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Abstract. As new challenges arise in the deep and ultra-deep exploration of water oilfields by Petrobras, more knowledge
and research are needed, so that developing tools to assist in the critical operations is very important to make things
practicable. In the context of the drilling process, the complexity of the fluid flow inside the riser is associated with
some particularities like the nature of the non-Newtonian flow, the immersed solid particles, a variable eccentricity of
the inner cylinder and the superimposed traveling azimuthal waves on the inflow and outflow boundaries of the Taylor
vortices. As an attempt to takes the actual operating conditions into account, in the present work we present a study of
the fluid-structure interaction problem, where the eccentricity, due the oscillation movement, behave according a springs
system acting in the inner cylinder. Using the Navier-Stokes equations, a finite volume discretization method, with second
order accuracy in both time and space, was utilized to simulate the Newtonian, single-phase incompressible fluid flow.
The circular walls of the inner and outer cylinders are represented by an immersed boundary method, based on the direct
multi-forcing model. The determined results allowed to verify the flow structures in a very qualitative way.
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1. INTRODUCTION

The flows between rotating concentric cylinders was first studied by Taylor (1923), who investigate experimentally and
analytically in the configuration of small gaps between the cylinders (compared with the radius of the internal cylinder).
In this particular case, the problem simplifies and becomes dependent only on the Taylor number Ta. It was be shown
that when this parameter increases above its critical value, counter-rotating axisymmetric vortices of toroidal shape arises
in the flow, also referred as Taylor-Couette instabilities. Later, many other researches had been carried out (Davey, 1962;
Eagles, 1977; Wereley and Lueptow, 1998) due to the great number of applications in engineering, mainly due to its
important mechanisms of transport and mixing. The Taylor-Couette flow with superposed axial flow, also has been object
of many investigations, for same reasons previously mentioned.

Some works with simplified forms of analysis are found in literature, as in: Lockett et al. (1992) and Escudier and
Gouldson (1995) for concentric configurations and non-Newtonian fluid, Escudier et al. (2002a) and Escudier et al.
(2002b) for fixed eccentric configurations and non-Newtonian fluid. More complex investigations of the Taylor-Couette
flow are given for superposed Poiseuille flow (Kaye and Elgar, 1957; DiPrima, 1960; Lueptow et al., 1992) as well as
superposed Couette flow (Ludweig, 1964; Weisberg et al., 1997; Hwang and Yang, 2004). In particular, all of these
approximations are of great interest to well drilling engineering in the oil and gas production systems.

However, features like the eccentric movement, due the interaction between the internal and external flows, (related
to internal channel) and fluids with changeable viscosity due the stress rate (non-Newtonian fluids) or with the presence
of particles immersed in the flow makes the numerical and experimental approaches of such flows very difficult to sim-
ulate. Due to its complexity, mathematical approximations and physical experiments do not give sufficient detail about
the problem, and many numerical approaches have been proposed in the literature. Recently, Hwang and Yang (2004)
obtained good results using the finite volume method with second order in space and third order in time discretizations
in cylindrical coordinates. Although the cylindrical system of coordinates fit very well in the particular configuration
utilizing static cylinders, this could became a limitation when dealing with fluid-structure like simulations.

In this context, the immersed boundary method is a computational cheap, but very efficient alternative to represent the
boundaries of a geometrically complex body while using a Cartesian mesh as the Eulerian domain Peskin (1977). Some
elaborated models of immersed boundary are the Physical Virtual Model by Lima e Silva et al. (2003) and, more recently,
the Multi-Direct Forcing by Wang et al. (2007).

In the present work the finite volume method was utilized in the discretization using the immersed boundary method
to represent the inner and outer cylinders. Global second order (except near the boundaries of the immersed boundary)
was utilized: spatially, with the central difference scheme and using a fractional step method in time. The time accuracy
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utilized appeared to be quite sufficient for the problems focused in this study. To solve the Poisson’s equation in pressure
correction step, we choose to utilize the Strongly Implicit Procedure (SIP) by Stone (1968).

2. MATHEMATICAL AND NUMERICAL MODELLING

An incompressible and isothermal fluid, with constant physical properties, was considered. The computational mod-
elling is built upon the continuity and Navier-Stokes equations given in dimensional form and Cartesian coordinates as:

∂ui
∂xi

= 0 (1)
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+
∂ (uiuj)

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+
fi
ρ

(2)

were ui and p are the velocity components and pressure field respectively, ρ is the density and ν is the kinematic viscosity.
The source term fi include the Eulerian force due the immersed boundary contribution to represent the immersed bodies
in the flow. The force field representation are made in a mathematical manner using the auxiliary Dirac delta function
δ(x), as in Eq. (3):

~f (~x, t) =

∫
Γ

~F (~xk, t) δ (~x− ~xk) d~xk (3)

where the k denotes a Lagrangian variable and ~F (~xk, t) is the Lagrangian force, determined in the points of the solid
interface. The Fig. (1) shows the Lagrangian and Eulerian domains representation in yellow and green respectively.

Figure 1: Eulerian and Lagrangian domains representation.

The Lagrangian force is determined using the multi-direct forcing method proposed by Wang et al. (2007). The model
dynamically estimates the fluid force on the solid immersed body surface in the flow. Adding the temporal parameter u∗

to Eq. (2) give:
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It could be seen here that u∗ is a mathematical term satisfying the momentum conservation equation. Now the La-
grangian force can be calculated as:

Fk
ρ

=
uk − u∗i

∆t
(5)

Determined the force Fk, it is distributed across the Eulerian points around the index k using Eq. (3). In this paper, the
discretization of the governing equations Eqs. (1-5), for the Eulerian field uses the finite volume method Patankar (1980)
in a staggered computational grid, using the Adams-Bashforth scheme in time and central-differences scheme in space,
both of second order. The velocity pressure coupling uses a two step fractional step method by Kim and Moin (1985) with
the Strongly Implicit Procedure SIP (Stone, 1968) as the Poisson pressure correction solver.
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3. PROBLEM DESCRIPTION

In Fig. (2), Ro and Ri are the extern and internal cylinders radius and Rex is the eccentricity radius. Additionally,
the channel has length L in the axial direction (perpendicular to figure plane), gap E = Ro − Ri, eccentric velocity
ωex, and the following non-dimensional parameters: radius ratio R = Ro

Ri
, aspect ratio A = L

Ro
and the Taylor number

Ta = ωRiE
ν . For the boundaries in the axial direction it was imposed the periodicity boundary condition.

(a) (b)

Figure 2: Schematics of the inner cylinder (a) supported by three strings and the corresponding β angles and (b) at rest.

The fluid-structure interaction simulated in this work has the objective of better realize the operational conditions
occurring in real problems. The tests were performed with the inner cylinder sustained by a set of three springs in an
arbitrary initial position, as depicted in Fig. 2a. Here was considered that the springs are perfectly elastic, with negligible
mass and drag properties. The moment of inertia of inner cylinder has not be considered as well as the forces applied on
z direction. Using the Newton’s Second Law and Hooke’s Law we have the following equations for the resultant forces
in each direction:

∑
FnX = Fn−1

mx − Fnx (6)

∑
FnY = Fn−1

my − Fny (7)

where,
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and were Fi are the total Lagrangian forces acting in the inner cylinder and Fmi are the forces applied by the springs.
Using the calculated forces is possible to determine the components of acceleration:

ẍn =
∑
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m

(10)
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whose can be integrate to get the velocities:

ẋn = ẋn−1 + ẍn∆t

(11)
ẏn = ẏn−1 + ÿn∆t

and integrated one second time to obtain the centroid position:

xn = xn−1 + ẋn∆t

(12)
yn = yn−1 + ẏn∆t

The steps can be summarized as follow:

1. With the initial cylinder position (x0, y0) we solve the flow equations;

2. Calculates the Lagrangian force acting on the inner cylinder surface;

3. Calculates the resulting forces using Eqs. (6 and 7);

4. Using the forces calculates the acceleration, velocities and the position of the inner cylinder centroid (xn, yn);

5. Update the forces of the springs and go to next time step.

The initial position of the inner cylinder centre was (x0 = 0.4, y0 = 0.6)m in all tests.
In order to verify the actual application built using the multi-direct forcing model, was made a comparison with

a cylindrical coordinates based code CCCil3D, developed by Padilla (2004) and with the last version of the application
using the physical virtual model. The CCCil3D has been verified based in the experimental work by Wereley and Lueptow
(1999), the numerical simulation by Hwang and Yang (2004) and an analytical approximation by Davey (1962).
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Figure 3: Non-dimensional radial velocity distribution along axial direction to Ta = 100.

The compared results are shown in Fig. 3 were we have radial velocity profiles along the z direction in the position
(x = 0.5, y = 0.76)m, exactly in E

2 . In figure is evident the better agreement with the mesh refinement, despite the fact
of a numerical thickness in the annulus, resultant from the distribution function utilized.

4. RESULTS

We start by releasing the inner cylinder in the initial position (x0, y0) and with constant angular velocity ω. The Fig. 4
depicts the time comparison between the development of the velocity components in the classical and fluid-structure
interaction cases of the Taylor-Couette flow.
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Figure 4: Velocities comparison in the Taylor-Couette flow with (black) and without (gray) fluid-structure interaction; (a)
u velocity component and (b) v velocity component.

Figure 5: Velocity vectors in the Taylor-Couette without translation in different instants of time.

It can been seen an equilibrium in the system inner cylinder-springs near the 75 seconds. Until this instant the inner



Proceedings of COBEM 2011
Copyright c© 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

cylinder experiments translation and the Taylor vortices evidence variable thickness as the annulus between the cylinders
variate. Visualizing the vectors in a cut in the x = 0.5m plane in the times 5, 10, 15, 20, 25, 30, 40 and 100 it can been
seen thick vortices in the instant t = 5s and thin ones in the instant t = 10s, shown in Fig. 5. This variation is less
accentuated in the subsequent time steps, as the system go to the rest position.

The variation of the velocities with the inner cylinder position can be visualized in Fig. 6. In the Fig. 6a we have the
variations in u velocity component started at the instant t = 15s and going to steady state. Fig. 6b show the steady state
for the v velocity in x = 0.5 and y = 0.4m and instant t = 100s, in comparison with the classical Taylor-Couette flow.
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Figure 6: Velocity profiles in the fluid-structure interaction case; (a) u velocity in the center of the Taylor vortices and (b)
steady state v velocity comparison with the classical Taylor-Couette flow.

5. CONCLUSIONS

The immersed boundary method has suited very well to represent the cylinders in the simulations performed in the
present work and allowing, among other things, the natural development of Taylor vortices. As could been observed in
the presented results, the periodic boundary conditions in the z direction allowed the classical Taylor-Couette and the
fluid-structure interaction version, even with the short aspect ratio utilized. The developed application has proven to be
very capable in the simulation of the proposed tests and the presented results has demonstrated a qualitative agreement
with the physics of the analyzed fluid-structure interaction problem.
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