method, and compavit
bilinear elements formerly employed. Radiative $fen is calculated for two-dimensional enclosurestaining an
emitting-absorbing, non-scattering, grey medium.

2. MATHEMATICAL FORMULATION

The RTE in a non-grey medium may be written as (&402003):

S, (1,9)= 8, 1,(1.9)+ 4, 16, () + 22 [, 1, 6.8) 0, (65 o w
4T dam

wherel is the radiation intensity,, the Planck functionp the phase functio the solid angley;, the position vectois
the unit vector along the direction of propagatidmadiation,x the absorption coefficients, the scattering coefficient,
[ = Kk + g5 the extinction coefficient, and subscripthe wavenumber. This subscript will be droppednfrmow on, as
well as the last term of the right hand side, siag®n-scattering grey medium is considered inptiesent work. The
direction of propagatios does not depend on the spatial coordinates. Térerghe RTE may be written as

Ol(s1(r,s)=-«1(r,s)+x1,(r) @)

The boundary condition for an opaque, diffuse amry gurface is given by (Modest, 2003)

1s)= 1)+ 2 0 10,8) (8] ae ©

where e andp are the emissivity and the reflectivity of thefage, respectivelyy is the outward unit vector normal to
the wall, and subscript refers to a wall. Equation (2) is independenthaf ¢oordinate system. Hence, integrating both
left and right-hand side terms over an arbitramta volume centred at grid node P, whose volusé and applying
the Gauss divergence theorem to the term on thedefl side, the following equation is obtained

IA sln1(r,5)dA =~k V Ip(s)+ 4V Iy p (4)

Since the outer unit vector normal to a cell fagajoes not change along that face, Eq. (4) mayriitewas
F
> sld¢ 1¢(s)Ar =4V Ip(s)+ &V Ipp (5)
f=1

where subscript denotes a cell face, whose areddsandF is the total number of cell faces of the controlume
under consideration. The mean radiation intenditged facef along directiors was denoted b¥(s). The symboln;
represents the outer unit vector normal to cek fac

In the present method, the spatial and angular rdkgee of the radiation intensity is split accogdiio the
following approximation:

1(.9=31"0)anld ©

m=1

In this approximationg(s) are linearly independent functions that consgittiie basis of a space of dimenshn
These basis functions depend on the direction @bgugation of radiatiors, i.e., on the polar and azimuthal angles that
define directions. The functiond™(r), which depend only on the spatial coordinates, mknowns. Substituting Eq.
(6) into Eq. (5), multiplying both sides of lg(s), with 1< n < N, and integrating over all directions, the follogiget

of N simultaneous equations is obtained:

F N N
> Ang Y ITJ-M Sg(s)als)da=-«Vv > 1T o @(s) @ (s) dQ +
f=1 m=1 m=1

A J'M @ (s)da n=12--N

)
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where | ?1 is the mean value of functiohm(r) at cell facef. A spatial discretization scheme is required dmpute
the radiation intensity at the faces of a contwlme as a function of the radiation intensitytat spatial grid nodes,
ie, | ?” must be expressed in terms &‘ The step scheme, which takes the radiation iitteasa cell face equal to

the radiation intensity at the upstream grid naases employed in the present work.

The basis functionsg(s), are defined according to criteria employed ia fimite element method. Theh basis
function is equal to 1 at theth angular node and equal to 0 at all other anquddes. The restriction of functian(s)
to an angular element is referred to as shapeimeind denoted by. The basis functions are defined element by
element and have been assumed in past work a®diliwithin every angular element (see Fig. 1a). Uike of
biguadratic basis functions was addressed in Cq2iD06).

In the present work, spherical triangular elemevese used, as shown in Fig. 1b. The basis functizare defined
following the method described in Beclatral. (2010). First, the sphere is divided into solgjlas in the same way as
in the Ty quadrature (Turghooet al., 1995). In this method, the equilateral trianglgose vertices are (1, 0, 0), (0, 1,
0) and (0, 0, 1) is mapped onto the first octana aiit radius sphere using the relat®on r/|r|, wherer stands for a
point on the trianglends denotes the position vector of a mapped pointhensphere. The triangle is tessellated into
smaller identical triangles by dividing each sid®iN equally spaced segments and connecting the pibiatsesult
from that division by lines parallel to the sidestlee original triangle. The projection of the vees of every small
triangle onto the surface of the sphere definesspdl triangles on the surface of the sphere. S#cthe basis
functions are defined by parameterization of ttanat triangles (see details in Beckeal., 2010).

In the case of triangular elements, different aagubde numbers have been assigned to solid aimgtéfferent
octants. It was found that this option yields mapeurate results than using the same node numbetkd angular
nodes lying on th& = 0 andy = 0 planes, which share different octants.

The governing equations are solved iteratively. Nhsimultaneous equations for a spatial grid nodesateed
using the Gauss elimination method adapted to baatdces, and the spatial control volumes areads#tequentially in
every iteration.

Two important quantities in thermal radiation ane heat flux, which allows the calculation of tlagliative energy
transferred to a boundary of the domain, and th&émt radiative, which allows the evaluation of flocal radiative
energy source. The incident radiation at a gridenigcevaluated as follows

G=[ 1.9 i "0, anle)do ®

The radiative heat flux at a surface normal todion k, denoted by the subscriptek, is given by

N
Gk = [ gy (1B ¢] 10 ,5) 02 =217 [0 [50B] am(5) a0 ©)
z
Angular
nodes
Control angle
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X y X y
@) (b)

Figure 1. Angular discretization by means of béing) and triangular (b) elements.
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3. RESULTSAND DISCUSSION

Two test cases have been selected to compareftbeedt angular discretization schemes describaberprevious
section, and to assess their accuracy. Analytiohltisns and other numerical predictions are alsesented for
comparison purposes. The angular discretizationcsased out using spherical triangular elemenfindd according
to the Ty quadrature (Thurgood al., 1995) when the HYDRA method and triangular eletsavere used. When the
HYDRA method and bilinear elements were employée, angular discretization was defined by sphetlicals of
constant latitude and spherical lines of constangikude, yieldingNg<N,, solid angles per octant. The results of
calculations performed using the discrete ordinateshod (DOM), Fiveland (1984), along with the stmieme and
the S level symmetric quadrature satisfying sequentdd snoments (Fiveland, 1991) are presented for casgra
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Figure 2. Normalized incident heat flux along tletbm wall (a) and incident radiation along thetioad symmetry
plane (b) of the enclosure of test case 1 for ditapghickness of 0.1.
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purposes. The results reported by Beakeat. (2010) using two different methods based on tlemearity formulation
of the RTE are also presented. In the first metheférred to as EP-DOM (Kodd al., 1995), the DOM was used. In
the second one, referred to as EP-FEM-SAFE, thte falement method was employed for both spatidl amgular
discretization.
The total number of quadrature points, correspandtindirections along which the discretized RTEad$ved, in
the DOM and EP-DOM is 24, 48 and 80 for the § and $ approximations, respectively. In the HYDRA methtitd
total number of angular elements is equal to 32,128 and 200 foNy= N,= 2, 3, 4 and 5, respectively, in the case of
bilinear elements, and for,TTs, T4 and Ts, respectively, in the case of triangular elemehtsthe EP-FEM-SAFE
method, the total number of angular elements i3 3% 72, 128 and 200 for SAFE 18, SAFE 38, SAFE6& SAFE
108, respectively. The number following SAFE desdtee number of angular nodes of the angular digat®n. In
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Figure 3. Normalized incident heat flux along tleetbm wall (a) and incident radiation along thetioad symmetry

plane (b) of the enclosure of test case 1 for dicaighickness of 1.
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practice, only directions and angular elements@asad to positive (or negative)directions need to be considered in
two-dimensional problems.

In the first test case, a two-dimensional squardosure of side length is considered. The walls are black and
cold, the medium is grey and emits and absorbs aitmiform unity emissive power. Three differentues of the
optical thickness of the medium, based on the lgidgth, have been considered, namely 0.1, 1 andH®.analytical
solution is available in Fiveland (1984). A uniforgnid with 20x20 control volumes was used, andedéht angular
discretization schemes and refinements were emgloiee predicted incident heat flug) (on the bottom wall and the
incident radiation @) at the vertical symmetry plane of the enclosue shown in Figs. 2, 3 and 4 for an optical

thickness of 0.1, 1 and 10, respectively. The mean square (rms) of these quantities is giverainle 1.
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Figure 4. Normalized incident heat flux along tleetbm wall (a) and incident radiation along thetioad symmetry
plane (b) of the enclosure of test case 1 for ditapghickness of 10.
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The results show that, in all cases, the predistene in good agreement with the analytical satutithe angular
refinement often does not improve the solution emcy of the HYDRA, DOM, EP-DOM and EP-FEM-SAFE
methods. Although this may seem surprising, it &hdne noticed that the solution accuracy is infleesh by both the
spatial and the angular discretization, and thatdirors associated to these two procedures tendnpensate each
other (Raithby, 1999, Coelho, 2002). Thereforeinhe§) the angular discretization while keeping teme spatial
discretization, or refining the spatial discretiaatwhile maintaining the angular discretizatiomed not necessarily
improve the solution accuracy. The accuracy is oekpected to increase if both the angular and thetiad
discretization are refined.

In the case of an optical thickness equal to G4 ,HYDRA solution using triangular elements progidee most
accurate predictions of the incident heat flux, the results obtained using bilinear elements ése satisfactory,
except for the coarsest angular discretization,clvhjields a too flafg profile. There is no significant difference
between the triangular and the bilinear elementfaasas the incident radiation is concerned. In thse of an
intermediate or optically thick medium, i.e., fan aptical thickness of 1 or 10, respectively, théDHRA predictions
obtained using triangular or bilinear elements singilar. A marginally better accuracy was obtaifiedthe incident
heat flux in the case of triangular elements andptital thickness of unity.

The DOM results are more influenced by the angdiseretization than the HYDRA ones, except for dipgically
thick medium, where both the HYDRA and the DOM tesare very similar. This is an expected restifice the
HYDRA and the DOM differ only in the angular disteation. It turns out that in the case of an agific thick
medium, the transmissivity of the medium is smaiid the local radiation intensity tends to the kibacly radiation
intensity, which is uniform in this test case, hesmthe medium is at a uniform temperature. Irctts® of an optically
intermediate or an optically thin medium, the traissivity of the medium is higher, the influence tbé distance
travelled by a radiation medium becomes larger,sandoes the angular discretization. This is misile in the DOM
than in the HYDRA, since the radiation from diffetelirections is more coupled in the second case.

The results reported in Becketral. [2010] using the EP-DOM and EP-FEM-SAFE are giwefable 1, and reveal
that the HYDRA results are more accurate, excepthfe incident radiation and for an optically imediate or thick
medium.

The same two-dimensional square enclosure of sidgthL is considered in test case 2. The walls are black,
except the top one, which is maintained at an eneiggwer of unity. The medium is grey, emits abdabs, and is in
radiative equilibrium. The optical thickness of timedium, based on the side length, is equal to u&si-analytical
solution, referred to as exact, is reported in Giwand Schrenker (1984). A uniform grid with 20x@htrol volumes
was used, and different angular discretization sefseand refinements were employed. The predictaddnt heat flux
(q) on the bottom wall and the incident radiati®) &t the vertical symmetry plane of the enclosugestown in Figs.
5 and 6, respectively. The root mean square (rfnblese quantities is given in Table 2.

Table 1. Root mean square of the incident heatdluthe bottom wall and incident radiation at tleetical symmetry
plane of the square enclosure of test case 1.

Solution method . Angylar_ r=0.1 r=1 r=10
discretization rms(Q) rms@G) rms(@) rmsG) rms(@) rms@G)
T, 0.00060 | 0.00556] 0.00639  0.02841  0.010B1 _ 0.05110
HYDRA — Triangular T, 0.00084 | 0.00569] 0.00986  0.02835 00117  0.05232
elements T, 0.00107 | 000572] 001011 002796 001184  0.05251
T, 0.00114 | 000573] 001011 002808 001183  0.05256
2x2 0.00353| 000522 001735 002460 0.01147  0.05200
HYDRA — Bilinear 3x3 0.00158| 000412 001147 002833 0.01140  0.0550
elements 4xd 0.00137| 000462 001082 002849  0.01137  0.05p57
5x5 0.00130| 000496  0.01058  0.02837 0.01137  0.05p58
S, 0.00102 | 0.00385 0.00949  0.029680  0.00804  0.04485
DOM S 0.00044 | 000473 000578 002882  0.01001 _ 0.05082
S 0.00205 | 001912 001360  0.02306  0.01004  0.05206
S, 0.01088 | 0.01644] 005286 013579  0.10186  0.06440
EP'DO'\{'Q(gSO)Ch etal.,——¢g 0.00965 | 0.02457| 0.02238 003982  0.106D7  0.03444
S, 0.00805 | 0.03724] 002756 009387  0.10809  0.02012
SAFE18 | 000963| 008114 003819 0.17569 009304 340D
EP-FEM-SAFE SAFE 38 | 0.00499| 003071 001858  0.06889 011488 27a®
(Becker et al., 2010)| SAFE 66 | 0.00664| 002834 001922  0.02429 012252 2463
SAFE102 | 0.00686] 004319 002433 002080  0.12594 02429
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Figure 5. Normalized incident heat flux along tlegtbm wall of the enclosure of test case 2.
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Figure 6. Normalized incident radiation along tleetical symmetry plane of the enclosure of tese&as
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The HYDRA predictions of the incident heat flux éime bottom wall of the enclosure exhibit a phydical
unrealistic solution for the bilinear elements dhd coarser angular discretizations @hd T), which is due to ray
effects (Chakt al. 1993, Raithby, 1999, Coelho, 2002), while theesfwlal triangular elements show realistic solutjons
but poor accuracy. The results are better for farggular discretizations gTand T), and the differences between the
solutions obtained using the triangular and theddr elements become marginal. The correspond®iyl Predictions
are quite poor for S&and 3, as a consequence of the ray effects. T®oition is much better, but the profile is toat fl
in the middle of the bottom wall. The ray effect® aignificantly mitigated using the modified diste ordinates
method, MDOM (Ramankutty and Crosbie, 1999, Coel®2). The predictions of the incident radiatidisplayed in
Fig. 6, are in good agreement with the exact onalfanethods, but the MDOM outperforms again ttieo methods.

Table 2. Root mean square of the incident heatdluthe bottom wall and incident radiation at tleetical symmetry
plane of the square enclosure of test case 2.

. Angular
Solution method discregtization rms() rms@G)
T, 0.01963 0.19479
HYDRA — Triangular LE 0.01423 0.14525
elements Ty 0.01528 0.14070
Ts 0.01516 0.14075
2x2 0.02051 0.20772
HYDRA - Bilinear 3x3 0.01931 0.15299
elements 4x4 0.01599 0.14612
5x5 0.01550 0.14274
S, 0.03772 0.15978
DOM Ss 0.02183 0.19648
S 0.00947 0.11275
S, 0.00397 0.05966
MDOM S 0.00094 0.04254
S 0.00091 0.02278
S, 0.14479 0.25752
EP'DO'\{'Q(SE:’)C*‘ etal,——¢ 0.06472 | 0.09945
S 0.04343 0.11552
SAFE 18 0.07181 0.18534
EP-FEM-SAFE SAFE 38 0.03732 0.1203(d
(Becker et al., 2010)| SAFE 66 0.02665 0.11223
SAFE 102 0.02234 0.10979

4. CONCLUSIONS

A hybrid finite volume / finite element method wased to solve the radiative transfer equation. fdtkation
intensity is approximated as a linear combinatibmasis functions, dependent only on the angulegction. In the
present work, spherical triangular elements weesl @s basis functions for the angular discretinafidne results were
compared with those obtained using bilinear elesjamhich had already been employed in previous syoakd with
results determined using the standard and moddisdrete ordinates method. Predictions reportethénliterature
based on the even parity formulation of the radéatransfer equation and using either the disaadmates method or
a finite element method for angular discretizatiegre also used for comparison purposes. Radiataresfer in two-
dimensional enclosures containing a grey emittingeabing medium was considered to evaluate theracgwf the
methods, taking the analytical or quasi-analytealtion as reference. The influence of the optibakness of the
medium was also investigated.

The results show that the hybrid method using sphletriangular elements as basis functions for dngular
discretization performs better than the same metlsinly bilinear elements for optically thin or agatly intermediate
media. In the case of optically thick media, the tinds of elements perform similarly. The discretdinates method
is more sensitive to the angular refinement foritheestigated test cases. When ray effects areptethe triangular
elements perform better than the bilinear elemants the discrete ordinates method, in the caselafively coarse
angular discretization. However, the hybrid meti®dnable to achieve the high accuracy exhibitedhgymodified
discrete ordinates method.
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