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Abstract. A hybrid finite volume / finite element method was developed a few years ago to solve the radiative transfer 
equation. In this method, the radiation intensity is approximated as a linear combination of basis functions, dependent 
only on the angular direction. The coefficients of the approximation are unknown functions of the spatial coordinates. 
This Galerkin-like approximation is introduced into the radiative transfer equation. Then, this is multiplied by the nth 
basis function and integrated over all directions, i.e., over a solid angle of 4π, yielding a set of differential equations. 
The spatial discretization is carried out using the finite volume method, like in the discrete ordinates and finite volume 
methods, transforming the differential equations into algebraic equations. The angular discretization is accomplished 
using a methodology similar to that employed in the finite element method. In previous works, the basis functions were 
taken as the bilinear basis functions used in the finite element method. In the present work, spherical triangular basis 
functions are employed, and the results are compared with those computed using bilinear basis functions, as well as 
with results reported in the literature using other methods. Two-dimensional enclosures containing an emitting-
absorbing, non-scattering, grey medium with prescribed temperature or in radiative equilibrium are considered. It is 
shown that the spherical triangular elements yield results slightly better than those calculated using bilinear elements, 
except in the case of optically thick media, where both elements perform similarly. The results of the hybrid method are 
less sensitive to the angular discretization than those obtained using the discrete ordinates method. 
 
Keywords: Thermal Radiation, Radiative Transfer Equation, Finite Volume Method, Finite Element Method, Angular 
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1. INTRODUCTION  
 

Thermal radiation is an important heat transfer mode in many physical and engineering processes. The radiative 
transfer equation (RTE) describes the propagation of radiation in a participating medium that emits, absorbs and scatters 
radiation. This equation is difficult to solve, as it is an integro-differential equation, and involves seven independent 
variables in the most general case, since the radiation intensity may depend on the spatial coordinates, angular direction, 
wavelength and time. Many numerical methods have been developed to solve the RTE, as described in Modest (2003). 

A hybrid finite volume / finite element method, referred to as HYDRA (HYbrid Discretization for RAdiation) was 
developed in Coelho (2005a, 2005b) to solve the RTE. The fundamentals of the method for one-dimensional problems 
are reported in Coelho (2005a) while the extension to multidimensional problems in Cartesian coordinates is addressed 
in Coelho (2005b). In this method, the radiation intensity is approximated as a linear combination of basis functions, 
dependent only on the angular direction, while the coefficients of the approximation are unknown functions of the 
spatial coordinates. The key difference between this method and the well known discrete ordinates (DOM) and finite 
volume methods is that while in these methods the radiation intensity is constant over a solid angle, in the present 
method the radiation intensity is a continuously varying function, because the basis functions vary continuously within 
the control angle elements. Further developments were reported in Coelho and Aelenei (2008), who used high 
resolution discretization schemes for the spatial discretization, and in Coelho (2006), who compared the accuracy of 
bilinear and biquadratic elements for the angular discretization, and of the STEP and CLAM schemes for the spatial 
discretization. Recently, Coelho (2008) extended the method to non-grey media, while Coelho (2009) applied the 
method to enclosures of complex geometry.  

Two other works based on a finite element approach for the angular discretization were recently presented. Becker 
et al. (2010) solved the even-parity form of the RTE using a finite element approximation for both the spatial and the 
angular discretizations. The angular domain was discretized using triangular linear basis functions. Widmer et al. 
(2008) approximated the radiation intensity by a tensor product where the coefficients (unknowns) are multiplied by 
piecewise linear basis functions dependent on the spatial location and piecewise constant basis functions dependent on 
the direction. They employed a least-squares approach using weight functions that depend also on the spatial location 
and direction, and proposed a sparse tensor product approximation to reduce the number of degrees of freedom and so 
decrease the computational requirements. The angular domain was discretized into triangular elements. Another distinct 
feature of their work is the use of wavelet finite element functions rather than standard finite elements. 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 

In the present work, triangular spherical elements are used along with the HYDRA method, and compared with 
bilinear elements formerly employed. Radiative transfer is calculated for two-dimensional enclosures containing an 
emitting-absorbing, non-scattering, grey medium.  
 
2. MATHEMATICAL FORMULATION 

 
The RTE in a non-grey medium may be written as (Modest, 2003): 
 

( ) ( ) ( ) ( ) ( ) Ω′′Φ′++−=∇ ∫⋅ dIIII s
b sssrrsrsrs ,,

4
,,

4 νπ ν
ν

ννννν π
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where I is the radiation intensity, Ibν the Planck function, Φ the phase function, Ω the solid angle, r the position vector, s 
the unit vector along the direction of propagation of radiation, κ the absorption coefficient, σs the scattering coefficient, 
β = κ + σs the extinction coefficient, and subscript ν the wavenumber. This subscript will be dropped from now on, as 
well as the last term of the right hand side, since a non-scattering grey medium is considered in the present work. The 
direction of propagation s does not depend on the spatial coordinates. Therefore, the RTE may be written as 

 
( )( ) ( ) ( )rsrsrs bIII κκ +−=∇ ⋅ ,,  (2)  

 
The boundary condition for an opaque, diffuse and grey surface is given by (Modest, 2003)  
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where ε and ρ are the emissivity and the reflectivity of the surface, respectively, n is the outward unit vector normal to 
the wall, and subscript w refers to a wall. Equation (2) is independent of the coordinate system. Hence, integrating both 
left and right-hand side terms over an arbitrary control volume centred at grid node P, whose volume is V, and applying 
the Gauss divergence theorem to the term on the left hand side, the following equation is obtained 
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Since the outer unit vector normal to a cell face, n, does not change along that face, Eq. (4) may be written as 
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where subscript f denotes a cell face, whose area is Af, and F is the total number of cell faces of the control volume 
under consideration. The mean radiation intensity at cell face f along direction s was denoted by If(s). The symbol nf 
represents the outer unit vector normal to cell face f. 

In the present method, the spatial and angular dependence of the radiation intensity is split according to the 
following approximation: 
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In this approximation, φm(s) are linearly independent functions that constitute the basis of a space of dimension N. 
These basis functions depend on the direction of propagation of radiation, s, i.e., on the polar and azimuthal angles that 
define direction s.  The functions Im(r), which depend only on the spatial coordinates, are unknowns. Substituting Eq. 
(6) into Eq. (5), multiplying both sides of by φn(s), with 1 ≤ n ≤ N, and integrating over all directions, the following set 
of N simultaneous equations is obtained: 
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where m
fI  is the mean value of function ( )rmI  at cell face f.  A spatial discretization scheme is required to compute 

the radiation intensity at the faces of a control volume as a function of the radiation intensity at the spatial grid nodes, 

i.e, m
fI  must be expressed in terms of m

PI . The step scheme, which takes the radiation intensity at a cell face equal to 

the radiation intensity at the upstream grid node, was employed in the present work.  
The basis functions, φn(s), are defined according to criteria employed in the finite element method. The nth basis 

function is equal to 1 at the nth angular node and equal to 0 at all other angular nodes. The restriction of function φ (s) 
to an angular element is referred to as shape function and denoted by ψ. The basis functions are defined element by 
element and have been assumed in past work as bilinear within every angular element (see Fig. 1a). The use of 
biquadratic basis functions was addressed in Coelho (2006).  

In the present work, spherical triangular elements were used, as shown in Fig. 1b. The basis functions were defined 
following the method described in Becker et al. (2010). First, the sphere is divided into solid angles in the same way as 
in the TN quadrature (Turghood et al., 1995). In this method, the equilateral triangle whose vertices are (1, 0, 0), (0, 1, 
0) and (0, 0, 1) is mapped onto the first octant of a unit radius sphere using the relation s = r/|r|, where r stands for a 
point on the triangle and s denotes the position vector of a mapped point on the sphere. The triangle is tessellated into 
smaller identical triangles by dividing each side into N equally spaced segments and connecting the points that result 
from that division by lines parallel to the sides of the original triangle. The projection of the vertices of every small 
triangle onto the surface of the sphere defines spherical triangles on the surface of the sphere. Second, the basis 
functions are defined by parameterization of the planar triangles (see details in Becker et al., 2010). 

In the case of triangular elements, different angular node numbers have been assigned to solid angles in different 
octants. It was found that this option yields more accurate results than using the same node numbers for the angular 
nodes lying on the x = 0 and y = 0 planes, which share different octants. 

The governing equations are solved iteratively. The N simultaneous equations for a spatial grid node are solved 
using the Gauss elimination method adapted to band matrices, and the spatial control volumes are visited sequentially in 
every iteration. 

Two important quantities in thermal radiation are the heat flux, which allows the calculation of the radiative energy 
transferred to a boundary of the domain, and the incident radiative, which allows the evaluation of the local radiative 
energy source. The incident radiation at a grid node is evaluated as follows 
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The radiative heat flux at a surface normal to direction  k, denoted by the subscripts w,k, is given by 
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Figure 1. Angular discretization by means of bilinear (a) and triangular (b) elements. 
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3. RESULTS AND DISCUSSION 

 
Two test cases have been selected to compare the different angular discretization schemes described in the previous 

section, and to assess their accuracy. Analytical solutions and other numerical predictions are also presented for 
comparison purposes. The angular discretization was carried out using spherical triangular elements defined according 
to the TN quadrature (Thurgood et al., 1995) when the HYDRA method and triangular elements were used. When the 
HYDRA method and bilinear elements were employed, the angular discretization was defined by spherical lines of 
constant latitude and spherical lines of constant longitude, yielding Nθ×Nφ solid angles per octant. The results of 
calculations performed using the discrete ordinates method (DOM), Fiveland (1984), along with the step scheme and 
the SN level symmetric quadrature satisfying sequential odd moments (Fiveland, 1991) are presented for comparison 
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Figure 2. Normalized incident heat flux along the bottom wall (a) and incident radiation along the vertical symmetry 

plane (b) of the enclosure of test case 1 for an optical thickness of 0.1. 
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purposes. The results reported by Becker et al. (2010) using two different methods based on the even-parity formulation 
of the RTE are also presented. In the first method, referred to as EP-DOM (Koch et al., 1995), the DOM was used.  In 
the second one, referred to as EP-FEM-SAFE, the finite element method was employed for both spatial and angular 
discretization. 

The total number of quadrature points, corresponding to directions along which the discretized RTE is solved, in 
the DOM and EP-DOM is 24, 48 and 80 for the S4, S6 and S8 approximations, respectively. In the HYDRA method, the 
total number of angular elements is equal to 32, 72, 128 and 200 for Nθ = Nφ = 2, 3, 4 and 5, respectively, in the case of 
bilinear elements, and for T2, T3, T4 and T5, respectively, in the case of triangular elements. In the EP-FEM-SAFE 
method, the total number of angular elements is also 32, 72, 128 and 200 for SAFE 18, SAFE 38, SAFE 66 and SAFE 
108, respectively. The number following SAFE denotes the number of angular nodes of the angular discretization. In 
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Figure 3. Normalized incident heat flux along the bottom wall (a) and incident radiation along the vertical symmetry 

plane (b) of the enclosure of test case 1 for an optical thickness of 1. 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 
practice, only directions and angular elements associated to positive (or negative) z directions need to be considered in 
two-dimensional problems.  

 In the first test case, a two-dimensional square enclosure of side length L is considered. The walls are black and 
cold, the medium is grey and emits and absorbs with a uniform unity emissive power. Three different values of the 
optical thickness of the medium, based on the side length, have been considered, namely 0.1, 1 and 10. The analytical 
solution is available in Fiveland (1984). A uniform grid with 20×20 control volumes was used, and different angular 
discretization schemes and refinements were employed. The predicted incident heat flux (q) on the bottom wall and the 
incident radiation (G) at the vertical symmetry plane of the enclosure are shown in Figs. 2, 3 and 4 for an optical 
thickness of 0.1, 1 and 10, respectively. The root mean square (rms) of these quantities is given in Table 1. 
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Figure 4. Normalized incident heat flux along the bottom wall (a) and incident radiation along the vertical symmetry 

plane (b) of the enclosure of test case 1 for an optical thickness of 10. 
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The results show that, in all cases, the predictions are in good agreement with the analytical solution. The angular 
refinement often does not improve the solution accuracy of the HYDRA, DOM, EP-DOM and EP-FEM-SAFE 
methods. Although this may seem surprising, it should be noticed that the solution accuracy is influenced by both the 
spatial and the angular discretization, and that the errors associated to these two procedures tend to compensate each 
other (Raithby, 1999, Coelho, 2002). Therefore, refining the angular discretization while keeping the same spatial 
discretization, or refining the spatial discretization while maintaining the angular discretization, does not necessarily 
improve the solution accuracy. The accuracy is only expected to increase if both the angular and the spatial 
discretization are refined. 

In the case of an optical thickness equal to 0.1, the HYDRA solution using triangular elements provides the most 
accurate predictions of the incident heat flux, but the results obtained using bilinear elements are also satisfactory, 
except for the coarsest angular discretization, which yields a too flat q profile. There is no significant difference 
between the triangular and the bilinear elements as far as the incident radiation is concerned. In the case of an 
intermediate or optically thick medium, i.e., for an optical thickness of 1 or 10, respectively, the HYDRA predictions 
obtained using triangular or bilinear elements are similar. A marginally better accuracy was obtained for the incident 
heat flux in the case of triangular elements and an optical thickness of unity.  

The DOM results are more influenced by the angular discretization than the HYDRA ones, except for the optically 
thick medium, where both the HYDRA and the DOM results are very similar. This is an expected result, since the 
HYDRA and the DOM differ only in the angular discretization. It turns out that in the case of an optically thick 
medium, the transmissivity of the medium is small, and the local radiation intensity tends to the blackbody radiation 
intensity, which is uniform in this test case, because the medium is at a uniform temperature. In the case of an optically 
intermediate or an optically thin medium, the transmissivity of the medium is higher, the influence of the distance 
travelled by a radiation medium becomes larger, and so does the angular discretization. This is more visible in the DOM 
than in the HYDRA, since the radiation from different directions is more coupled in the second case. 

The results reported in Becker et al. [2010] using the EP-DOM and EP-FEM-SAFE are given in Table 1, and reveal 
that the HYDRA results are more accurate, except for the incident radiation and for an optically intermediate or thick 
medium. 

The same two-dimensional square enclosure of side length L is considered in test case 2. The walls are black, 
except the top one, which is maintained at an emissive power of unity. The medium is grey, emits and absorbs, and is in 
radiative equilibrium. The optical thickness of the medium, based on the side length, is equal to 1. A quasi-analytical 
solution, referred to as exact, is reported in Crosbie and Schrenker (1984). A uniform grid with 20×20 control volumes 
was used, and different angular discretization schemes and refinements were employed. The predicted incident heat flux 
(q) on the bottom wall and the incident radiation (G) at the vertical symmetry plane of the enclosure are shown in Figs. 
5 and 6, respectively. The root mean square (rms) of these quantities is given in Table 2. 
 
Table 1. Root mean square of the incident heat flux on the bottom wall and incident radiation at the vertical symmetry 

plane of the square enclosure of test case 1. 
  

Solution method 
Angular 

discretization 
τ = 0.1 τ = 1 τ = 10 

rms(q) rms(G) rms(q) rms(G) rms(q) rms(G) 

HYDRA – Triangular 
elements 

T2 0.00060 0.00556 0.00639 0.02841 0.01081 0.05110 
T3 0.00084 0.00569 0.00986 0.02835 0.01127 0.05232 
T4 0.00107 0.00572 0.01011 0.02796 0.01134 0.05251 
T5 0.00114 0.00573 0.01011 0.02808 0.01133 0.05256 

HYDRA – Bilinear 
elements 

2×2 0.00353 0.00522 0.01735 0.02460 0.01147 0.05200 
3×3 0.00158 0.00412 0.01147 0.02833 0.01140 0.05250 
4×4 0.00137 0.00462 0.01082 0.02849 0.01137 0.05257 
5×5 0.00130 0.00496 0.01053 0.02837 0.01137 0.05258 

DOM 
S4 0.00102 0.00385 0.00949 0.02960 0.00804 0.04485 
S6 0.00044 0.00473 0.00578 0.02882 0.01091 0.05082 
S8 0.00205 0.01912 0.01360 0.02306 0.01094 0.05206 

EP-DOM (Koch et al., 
1995) 

S4 0.01088 0.01644 0.05286 0.13579 0.10186 0.06440 
S6 0.00965 0.02457 0.02238 0.03982 0.10607 0.03444 
S8 0.00805 0.03724 0.02756 0.09387 0.10899 0.02012 

EP-FEM-SAFE 
(Becker et al., 2010) 

SAFE 18 0.00963 0.08116 0.03819 0.17569 0.09804 0.03412 
SAFE 38 0.00499 0.03071 0.01858 0.06889 0.11488 0.02728 
SAFE 66 0.00664 0.02834 0.01922 0.02429 0.12252 0.02453 
SAFE 102 0.00686 0.04319 0.02433 0.02030 0.12594 0.02449 
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Figure 5. Normalized incident heat flux along the bottom wall of the enclosure of test case 2. 
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Figure 6. Normalized incident radiation along the vertical symmetry plane of the enclosure of test case 2. 
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The HYDRA predictions of the incident heat flux on the bottom wall of the enclosure exhibit a physically 
unrealistic solution for the bilinear elements and the coarser angular discretizations (T2 and T3), which is due to ray 
effects (Chai et al. 1993, Raithby, 1999, Coelho, 2002), while the spherical triangular elements show realistic solutions, 
but poor accuracy. The results are better for finer angular discretizations (T4 and T5), and the differences between the 
solutions obtained using the triangular and the bilinear elements become marginal. The corresponding DOM predictions 
are quite poor for S4 and S6, as a consequence of the ray effects. The S8 solution is much better, but the profile is too flat 
in the middle of the bottom wall. The ray effects are significantly mitigated using the modified discrete ordinates 
method, MDOM (Ramankutty and Crosbie, 1999, Coelho, 2002). The predictions of the incident radiation, displayed in 
Fig. 6, are in good agreement with the exact one for all methods, but the MDOM outperforms again the other methods. 
 
Table 2. Root mean square of the incident heat flux on the bottom wall and incident radiation at the vertical symmetry 

plane of the square enclosure of test case 2. 
  

Solution method 
Angular 

discretization 
rms(q) rms(G) 

HYDRA – Triangular 
elements 

T2 0.01963 0.19479 
T3 0.01423 0.14525 
T4 0.01528 0.14070 
T5 0.01516 0.14075 

HYDRA – Bilinear 
elements 

2×2 0.02051 0.20772 
3×3 0.01931 0.15299 
4×4 0.01599 0.14612 
5×5 0.01550 0.14274 

DOM 
S4 0.03772 0.15978 
S6 0.02183 0.19648 
S8 0.00947 0.11275 

MDOM 
S4 0.00397 0.05966 
S6 0.00094 0.04254 
S8 0.00091 0.02278 

EP-DOM (Koch et al., 
1995) 

S4 0.14479 0.25752 
S6 0.06472 0.09945 
S8 0.04343 0.11552 

EP-FEM-SAFE 
(Becker et al., 2010) 

SAFE 18 0.07181 0.18534 
SAFE 38 0.03732 0.12030 
SAFE 66 0.02665 0.11223 
SAFE 102 0.02234 0.10978 

 
 
4. CONCLUSIONS 
 

A hybrid finite volume / finite element method was used to solve the radiative transfer equation. The radiation 
intensity is approximated as a linear combination of basis functions, dependent only on the angular direction. In the 
present work, spherical triangular elements were used as basis functions for the angular discretization. The results were 
compared with those obtained using bilinear elements, which had already been employed in previous works, and with 
results determined using the standard and modified discrete ordinates method. Predictions reported in the literature 
based on the even parity formulation of the radiative transfer equation and using either the discrete ordinates method or 
a finite element method for angular discretization were also used for comparison purposes. Radiative transfer in two-
dimensional enclosures containing a grey emitting-absorbing medium was considered to evaluate the accuracy of the 
methods, taking the analytical or quasi-analytical solution as reference. The influence of the optical thickness of the 
medium was also investigated. 

The results show that the hybrid method using spherical triangular elements as basis functions for the angular 
discretization performs better than the same method using bilinear elements for optically thin or optically intermediate 
media. In the case of optically thick media, the two kinds of elements perform similarly. The discrete ordinates method 
is more sensitive to the angular refinement for the investigated test cases. When ray effects are present, the triangular 
elements perform better than the bilinear elements and the discrete ordinates method, in the case of relatively coarse 
angular discretization. However, the hybrid method is unable to achieve the high accuracy exhibited by the modified 
discrete ordinates method. 
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