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Abstract. The Immersed Boundary Method (IBM) have been widely used in Computational Fluids Dynamic (CFD) for
simulating flows over complex geometries. IBM represents the boundary conditions through a force field imposed at
Navier-Stokes equations. Nevertheless it presents, generally, low accuracy and low convergence rate. Aiming to solve
this restriction, a new methodology is proposed at the present work, which uses the Pseudo-Spectral Fourier Method.
This method provides an excellent numerical accuracy, and with the development of the Fast Fourier Transform algorithm
(FFT), it presents a low computational cost in comparison with another high-accuracy methods. Another important issue
is the projection method for incompressible Navier-Stokes equations. In Fourier space, this procedure does not require
to solve a Poisson equation, which is usually the most computational onerous part in classical methodologies. In order
to validate the new methodology it was proposed to simulate a CFD classical problem: the two and three dimensional
backward-facing step flow.
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1. INTRODUCTION

This geometry is widely used to validate new methodologies due to its geometrical simplicity and the high control of
detachment point of boundary layer of expansion. On the other hand, the flow developed downstream the expansion is
very complex. A large number of experimental (Lee and Mateescu, 1998; Armaly et al., 1983; Eaton and Johnston, 1980)
and numerical (Gartling, 1990; Silveira-Neto et al., 1993; Le et al., 1997) studies has been carried out.

Figure 1 shows the global physical features expected for this problem and Fig. 2 shows the geometrical characteristics.
The geometry shown in Fig. 1 is a channel of entry length with Lin and width (W − h). The step has a height h and the
exit channel has a length L and width W . The ratio W/h is named aspect ratio.

Figure 1. Backward facing step: geometrical characteristics.

In Fig. 2 the flow goes from left to right. The lower boundary layer detach in expansion point (0, h). Independent of
upstream flow the detachment point does not change its position. After this point, a shear layer arises. It is characterized
by inflectional mean velocity field, appearing Kelvin-Helmholtz instabilities (K −H). This instabilities are carried and
collisions occurs over inferior wall in a particular point, named reattachment point, displayed in Fig. 1 as Xr.

Normally this flow is unsteady and therefore the reattachment point must be statistically determined. The K −H in-
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stabilities that make collisions against the bottom wall can be transported to the outlet or can be retained into recirculation,
left of the reattachment point.

Figure 2. Backward facing step: global physical features.

After the reattachment point there are strong interactions amongK−H eddies and the walls. On the other hand, in the
flow through an expansion there is a pressure drop, which is recovered through the outlet channel. So there is an adverse
gradient pressure and the superior boundary layer detaches. This fact yields instabilities in the upper wall vicinity. The
interactions of instabilities with the walls yield counter-clockwise vortex which travel through the channel. Vortex created
in one wall interacts with the opposite wall.

The main characteristic of this problem is that the geometry is very simple, but the flow inside it is very complex, where
one can found physical instabilities of several natures, like boundary layer, Kelvin-Helmholtz, collision of instabilities
with the walls, interaction between them, boundary layer detachments, boundary layer reattachments and boundary layer
and Kelvin-Helmholtz interaction. The interaction of Kelvin-Helmholtz instabilities with walls creates counter-rotating
pairs that can cross the entire channel, going from a wall to the opposite one. Therefore, this geometry results a very
complex and interesting benchmark to validate a new methodology.

2. MATHEMATICAL MODELING

In this section the mathematical model of immersed boundary method, based in Multi-Direct Forcing presented by
Wan and Turek (2007) is presented. After that, the equations which govern the problem will be transformed to Fourier
spectral space are also presented, finally the methodology proposed in this paper, is verified.

2.1 Mathematical model for the fluid

The flow is governed by momentum equation (Eq. 1) and the continuity equation (Eq. 2). These equations are solved
in the domain Ω shown in Fig. 3. The information of the fluid/solid interface (domain Γ) is passed to eulerian domain
(Ω) for addition of the source term to Navier-Stokes equations. The source term represents the boundary conditions of
the immersed geometry as a body force (Goldstein et al., 1993). The equations that govern the problem are presented in
theirs tensorial form:

∂ui
∂t

+
∂(uiuj)

∂xj
= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi, (1)

∂uj
∂xj

= 0, (2)

where ∂p
∂xi

= 1
ρ
∂p∗
∂xl

; p∗ is the static pressure in [N/m2]; ui is the velocity in i direction in [m/s]; fi =
f∗
i

ρ ; fi is the term
source in [N/m3]; ρ is the density; ν is the cinematic viscosity in [m2/s]; xi is the spatial component (x, y) in [m] and t
is the time in [s]. The initial condition is any velocity field that satisfies the continuity equation.

The source term is defined in all domain ΩPeD (Fig. 3), but has values different from zeros only the lagrangean points
coincide with the eulerian collocation points, i.e., in ΓPhD and Γi of the Fig. 3). Equation 3 enables the eulerian field
perceives the presence of a solid interface (Enriques-Remigio and Silveira-Neto, 2007).

fi (~x, t) =

{
Fi

(
~X, t
)

if ~x = ~X

0 if ~x 6= ~X
, (3)

where ~x is the position of a fluid particle and ~X is the position of a fluid particle that is placed besides of the solid interface.
Equation 3 shows that the field fi(~x, t) is discontinuous, which can be numerically solved only when there is coinci-

dence between the points that compose the interface domain with some collocation points that compose the fluid domain.
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However when the problem has a non cartesian geometry, a distribution and interpolation functions must be used. Then
the lagrangian force field, Fi( ~X, t), is calculated and can be distributed to eulerian domain, these functions can be found
in Griffith and Peskin (2005).

Figure 3. Schematically representation of eulerian and lagrangian domain.

2.2 Mathematical model for the immersed interface

The lagrangian force field is calculated by direct forcing methodology, which was proposed by Uhlmann (2005).
One of the characteristics of this model is that we don’t need to use ad-hoc constants. It allows the modeling of no-slip
condition on immersed interface. The lagrangian force Fi

(
~X, t
)

is given solving the momentum equation, Eq. 1, over
the fluid-solid interface:

Fi

(
~X, t
)

=
∂Ui
∂t

(
~X, t
)

+
∂

∂Xj
(UiUj)

(
~X, t
)

+
∂P

∂Xi

(
~X, t
)
− ν ∂2Ui

∂Xj∂Xj

(
~X, t
)
. (4)

The capital symbols are the same as Eq. 1, but they are calculated only over the lagrangian interface Γ shown in Fig. 3.
Using the temporal parameter, U∗, proposed by Wang et al. (2008) and discretizing the time operator, we have:

Fi

(
~X, t
)

=
Ui

(
~X, t+ ∆t

)
− U∗i

(
~X, t
)

+ U∗i

(
~X, t
)
− Ui

(
~X, t
)

∆t
+RHSi

(
~X, t
)
, (5)

where ∆t is the time step and

RHSi

(
~X, t
)

=
∂

∂Xj
(UiUj)

(
~X, t
)

+
∂P

∂Xi

(
~X, t
)
− ν ∂2Ui

∂Xj∂Xj

(
~X, t
)
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The Eq. 5 is solved by decomposition the Eqs. 7 and 8:

U∗i

(
~X, t
)
− Ui

(
~X, t
)

∆t
+RHSi

(
~X, t
)

= 0, (7)

Fi

(
~X, t
)

=
U
(
~X, t+ ∆t

)
− U∗i

(
~X, t
)

∆t
, (8)

where U
(
~X, t+ ∆t

)
= UFI is the immersed boundary velocity, and U∗i

(
~X, t
)

is given by:

Ui

(
~X, t
)

=

{
u∗i

(
~X, t
)

if ~x = ~X

0 if ~x 6= ~X
. (9)

Equation 7 is solved at the eulerian domain at Fourier spectral space, i.e., it is replaced by solution of the transformed
Eq. 1 with fi = 0. u∗i (~x, t) is interpolated for lagrangian domain, giving U∗i

(
~X, t
)

and it is computed on Eq. 8. Then it
is smeared to eulerian collocation points. Finally, the eulerian velocities are updated by Eq. 10:

ui (~x, t+ ∆t) = u∗i (~x, t) + ∆tfi. (10)
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2.3 Mathematical model for the fluid in Fourier spectral space

Given the equations that govern the flow through immersed boundary method, the next step is to transform them to
the Fourier spectral space. For instance, Fourier transform of continuity Eq. 2, gives:

ιkj ûj = 0, (11)

where “̂” means that variable is in Fourier spectral space. The Fourier transformation is performed using the FFT
algorithm implemented by Takahashi (2006).

Equation 11 defines the wave number vector ki is orthogonal to transform velocity, ûi(~k, t). We can define the plane
of divergence free, named plane π. It is perpendicular to wave number vector and thus, transformed velocity belongs to
the plane π. By applying the Fourier transform in the momentum equation Eq. 1:

∂û∗i
∂t

+ ιkj û∗i u
∗
j = −ιkip̂− νk2û∗i , (12)

where k2 is the square norm of the wave number vector, i.e. k2 = kjkj .

By definition of the plane π, each of the terms of Eq. 12 assume a position related to it: the transient term ∂û∗
i

∂t and
the viscous term νk2û∗i belong to the plane π. The gradient pressure term is perpendicular to plane π. The direction of
non-linear term ιkj û∗i u

∗
j , a priori, is not known, when compared with the plane π. By joining the terms of Eq. 12, we

found that:[
∂û∗i
∂t

+ νk2û∗i

]
︸ ︷︷ ︸

∈π

+

⇒

[
ιkj û∗i u

∗
j + ιkip̂

]
︸ ︷︷ ︸

∈π

= 0. (13)

The Eq. 13 imply that:[
ιkj û∗ju

∗
i + ιkip̂

]
= ℘im

[
ιkj û∗mu

∗
i

]
, (14)

where ℘ij is the projection tensor (Canuto et al., 2006).
The gradient pressure field is orthogonal to the plane π. So, the pressure and velocities fields at Fourier space are not

coupled anymore. Nevertheless the pressure field can be recovered as a pos-processing procedure, as shown by (Mariano
et al., 2010).

Other important point is the non-linear term, which appears product of transformed functions, in agreement with
Fourier transformed properties, this operation is a convolution product and its solution is given by convolution integral,
this is solved by pseudo-spectral Fourier method, Canuto et al. (2007). Therefore the momentum equation in the Fourier
space, using the projection method, assumes the following form:

∂û∗i

(
~k, t
)

∂t
+ νk2û∗i

(
~k, t
)

= −ιkj℘im
∫
~k=~r+~s

û∗m (~r, t) û∗i

(
~k − ~r, t

)
d~r. (15)

The non-linear term can be handed by different forms: advective, divergent, skew-symmetric or rotational (Canuto
et al., 2007), in spite of being the same mathematically, they present different properties when discretized. The skew-
symmetric form is more stable and present best results. Therefore, this procedure is used in the present work. The
non-linear term is solved using the pseudo-spectral method (Canuto et al., 2007). The velocity product is calculated at
physical space and transformed to the spectral space.

2.4 Proposed Methodology: IMERSPEC

The proposed algorithm is described as:
1) Solve Eq. 14 in the Fourier spectral space and obtain the temporal parameter û∗i(~k, t), using the low dispersion

and low storage Runge-Kutta method, proposed by Allampalli et al. (2009);
2) Use the Inverse Fast Fourier Transformer in û∗i(~k, t) and obtain u∗i (~x, t) at physic space;
3) Interpolate u∗i (~x, t) to the Lagrangian domain using Eq. 9;
4) Calculate the Lagrangian force, F ∗i ( ~X, t), by Eq. 8;
5) Calculate the eulerian force, f∗i (~x, t) using Eq. 3;
6) Update the eulerian velocity, ui (~x, t+ ∆t) by Eq. 10 and transform it using FFT for spectral space, obtaining

ûi (~x, t+ ∆t), and return to step 1.
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3. Results

Figure 4 shows the physical domain ΩPhD, (solid line), that is immersed in periodical domain ΩPeD (dashed line).
The physical domain is no periodical and is bounded by immersed boundary ΓPhD. The periodical domain is delimited
by ΓPeD boundary.

The ΓPhD represent the “physic boundary conditions”, e.g., For the wall case, the no-slip boundary conditions in the
upper and bottom walls and a inlet are imposed. In the outlet ΓPeD and ΓPhD are coincident, where periodical boundary
conditions is used. In the entire ΓPeD periodical boundary conditions are used too.

Figure 4. Backward-facing step immersed in general cartesian and periodic domain ΩPeD.

The periodical boundary condition given in outlet make that the physical instabilities that leave the domain are rein-
jected in the inlet of the domain. In order to avoid that instabilities affect the forced boundary conditions at ΓPhD we use
a buffer zone (zone BZ in Fig. 4) in order to diffuse the vortex. The forcing zone (zone FZ in Fig. 4) is used to align the
streamlines at the entrance.

In forcing zone, FZ, the procedure consists enforce the inlet profile using the immersed boundary methodology. In
the present paper this inlet profile is provided by Lee and Mateescu (1998) and is given by Eq. 16. This velocity profile
corresponds to a developed flow in a duct which mean velocity U∞ = 1.0 [m/s].

Uin(y) =

{
0 if 0 ≤ y ≤ h
−24(W − y)(h− y) if h < y ≤W . (16)

The buffer function used in the present work was proposed by Joslin et al. (1991), Eq. 17. This function is used to
drive the flow in a smooth way through the forcing zone:

BZi = φ(x)
(
Qi −Qtai

)
, (17)

where Qtai is the target solution; Qi is the obtained Navier-Stokes solution; and the stretching function φ, is given by Eq.
18:

φ =
1

2

[
1− tanh

(
4− 8

xsB − x
xsB − xfB

)]
, (18)

where xsB and xfB are the start and the final positions the buffer zone, respectively.
The BZi term given in Eq. 17, is transformed to Fourier spectral domain, obtaining B̂Zi. This term is projected over

the plane π and superimposed on the estimated velocity field, û∗i(~k, t):

û∗i(~k, t)← û∗i(~k, t)− B̂Zi(~k, t). (19)

All simulations presented in this paper use the Runge-KuttaRK46 temporal integration, presented by Allampalli et al.
(2009). The time step, ∆t changes according to CFL criterium (Courant et al. (1967)).
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3.1 Flow over a backward-facing step at Reh = 400

In order to validate the methodology, flow simulations of a backward-facing step was carried out using the domain
shown in Fig. 4. The domain dimensions are normalized by the step high h = 0.5 [m], Lx/h = 73.14 and Ly/h = 2.29.
They were divided in Nx = 2048 and Ny = 64 collocation points, respectively. The aspect ratio is W/h = 2.0;
LBZ/h = 3.73 and LFZ/h = 0.53.

The kinematic viscosity is given by ν = U∞h/Reh [m2/s], where the Reynolds number is taken as Reh = 400
and U∞ is the reference velocity, given by the mean velocity profile Uin(y) (Eq. 16), i.e., U∞ = 1.0 [m/s]. The target
solution in buffer zone (Eq. 17) is the inlet velocity profile given by Eq. 16, i.e., Qtax = Uin(y) inflow direction and
Qtay = 0 for vertical direction.

Figure 5 the streamlines were shown after the steady regime is attained over the full domain, including the buffer and
forcing zones. In Fig. 6 a zoom over the recirculation zone of the Fig. 5 is shown. We note the two recirculations provided
by the boundary layer detachment. This results is in agreement with what is expected for this flow.

Figure 5. Streamlines of the flow over backward-facing step at Reh = 400 in tU∞/h = 400.

Figure 6. Details of streamlines of the flow backward-facing step at Reh = 400 in tU∞/h = 400.

Vis-a-vis to demonstrate the importance of the buffer and forcing zones Fig. 7 shows how the fluid particles are driven
to the entrance of the physical domain ΩPhD. Figure 7 (a) shows the streamlines for the case with forcing zone where we
can see that they are parallels to the walls, as it must happen at a wind tunnel.

(a) (b)
Figure 7. Details of streamlines over the buffer zone (a); profile of horizontal velocity component at y/h=1.49 (b); at

Reh = 400 and tU∞/h = 400.

Figure 7 (b) shows the streamwise velocity component values, at y/h = 1.49, obtained with and without the forcing
zone. This figure shows also a reference solution or the target velocity, which is given by Eq. 16. We see that the
streamlines becomes parallels as long as the fluid entry in the forcing zone, and find the target velocity field used as the
reference to calculate the force profile given by Eq. 16. Without forcing zone, the velocity at the entrance plane doesnŠt
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reach the target velocity value and is not parallel to the walls. The oscillation that appears after x/h = 0.0 is already
inside the domain and is the result of the first physical instabilities, like Kelvin-Helmholtz.

3.1.1 Different Reynolds numbers

In this section we use the same settings of last section. However we set different Reynolds numbers for flow simulation
of backward-facing step. The Fig. 8 shown the vorticity component in z direction for four Reynolds numbers, (Reh =
200, 800, 1500 and 6000). We note that the flow at Reh = 200 is stable in all the domain. At Reh = 800 and
Reh = 1500 the flow become unstable after the recirculation zone passing through a transition zone. In this range of the
Reynolds number it is possible to note the vortex counterclock-wise alternately between the upper and bottom walls. At
Reh = 6000 the behavior of flow become unstable in all the domain.

Figure 8. Component vorticity in z direction (ωz) for different Reynolds numbers in tU∞/h = 400.

In order to validate the methodology we compare the results of inferior reattachment point, xr/h, with experimental
work of Lee and Mateescu (1998). The results of this comparison are presented in Tab. 1, where a good agreement up to
Reh = 400 is presented. As already shown by Armaly et al. (1983), this effect was expected, because the simulations are
two-dimensional. By increasing the Reynolds number the three dimensional effects become important.

Table 1. Comparison of mean position of reattachment point, xr/h, for different Reynolds number.

Reh Lee and Mateescu (1998) Present work
200 8.30 8.50
250 9.10 9.71
300 10.30 10.64
350 11.10 11.39
400 12.90 12.18
450 13.20 12.61
500 15.50 13.50

3.2 Flow over three-dimensional backward-facing step

The present section provides two important results. First the extension to third dimension of the methodology IMER-
SPEC and the parallel algorithm is straightforward. Second it shows that three dimensional effects are very important as
the Reynolds number is increased.
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A simulation of flow over backward-facing step was performed at Reh = 400 with dimensions h = 0.5 [m],
Lx/h = 54.86, Ly/h = 2.29 and Lz/h = 2.29 divided in Nx = 768, Ny = 32 and Nz = 32 collocation points,
respectively. The aspect ratio is W/h = 2.0; LBZ/h = 3.60 and LFZ/h = 0.70 (Fig. 4). The boundary conditions in
spawnwise direction are periodicals and the planes of forcing zone is given by Eq. 16. In order to model the physical
noise that has in experimental setup (Smirnov et al., 2001), random perturbations (order of 10−4U∞) are imposed on the
inlet plane over the velocity field. In order to avoid the Gibbs phenomenon a sharpened raised cosine present in Canuto
et al. (2006) is used for each time step over the velocity fields.

A simulation at Reh = 400, using CFL = 0.5 was performed. The results are presented in Fig. 9 and are compared
with experimental profiles of Lee and Mateescu (1998). It is also compared with the two-dimensional results of present
work. Table 2 show the reattachment point on the inferior wall, xr/h. The detachment point xs/h and the reattachment
point xrs/h on the superior wall are also presented.

(a) (b)
Figure 9. Longitudinal component velocity profiles at tU∞/h = 100.0 in (a) (x/h; z/h) = (7.0; 1.0) and (b)
(x/h; z/h) = (15.0; 1.0). Comparison with experimental results of Lee and Mateescu (1998) and two-dimensional

results of present work.

We can note in Fig. 9 that three-dimensional results are in good agreement with experimental profiles of Lee and
Mateescu (1998). The comparison of two-dimensional results of the present paper are very closed, since the backward-
facing step at Reh = 400 is stable and physically the flow is two-dimensional.

Table 2. Comparison of position of reattachment point on the inferior wall xr/h; the detachment point on the superior
wall xs/h; and detachment point on the superior wall, xrs/h, for the backward-facing step flow at Reh = 400.

Works xr/h xs/h xrs/h
IMERSPEC 2D 12.16 10.12 20.51
IMERSPEC 3D 11.70 11.30 19.10

Experimental Lee and Mateescu (1998) 12.90 10.30 20.50

A simulation of backward-facing step flow at Reh = 1000 was performed with h = 0.5 [m], Lx/h = 54.86,
Ly/h = 2.29 and Lz/h = 4.30, divided in Nx = 768, Ny = 32 and Nz = 32 collocation points, respectively. The aspect
ratio is W/h = 2.0; LBZ/h = 3.60 and LFZ/h = 0.70 (Fig. 4). Fig. 10 shown the z vorticity component in different
planes.

In Fig. 10 (a) we can see the Kelvin-Helmoltz instabilities that are generated after reattachment point, xr/h. In Fig. 10
(b) is possible to note the oscillations in spanwise direction, show the three-dimension features of backward-facing step
flow at Reh = 1000 and the transition to turbulence. We observed the recirculation zone generated by adverse gradient
of pressure in Fig. 10 (c).

In Tab. 3 a comparison of mean positions of reattachment point of inferior wall (xr), detached point of superior
wall (xs) and the reattached point of superior wall (xrs) with experimental results of Lee and Mateescu (1998) and the
two-dimensional results of the present work is given.

The results of two-dimensional simulations (IMERSPEC 2D) of backward-facing step flow at Reh = 1000 presented
in Tab. 3 are not in good agreement with experimental data. On the other hand, the results of IMERSPEC 3D are very
closed of Lee and Mateescu (1998) results, shown the importance of the three-dimensional effects.
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(a)

(b)

(c)
Figure 10. Backward-facing step flow at Reh = 1000 and tU∞/h = 100.0. (a) Iso-surface of vorticity spanwise
component ωz = −1.0 (black) and ωz = 1.0 (white); (b) Iso-surface of vorticity spanwise component ωz = −1.0; (c)

Vorticity spanwise component at z center plane −1.0 < ωz < 1.0.

Table 3. Comparison of position of reattachment point on the inferior wall xr/h; the detachment point on the superior
wall xs/h; and detachment point on the superior wall, xrs/h, for the backward-facing step flow at Reh = 1000.

Works xr/h xs/h xrs/h
IMERSPEC 2D 18.10 15.15 36.09
IMERSPEC 3D 12.42 16.31 19.36

Experimental Lee and Mateescu (1998) 12.80 9.70 18.40

4. CONCLUSIONS

The very complex flows over a backward-facing step were chosen. Two dimensional and three dimensional simula-
tions were done and results were compared with experimental and with numerical results of others authors. Very good
agreement was obtained for two-dimensional simulations up toReh = 400 and atReh = 1000 only the three-dimensional
results are in agreement with the experimental data, showing the existence of three-dimensional effects of turbulence tran-
sition. We consider the proposed methodology very promising to solve complex flows.

It is important to note that IMERSPEC methodology was developed to incompressible flows and provide good features
for Navier-Stokes solutions, as well as high accuracy and high convergence rates. Furthermore, CPU time should be less
than high order methodologies in physical space. This is because the pressure linear solver for Poisson equation is replaced
by product of vector-matrix, providing by Fourier pseudo-spectral method.
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