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Abstract: The aim of this article is to analyze the viability of the use of Monte Carlo Method to monitor the productivity 
in the MAG welding of industrial piping by using the data obtained from small samples and generating virtual data by 
simulation. The simulation method will be applied in two different sceneries: in the first scenery, known, the real model 
will be based on a representative sample of productivity indicators.  However, in the second scenery, unknown, we will 
assume the function probability in order to represent the real model. The Monte Carlo Method will be used to generate 
the virtual data of the productivity indexes with the use of the softwares Bestfit and @ RISK. Bestfit will be applied so 
as to make the adjustment of the probability curves attributed to the group of input data, while the @ RISK will be 
responsible for the generation of the artificial random numbers from functions of probability initials. 
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1. INTRODUCTION 
 
     Welding is a key manufacturing process in the piping construction industry and productivity in the industrial sector 
is closely related to the welding performance. Nonetheless, there is little diversity of productivity monitoring methods 
used in pipelines' welding. The most used methods take either the entire production or the daily labor involved 
throughout an enterprise into account. Therefore, these monitoring processes consume a lot of time and resources, 
which entails, in many cases, limitation, or even renunciation of their use by the construction company builders. Thus, 
the objective of this paper is to evaluate the applicability of the Monte Carlo method in monitoring the productivity of 
the weld of carbon steel pipes, in which the MAG process was being applied, by collecting small samples, from which 
data are generated by virtual simulation. 
 
2. PRODUCTIVITY IN WELDING 

 
     According to Diekmann and Heinz (2001), productivity is classically defined by the Man hours per unit quantity 
produced. This relationship is commonly used in industry. As a consequence, the productivity in welding is generally 
defined as the amount of deposited weld metal for the amount of human resources consumed in this process. Still, 
productivity monitoring in welding is mentioned in literature by many indicators. There are indicators that consider only 
the open arc deposition and those that take into consideration the total execution time of the joint. The latter is the most 
used in the industry, as evidenced in the document metrics' industry standards PROMINP (2010), established with the 
participation of EPC industry in Brazil, in which welding indicators' standards are established. 
     In the case of the indicators that consider the total execution time of the joints, the majorities relate the weld volume, 
usually expressed in cm3, or deposited mass, usually expressed in kilograms (kg), to the quantity of Man hours 
consumed in the welding operation. 
     Concerning the workforce, we can find the following conditions: amount of Man hours welders only; amount of 
welders and auxiliary personnel Man hours; amount of Man hours of welders, auxiliary personnel and welding 
supervision at the lowest level. In this work we use historical data consolidated on Gioia and Silva Junior (2007), which 
consider the productivity of each welder's identification mark in number of worked days, expressed in cm3/per Man 
hours. The workmanship considered in the calculation of indicators takes into account the actions linked to the welding 
activities exercised by the welder. On the other hand, it is considered that the observation time in which productivity is 
measured should begin with the welding joint and end with the final cleaning, subsequent to the finishing weld pass. 

 
3. MONTE CARLO METHOD 

 
     In accordance with Shimizu apud Limmer (1997), the Monte Carlo method consists in generating artificial probability 
of occurrence of an event from a pre-established distribution lay using simulation. In this method the RANDOM function 
is responsible for generating random numbers, and the RANDOMIZE function is used to perform the simulations. The 
random numbers are generated from a stochastic experiment, in which the results are previously unknown or uncertain. 
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According to author, the random numbers correspond to values of a probability density function previously defined and 
expected to characterize through simulation. The probability density function shape is important and necessary to identify 
the random variables involved as discrete or continuous.  
     From MUN (2006), the Monte Carlo method is a powerful simulation parametric method, that is to say it is necessary 
to specify parameters for simulation before it starts, capable of providing  solutions to difficult and complex practical 
problems in an easier way. Therefore, it represents an alternative to highly complex stochastic mathematical models. In 
its simplest form, the method is a random generator of pseudo-numbers or samples that can create millions of 
combinations of these values, resulting in multiple scenarios undertaken by the model, and allowing the analysis of their 
main characteristics. The values generated are used in the model in form of probability distributions that reflect the 
uncertainty associated to the variable. Nowadays, this method can be applied in analysis and quantification of risks as 
well as assisting the conduction of forecasts and estimative in multiple fields, such as research and development, and 
engineering.  
     The steps of the Monte Carlo method  listed below were excerpted from the article Aplicação do Método de Monte 
Carlo em Análise de Riscos em Projetos de Construção, from Morano and Ferreira (2003). 

 
I -  Grouping Data 
 
This step is used to group the interested data collected in a chart. 
 
II - Frequency and Histogram 
 
In this step, the data is grouped in a table composed by a number of classes, which are used as input data for the 

determination of frequency distribution and histogram construction. Therefore, two requirements are fundamental: the 
definition of the number of classes and consequently the interval value. In statistics there is no default unit set to 
establish the number of histogram classes. Although there are particular values, the authors admit the occurrence from 7 
to 30 classes. Fonseca and Martins (1982) and Crespo (1996) argue that there is no formula for calculating the number 
of classes; however, both suggest the use of Sturges rule, which is shown in Eq. (1). 

 
NK log22.31   (1) 

 
Where: K = number of histogram classes; N = number of sample elements. 

 
III - Generating Function Choice 
 

     The third step is the choice of the input distribution or generating function, according to which the input data will be 
distributed. As well as the last step, the input distribution selection in simulation is not a consensus among authors. 
Morano and Ferreira (2003) identified two distinct groups of authors. A group formed by names like Raftery (1994) and 
Kerzner (1998) argues that the choice of simulation distribution should be based on statistical analysis of the sample data. 
The second group, however, defends the choice of specific distributions, such as the Normal distribution, Beta, uniform, 
Triangular and Poisson. In Risk Management and Construction, from Flanagan and Norman (1993)  various distributions 
are referred to as the most common. As a consequence, these functions should be easily identifiable, updatable when new 
data is added, and flexible to the shapes that they can assume. This step is considered the greatest difficulty in 
implementing an effective simulation. Data reliability, experience and professional knowledge are fundamental to the 
successful implementation of the methodology then. 

 
IV – Definition of the Number of Simulations 
 

     The fourth step is the determination of the number of simulations, which varies from author to author. For instance, 
Bruni et al (1998) adopt from 200 to 1000 iterations, while Grey (1995) proposes the use of a minimum of 300 
interactions. This quantities refer to the minimum necessary to represent the generating distribution considering that a 
greater number of simulations increases its reliability. Thus, this quantity should be chosen according to the situation and 
based on practical experience in implementing the method. In construction, 100 simulations are initially a reasonable 
number, yet they should be verified by chi-square testing in order to evaluate of the compliance degree between the input 
data distribution and the built distribution at the end of the simulation . 

 
V - Result Analysis 
 

     The fifth and last stage of the simulation process is the analysis of results. The final step of the simulation is the 
development of a histogram and an accumulated frequency chart to analyze the resulting probability for shape 
distribution and cumulative frequency distribution. With the histogram ready, it is possible to distinguish important 
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classes, such as those of higher occurrence of variables and those with the distribution curve defined, and also to calculate 
the probabilities of the occurrence of variables. 

 
4. METHODOLOGY 
 
4.1. Description 
 

     The experiment consists in evaluating the applicability of the Monte Carlo method in estimating productivity of 
welding pipelines from small data samples. Two scenarios were used in order to conduct the experiment: in the first 
one, the type generating function is known “a priori” (in advance), based on the analysis of the behavior of a real 
sample, whereas in the second the type of the generating function is not known. In this case, we used the Beta function, 
as recommended by literature. Three data samples were taken from a database with about 52 elements reporting the 
daily welders productivity, in (cm³/Hh). The procedure for setting these three data samples was conducted by selecting 
random numbers correlated to the data of the actual data available. The collection was done through manual drawing of 
the values, with reposition for n = 10, 15 and 20, respectively. 

 
4.2. Determination of Generating Functions 

 
     Two simulation scenarios were taken into account in the determination of generating functions, in which only the 
tables of random numbers drawn above are known. The difference is that in the first one the kind of generating function 
is known from a sample containing the data of global productivity, obtained from a database by using the software 
ControlTub and considering an equivalent joint of 4 inches in diameter. Then, the selected data was applied to welders. 
This productivity measurement considers only the Man-hours of the welders and takes at least ten days of production into 
account. In the second scenario, however, it was assumed that this information does not exist, so Beta generating function 
was chosen, as recommended by several authors. 
     After we verified the behavior of the overall sample data containing the data collected in the field, it was shown that 
the curve that best fitted them was the Pearson 5 distribution. Therefore, this curve is considered the generating function 
for the first scenario mentioned above. The parameters characterizing the distribution are presented in the Tab. 1 below 
for the three established conditions. 
 

Table 1 - Parameters of Pearson5 Distribution - samples with n = 10, 15 and 20 elements 
 

 
 
 
 
 
 
 
 
 
In the second scenario, we used the generating function in which the type of Beta distribution best represents the 

unknown sampling universe, as already mentioned. The parameters  and 2, which are shown in Tab. 2, were 
calculated in the same way as in the first scenario. 

 
Table 2 – Parameters of Beta Distribution – Samples with n = 10, 15 and 20 elements 

 
 
 
 
 
 
 
 
 
 
 
The values of the mean and standard deviation were divided by 1000 because the Beta function admits domain 

between 0 ≤ x ≤ 1. Without this procedure it would not be possible to determine the functions parameters. 
 

Pearson5 Parameters 
Table Parameters / Statistics 

n=10 n=15 n=20 
 2,737331396 2,792079766 2,960613005 
 80,96659236 81,37655008 81,34191235 
Mean (cm³/HH) 46,6 45,4 41,5 
Std Dev (cm³/HH) 54,274 51,022 42,33 

Beta Parameters – MAG 
Table Parameters / Statistics 

n=10 n=15 n=20 
 0,656364803 0,710703216 0,879271093 
 13,42750789 14,94044998 20,31411236 
Mean (cm³/HH) 0,0466 0,0454 0,0415 
Std Dev (cm³/HH) 0,0543 0,051 0,0423 
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4.3. Simulation Configuration 
 

     The configuration of the simulations in @ RISK was standardized, and it is valid for both scenarios. The basic 
parameters required to configure a simulation are: number of iterations, number of simulations, sampling data, seed 
random number generator and standard recalculation. 

 
Table 3 – Simulation Configuration – Software @RISK 4.5 

 
 
 
 
 
 

 
 
     The number of iterations corresponds to the virtual number or amount of generated virtual statistical calculations 
performed by the computer after generating a new number. The number of simulations indicates the desired number of 
repetitions of the set presentation generated, the seed indicates the value from which the numbers are generated, the 
type of sample data and the standard recalculation are based on the simulation method chosen, and related to the 
convergence results. The sampling type corresponds to the method by which the artificial values are generated in the 
Monte Carlo Method. The recalculation corresponds to the way the statistical calculations are updated, which happens 
to the extent that new artificial values are generated in the collections. 
 

5. RESULTS ANALYSIS 
 
5 .1 Simulation from Pearson5 Distribution 
 
The artificial collections of productivity indicators presented below, in cm ³/Hh, were generated using the Pearson5 

Distribution, respectively, for n = 10, 15 and 20, respectively. Tab 4 presents data for the sample with n = 10. Tab. 5 
and Tab. 6 present sample data with n = 15 and n= 20, respectively. 

 
 

Table 4 – Sample Statistics Generated by the Pearson5 Distribution for n = 10 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 5 – Sample Statistics Generated by the Pearson5 Distribution for n = 15 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simulation Settings 
Number of iterations 100, 1000 e 10000 
Number of simulations 1 
Sampling Monte Carlo 
Generating seed Random 
Standard Recalculation Monte Carlo 

Artificial Collection – MAG (Pearson5 Distribution real data and n=10) 
Iterations Statistics 

N=100 N=1000 N=10000 
Min 10 7,1 5,2 
Max 209 462,7 1376,8 
Average 42,7 45 46,4 
Mode 38,4 17 22,5 
Median 34 33,7 33,5 
Std Deviation 34,008 43,185 50,71 

Artificial Collection – MAG (Pearson5 real data and n=15) 
Iterations Statistics 

N=100 N=1000 N=10000 
Min 9,3 7,6 6,2 
Max 194,4 432,5 1222,5 
Average 45,9 44,3 46,1 
Mode 21,1 19,1 20,8 
Median 35,9 32,6 33,2 
Std Deviation 32,598 42,034 51,423 
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Table 6 – Sample Statistics Generated by the Pearson5 Distribution for n = 20 
 
 
 
 
 
 
 
 
 
 
 
 

5.2. Simulation from Beta Distribution 
 
     The artificial arrays of productivity indicators presented below, in cm³ per Man hours were generated using the 

Beta Distribution for n = 10, 15 and 20, respectively,. The statistical data are presented in Tabs. 7, 8 and 9. 
 

Table 7 - Statistics of the Sample Generated by the Beta Distribution for n = 10 
 

 
 
 
 
 
 
 
 
 
 
 

Table 8 - Statistics of the Sample Generated by the Beta Distribution for n = 15 
 
 
 
 
 
 
 
 
 

 
Table 9 - Statistics of the Sample Generated by the Beta Distribution for n = 20 

 
 
 
 
 
 
 
 
 
 
5.3. Cumulative Probability Density Function (F) 
 

     The analysis of results was performed by comparing the cumulative probability curves adjusted in Bestfit, which 
were associated to each numerical set artificially generated in the previous section, with the relative model curves from 
the main data sample containing 52 items. 10 intervals were selected to adjust the cumulative curves so as to 
standardize the test. The curves presented below were adjusted with the use of the chi-square test with assistance from 
the software BestFit. 

Artificial Collection – MAG (Pearson5 Distribution real data and n=20) 
Iterations Statistics 

N=100 N=1000 N=10000 
Min 9,5 8,4 6,1 
Max 633,5 385,5 867,5 
Average 50,4 41,7 41,5 
Mode 44,8 22,5 11,1 
Median 31,4 31,2 30,8 
Std Deviation 78,212 38,593 39,429 

Artificial Collection – MAG (Beta Distribution and n=10) 
Iteration 

Statistics 
N=100 N=1000 N=10000 

Min 0,00051 0,00065 0 
Max 252,2 337,6 526,1 
Average 40,3 46,8 46,8 
Mode 0,02062 17,4 100,7 
Median 24,9 28,6 27,6 
Std Deviation 47,315 52,511 54,265 

Artificial Collection – MAG (Beta Distribution and n=15) 
Iteration Statistics N=100 N=1000 N=10000 

Min 0,3552 0,0295 0,0168 
Max 117,3 153,4 177,8 
Average 25,4 26,4 26,4 
Mode 22 8,4 10,2 
Median 21,1 20,5 20,7 
Std Deviation 21,695 21,903 21,477 

Artificial Collection – MAG (Beta Distribution and n=20) 
Iteration Statistics 

N=100 N=1000 N=10000 
Min 1,3742 0,3088 0,0398 
Max 80,8 146,5 159,3 
Average 23,1 23 23,5 
Mode 4,5 12,2 14,5 
Median 20,1 18,3 18,6 
Std Deviation 15,568 18,445 18,791 
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     The Figs. 1, 2, 3 represent the curves of the accumulated probability density function generated by simulation from 
the Pearson 5 distribution compared to that achieved from the real sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Cumulative Probability Density Function (Pearson 5 Distribution with n = 10 and real curve) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Cumulative Probability Density Function (Pearson 5 Distribution with n = 15 and real curve) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 – Cumulative Probability Density Function (Pearson 5 Distribution with n = 20 and real curve) 
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Figures 4, 5 and 6 present the curves of the accumulated probability density function generated by simulation from 
the Beta Distribution, in a scenario in which the behavior of the population is not known, as recommended by the 
literature, compared to the real sample data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Accumulated Probability Density Functions (Beta Distribution with n = 10 and real curve) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Accumulated Probability Density Function (Beta Distribution with n = 15 and real curve) 
 
                                                                                                                                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – Accumulated Probability Density Function (Beta Distribution with n = 20 and real curve) 
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using the generating functions of the Pearson5 type. Thus, it is possible to conclude that the use of Beta Distribution as 
the generating function yields similar results to those obtained with the generating Pearson5 Distribution, which best 
represents the sample universe data. Thus, the utilization of the Beta Distribution as the generating function to be used in 
the simulations, as recommended in literature, gives quite reasonable productivity estimates. This is an important fact, 
since in most of the real job situations we do not have preliminary information on the behavior of the productivity to be 
estimated. On the other hand, regarding the values adopted for estimating the productivity in concurrences or for job 
monitoring, this paper shows that the values near average presented a reasonable approximation in comparison with the 
sample universe data. However, the behavior of the data obtained by simulating the difference differs significantly from 
the sample universe when the maximum productivity achieved in the process is estimated. Therefore, it is necessary to 
estimate maximum productivity, which requires the adoption of values with a probability of occurrence located around 
the level 0.8 of the accumulated curve (F). Concerning the size of the sample (n) used to characterize the generating 
function of the simulation, the study reveals that there are reasonable results from n = 15 on. 

 
6. CONCLUSION 
 
Based on the analysis of the results we can conclude that, since a real model that represents the productivity 

behavior indicators with the dimension cm³ per Man hours is not available yet, the probability Beta Distribution can be 
very useful in simulating generating functions as some authors affirm in the literature. 

In the productivity estimation by Monte Carlo simulation, it is recommended to use a sample data with more than 15 
elements in order to establish the generating function.  

Furthermore, it seems to be a good practice to adopt values close to average to obtain considerably reasonable 
results. However, this does not occur for maximum productivity. 

The data simulation obtained shows that it is possible to use Monte Carlo simulation to monitor productivity in 
welding based on small data samples, which allows the performance of welding monitoring during construction or even 
the implementation of corrective actions when necessary; although this practice is not common in business in building 
and construction industry nowadays. 
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