
Proceedings of COBEM 2011
Copyright c© 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

ANALYSIS OF MOVING MESHES ON WENO SCHEMES PERFORMED
BY A TOPOLOGICAL DATA STRUCTURE

Fernanda Paula Barbosa, fernandapaulab@gmail.com
Antonio Castelo Filho, castelo@icmc.usp.br
José Alberto Cuminato, jacumina@icmc.usp.br
Instituto de Ciências Matemáticas e de Computação, USP- ICMC, São Carlos, SP, 13566-590, Brazil

João Luiz F. Azevedo, azevedo@iae.cta.br
Instituto de Aeronáutica e Espaço, CTA - IAE - ALA, São José dos Campos, SP, 12228-903, Brazil

Abstract. The present paper addresses the adaptation of high order of accuracy weighted essentially non oscillatory
(WENO) schemes when using unstructured meshes that are deformed thought time. WENO schemes are able to provide
high order of accuracy on general unstructured grids. However, computational costs tend to rise quite sharply as the order
of accuracy is increased due to the obvious increase in the size of the computational molecule and, at least partially, due
to the inherent additional search work required to perform calculations with such increased molecule in unstructured
grids. Moreover, WENO schemes are characterized by adaptive computational molecules, which may change from one
iteration to the next, for the same grid point or control volume. In such context, this work will improve the applicability of
high-order WENO schemes by coupling a standard cell centered, unstructured grid, finite volume method with an implicit
topological data structure, the MateFace, which will, then, handle all the grid-related functions, including moving mesh
operations. The computations are performed considering compressible flow of a perfect gas, modeled by the 2-D Euler
equations, written in conservation-law form. Spatial discretization uses a 4th-order WENO scheme, implemented for a
cell centered, finite volume method on general unstructured grids. Time march uses explicit Runge-Kutta schemes for
solution advancement in time. The MateFace data structure is used to represent the mesh, controlling every single access
to the mesh points and provides a complete set of operators for moving meshes. The MateFace is an implicit topological
data structure specialized in representing meshes formed by different elements, such as triangles, quadrilaterals, or even
mixed mesh elements. Some numerical experiments are performed involving unsteady flows around NACA0012 airfoil,
and the results are presented to show the result of the moving mesh during the simulation.
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1. INTRODUCTION

A essential step in a numerical simulation is the definition of a suitable discretization of the domain where the simula-
tion will be performed. In many applications, one of the most common aspects to the CFD problem is the complexity of
domain geometry where the analysis of the fluid flow is required. In such context, the geometrical model places an impor-
tant role, once related problems in this field, like representation of complex domains, spatial decompositions, manipulation
and movement of meshes, are naturally managed by methods developed in geometric modeling research. Topological data
structures offer several advantages when performing a deformation on a mesh. These structures allow movement through-
out the mesh without modifying its topology and there is always the possibility of merging it simulation/deformation cycle
on a completely automatic and efficient form.

Over the past several years, the Computational Aerodynamics Laboratory of Instituto de Aeronáutica e Espaço (IAE)
has been developing CFD solvers for two and three dimensional systems (Scalabrin, 2002) and (Basso and Azevedo,
2000). One branch of the development effort is aimed at the implementation of high-order methods suitable for prob-
lems of interest to the Institute, i.e., external high-speed aerodynamics. The current 2-D code has implementations of
ENO and WENO schemes up to fourth order (Wolf and Azevedo, 2006). The essentially non-oscillatory schemes (ENO)
and the weighted essentially non-oscillatory schemes (WENO) are implemented in cell centered, finite volume context
for unstructured meshes. The ENO and WENO schemes have been developed with the purpose of accurately captur-
ing discontinuities appearing in problems governed by hyperbolic conservation laws. The computations are performed
considering compressible flow of a perfect gas, modeled by the 2-D Euler equations, written in conservation-law form.
Spatial discretization uses a WENO scheme (Wolf and Azevedo, 2006), implemented for a cell centered, finite volume
method on general unstructured grids. Time march uses explicit Runge-Kutta schemes for solution advancement in time.

The LCAD1 group has been working with the development of topologic data structure and mesh generation. The Mate
Face data structure, (Cunha, 2009, Cunha et. all., 2008) is used to represent the mesh, controlling every single access

1http://www.lcad.icmc.usp.br/
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to the mesh points by providing a complete set of iterators and operators. The Mate Face is an implicit topological data
structure specialized in representing meshes formed by different elements, such as triangles, quadrilaterals, or even mixed
mesh elements.

The first study within the context of this work was improving the computational scheme of high-order WENO schemes
by coupling a standard cell centered, unstructured grid, finite volume method with an implicit topological data structure,
the Mate Face, which will, then, handle all the grid-related functions and operations (Barbosa et. all., 2010).

The main motivation of this paper is to include the procedure of moving meshes inside the CFD code. The results
obtained from experiments based on a euler formulation for unsteady CFD code using unstructured grids are discussed.

The dynamic meshes are commonly used in the simulation of problems on domains whose geometry varies in time.
Virtual springs are placed in the mesh to rearrange its vertexes whenever the domain is changed. The most commonly
used types of springs are: longitudinal, torsional and semi-torsional. Here, will be used the type semi-torsional.

2. THEORICAL FORMULATION

The formulation used in this work is based on the twodimensional Euler equations. Due to the use of unstructured
meshes and a finite volume discretization, these equations are used in the Cartesian form, they can be written as

∂

∂t

∫ ∫
V

Qdxdy +
∫

S

(Fdy −Gdx) = 0, (1)

where V represents the volume of the control volume, S is its surface, Q is the vector of conserved properties, F and G
are the flux vectors in the x and y directions, respectively, defined as

Q =


ρ
ρu
ρv
e

 , F =


ρU

ρuU + p
ρvU

U(e + p) + xtp

 , G =


ρV
ρuV

ρvV + p
V (e + p) + ytp

 , (2)

where ρ is the density, u and v are the cartesian velocity components and e is the total energy per unity of volume. The
pressure p is given by the perfect gas equation, written as

p = (γ − 1)
[
e− 1

2
ρ
(
u2 + v2

)]
, (3)

and γ represents the ratio of specific heats. The contravariant velocity components U and V are determined by

U = u− xt and V = v − yt, (4)

where u and v are the cartesian components of the fluid velocity, while xt and yt are the cartesian components of the mesh
velocity in the unsteady case.

3. NUMERICAL FORMULATION

In the present work, the 2D Euler equations are solved in their integral form as

∂

∂t

∫
V

QdV +
∫

V

(∇ ·P) dV = 0, (5)

where P = F~i + G~j. Applying the Gauss theorem in Equation (5), we have

∂

∂t

∫
V

QdV +
∫

V

(P · n) dS = 0, (6)

where V represents the volume of the cell, S represents the surface of the cell and n is the unit vector normal to the
surface S. The Equation (6), discretized in a finite volume context centered in cells, can be rewritten for a control volume
i as

∂Qi

∂t
= − 1

Vi

∫
Si

(P · n) dS, (7)

where Qi is the mean value of Q at time t, in the control volume Vi, defined as

Qi =
1
Vi

∫
Vi

QdV. (8)
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Therefore, a final formulation for a discretization of Euler equations in two dimensions inside a finite volume context is
of form

∂Qi

∂t
= − 1

Vi

nf∑
k=1

(
Fk

~i + Gk
~j
)
· Sk, (9)

where nf is the number of faces, or edges in the two dimensions space, of the volume control.
The control volumes considered in this work are triangles and they can be decomposed into a finite number of line

segments Γj . One should observe that the control volumes could be composed by any type of polygon, because the really
important aspect is that its bounding contour could be decomposed into a finite number of line segments. The surface
integral from Equation (6) can be discretized using N -point Gaussian integration formula∫

Si

(P · n) dS ≈
∑

j

|Γj |
N∑

l=1

wlP (Qj(Gl), t) · n, (10)

where Gl and wl are, respectively, the Gaussian points and the weights on the Γj line segment. For the second-order
accuracy scheme just one Gauss point is necessary for the integration. Given the coordinates of the points in the corner of
the control volume face, z1 and z2, it can be obtained the centroid point of the face,

G1 =
z1 + z2

2
. (11)

In the case, the weight, w1, is chosen as w1 = 1. For the third-order schemes, two Gaussian points are necessary along
each line segment. Their values are given by

G1 =
√

3 + 1
2
√

3
z1 +

(
1−

√
3 + 1
2
√

3

)
z2 and G2 =

√
3 + 1
2
√

3
z2 +

(
1−

√
3 + 1
2
√

3

)
z1, (12)

where the respective weights, w1 and w2 are given by w1 = w2 = 1/2
Using the method described above, one can compute values of Qi in some instant, t, and then, from these mean

values, one can reconstruct polynomials that represent the primitive variables ρ, u, v and p. Finally, it is possible to
compute values of the conserved variables in the Gaussian points. Due to the discontinuity of the reconstructed values of
the conserved variables over the cell boundaries, one must use a numerical flux function to approximate these flux values
on the cell boundaries. In this paper, we have used the Roe flux difference splitting method (Roe, 1981) to compute such
approximations. An explicit Runge-Kutta scheme of five stages with second order of accuracy was used to obtain the time
solution of the governing equations, proposed by Mavriplis (Mavriplis, 1988).

4. THE DATA STRUCTURE TOPOLOGICAL - MF

The Mate Face (MF) is an implicit topological data structure designed to store unstructured meshes. It implements
many operators and iterators used to manipulate the mesh. The MF data structure allows the representation of two-
dimensional meshes (simple 2D or superficial) and three-dimensional meshes (also called volumetric meshes). For a
two-dimensional mesh, it can be of simple or hybrid type (triangle and/or quadrilateral), and a volumetric mesh can be
only the simple type (which includes tetrahedron, prism, pyramid or hexahedron elements). The MF uses half-edges for
superficial meshes and half-faces for volumetric meshes. The representation of vertexes, edges and cells is explicit, while
topological operations are implicit.

The MF is a flexible data structure that can represent different mesh types, including meshes with different element
types at the same time, such as triangles and quadrilaterals together. It implements a technique of partial allocations of
vectors in order to represent vector of elements. In this way, memory blocks are dynamically set, as new elements are
added in the mesh. This strategy eases the problem of memory space for vector of elements.

The geometric information about the mesh is stored in the vertexes, where each one is associated to position of the
space, base for the most of geometric operations. Each vertex in the MF also store a reference to its mate cell through an
identification number. The treatment of singularities is also implemented, facilitating diverse query types as star queries
and operations on non convex meshes. The edges in MF are represented explicitly, and also stores the adjacent cells that
share it. This representation has the advantage that information can be directly stored in the edge, as for example the id
of adjacent cells of the edge.

The representation of cells is obtained by storing references to vertexes, edges (and faces in the three-dimensional
case). Beyond that, mate cells can be retrieved through incident edges or faces.

One consideration about the organization in memory of mesh elements in two-dimensional meshes is that for each
cell, the number of vertexes is equal to the number of edges and neighbors. This feature eases the implementation and
representation of relationships of neighborhood. Then, by using a counter clock orientation, every neighbor cells are
indexed in the mesh.
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Besides the available traverse queries, geometric operators are also available, and are very used in the simulation code,
such as the distance between two points, the area of a cell, the localization of a given query point (like inside a triangle or
on the edge of it), the coordinates of a centroid of a cell, among others. The MF supports loading many mesh file formats,
such as VTK and VRML.

4.1 Interface and the Integration Numeric - Fortran and C++

As separated research results, the simulator program and the data structure library were developed at different pro-
gramming languages. In order to the simulation program (FORTRAN code) makes use of the data structure library (C++
code), an integration scheme was performed at compilation time. The proposed solution for the integration of technolo-
gies was the development of a mapping layer, acting as an interface between technologies, which maps operations of the
Mate Face into functions that can be used by the simulator program. Figure 1 shows the integration scheme used to map
and link both programs. The interface translate and controls every access to the mesh by the simulator program. All
information exchanged is made at runtime between both codes using main memory for sharing data.

The interface is defined as a set of functions in such a format that can be called by the simulator program. Every call
of functions in the interface share a controlled portion of main memory to pass information in and out. The processed
information is formatted by the compiler, which performs a correct alignment of bytes in memory. By calling a set of
functions in the interface, the simulator program can access the information of mesh, either performing all operations
available in the Mate Face structure.

There are many advantages of centering all the mesh information and access in a data structure. One advantage
is that the data structure is specialized in mesh control and consumes less memory to represent the same information
previously stored inside the simulator program. Instead of wasting memory and time searching lots of tables of redundant
mesh information, a single data structure optimizes and centralizes the mesh usage. The new scheme separates the mesh
representation from the simulator core code.

Figure 1. Integration scheme of the solver with the topological data structure library.

The interface layer maps all the iterators available in the Mate Face structure, organized in sets of functions to start,
accesses current information, moves to the next item, and verifies if the iterator has ended. Examples would be simple
queries of the type “loop over all cells (edges, vertexes)” to more complex queries such “retrieve all cells in the star
(neighborhood) of a given vertex”. Beyond such queries, the interface provides common mesh information such as area
value of the triangles of the mesh.

Another advantage of using a data structure is that Mate Face supports hybrid cells, such as triangles together with
quadrilaterals, in the same mesh. All elements of the mesh will be automatically managed along with the proper iterators.
Future functionalities include moving meshes controlled by the data structure triggered by simulator program data.

5. Dynamic Meshes

Dynamic meshes are created by methods that seek to replace the mesh vertexes thought simulations of physical forces
of attraction and repulse. They are commonly used in the simulation of problems on domains whose geometry varies
in time. In this case, the mesh is seen as a domain where the vertexes (seen as particles) move until the system reach a
configuration of balance of forces. In general, such methods simulate a spring system, where each edge connecting two



Proceedings of COBEM 2011
Copyright c© 2011 by ABCM

21st International Congress of Mechanical Engineering
October 24-28, 2011, Natal, RN, Brazil

vertexes is seen as a spring which has a width of equilibrium. The springs contribute in the movement of the vertexes in
order to achieve the balance configuration (Batina, 1990) (Degand and Farhat, 2002).

Assuming that the incident forces in a vertex had been calculated, it is necessary to employ a movement equation in
order to controll the dynamic behavior of the vertexes. From the second law of Newton, we have:

mẍ = ~F , (13)

where x is the vector of positions of the vertexes in the mesh, M is the corresponding mass of vertexes and ~F are the
forces applied on vertexes. This model can be extended for the case mass-spring-damper, where the force ~F is computed
though the forces applied on the vertexes, given by:

~f : force between vertexes, analogous to a spring, and affect only adjacent vertexes.

~fd: damper force, against the movement and contribute to the system convergence.

The system final equation can be written as the following second order ordinary differential equation:

mẍ + dẋ = ~f . (14)

A first-order differential equation can also be used to model the problem. Although more likely to park in a local
minimum, This formulation has better numerical stability. The movement of the vertexes is determined by the equation:

~f − dẋ = 0 (15)

The problem can be simplified even more in a system known as quasi-static of form:

~f = 0. (16)

The formulation of ~f is the key for the system solution. In the case of elastic mesh, we will write ~fi as the resulting
force in a vertex i under the influence of other vertexes j. There are many ways to calculate this force value, but the
analogy with springs are the most known. Such approach can be described as follows. Springs are assigned between
vertexes (or in edges between them), and the force value is determined by the Hook law:

~f = −k~δ , (17)

where k is the spring stiffness coefficient and ~δ is the displacement.
Each mesh edge is considered as being a spring having a stiffness coefficient. Such spring is called as a longitudinal

spring. Considering that the resulting force value in a vertex is calculated combining the springs that are incident to it,
the mesh connectivity will determine which vertexes j will contribute in the calculus of incident forces in vertex i, as the
following equation shows:

~fi =
∑

j∈V (xi)

kij(~xj − ~xi −~lij) , (18)

where ~lij is the balance vector between vertexes i and j, V (xi) represents the set of vertexes that are adjacent to i.
In this type of problem, it is interesting that some properties of original mesh are preserved, for example, the proportion

between the edges width. In this case, the vector ~lij of Equation (18) is defined from the edge between the vertexes i and
j from the original mesh (Blom, 2000) and the force equation can be written as:

~fi =
∑

j∈V (xi)

kij(~δj − ~δi) , (19)

where ~δi is the displacement of vertex i.
In order to preserve the size proportion between elements, the spring coefficient can be calculated as ?

kij =
1

|~l0ij |
(20)

where |~l0ij | is the width of the edge between the vertexes i and j from original mesh, i.e., before the boundary deformation.
One problem with this type of modeling is that it cannot be guaranteed that a vertex do not move thought an edge,

which can generate inconsistent elements, i.e., elements with negative area values. The main cause of the longitudinal
spring deficiency is that these springs type do not consider the area value elements or the angle between edges. One
solution for this problem consist to aggregate torsional springs (Farhat et. all., 1998) to the system. Consider the triangle
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Figure 2. Torsional spring scheme.

tijk which vertexes are designed by vi, vj and vk, as shown in Figure 2. Let θijk
i the angle between the edges ei and eik.

Let A(tijk) the area of triangle tijk. The stiffness coefficient of a torsional spring in the vertex vi of triangle tijk is given
by:

Cijk
i =

1

1 + cos(θijk
i )

1

1− cos(θijk
i )

=
1

sen(θijk
i )2

=
(eij)2(eik)2

4A(tijk)2
, (21)

Aiming at simplifying the torsional spring based formulation, adding information about internal angles of triangles,
into systems based on longitudinal springs, the concept of semi-torsional spring was proposed by (Blom, 1990). The idea
beyond semi-torsional formulation is to promote the influence of internal angles of triangles over the stiffness coefficient
of longitudinal springs, which implies the exclusive presence of longitudinal springs in the system. This influence in the
internal angles of triangles over longitudinal springs is determined by the ratio between the stiffness coefficient of the
longitudinal spring and the value of the opposite angle.

Consider the Figure 3 a). The longitudinal spring coefficient in the edge eij is divided by the internal angle of triangle
tijk in vk(θijk

k ). The resistivity coefficient of the semi-torsional spring of Blom, is given by:

k∗ij =
kij

θijk
k

(22)

Note that the value of k∗ is minimally altered when the computed triangle is equilateral, once that θijk
i = θijk

j = θijk
k .

The more acute the angle, the more tight is the spring. But, the more obtuse the angle is, the less tight is the spring, which
it is not desirable.

An improvement in the semi-torsional springs was introduced by (Zeng and Ethier, 2001). The basic idea consist of
add the coefficient of a torsional spring to the opposite longitudinal spring coefficient. In this manner, the total longitudinal
stiffness coefficient kt

ij of the spring between vertexes vi and vj (Note Figure 3 b)) is given by

kt
ij = kij + Cijk

k + Cijl
l , (23)

where C is the spring torsional stiffness coefficient given by Equation 21.

(a) (b)

Figure 3. a) Semi-Torsional spring proposed by Blom; b) The torsional springs in vk and vl are combined to the longitu-
dinal spring in the edge eij .

The advantage of the semi-torsional formulation is that it is applicable when there are great deformations in the mesh.
Another advantage when compared to torsional springs is lower number of computations operations during its execution.
However, the stiffening of torsional springs by using semi-torsional springs do not avoid the appearing of invalid elements
for all cases.
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5.1 Execution of Dynamic Mesh

The solution of the governing equations system of the dynamic mesh leads to the displacements bounded to the
vertexes inside the moving mesh. This system is linear and can be solved iteratively by the method of Gauss-Seidel,
where the new displacement of the iterative vertex vi, ~δnew

i , is dependent of the previous calculated displacement ~δold.
For the case of semi-torsional springs, for example, the value of ~δnew

i is given by

~δnew
i =

∑
vw∈V (?vi

) kiw
~δold

w∑
vw∈V (?vi

)

(24)

where w are values from the mesh connectivity.
From the Equation (24) it can be seen that ~δnew

i equals the mean of the neighbor displacements, weighted by the
stiffness coefficient of the spring. Once the vertexes are dislocated, the spring torsional coefficients that composes the
semi-torsional coefficient α must be updated after each iteration.

Having as parameters the mesh to be deformed (vertexes are displaced), the set of vertexes from boundary of the mesh
and the set of displacements of vertexes, it is directly achieved that an iterative process can be applied which uses the
Equation (24), where the values of the new displacements of vertexes are updated at each iteration. The stop criteria of
the iterative process is the maximum absolute value from the relative difference between the values of the displacements
obtained between an iteration and the next for all vertexes in the mesh. Therefore, it can be noted that during the process
there is no effective displacement of vertexes, only the new displacements updated at each iteration. The final coordinates
are calculated from the final displacements once the process converges.

5.1.1 Active Vertexes

The concept of relative displacement previously mentioned as a stop criteria can be expressed by the following equa-
tion:

ε =

∥∥∥~δ(t)
w − ~δ

(t−1)
w

∥∥∥∥∥∥~δ(t)
w

∥∥∥ (25)

where ε represents the tolerance level defined by the specialist of the domain, and w is the iterated vertex. Although
this strategy analyzes vertexes of refined regions and of less refined regions of the mesh with the same measure, the
stop process can adapted, once less refined regions of the mesh have bigger edges being less sensitive to the relative
displacement than the refined ones. Therefore, it is more appropriated that the influence of the relative displacement vary
according to the local refinement of the moving mesh:

maxvw∈T


∥∥∥~δ(t)

w − ~δ
(t−1)
w

∥∥∥
ew
min

 ≥ ε (26)

where emin represents the width of the smaller edge incident to the iterated vertex vw, T refer to the set of vertexes of
the mesh. The calculus of value of ew

min is performed only at the beginning of the process, before the displacement of the
boundary.

In this way the value of ε becomes more intuitive to analyze, i.e., for ε = 0.01 the stop criteria will be satisfied only
if, for each vertex vw ∈ T , the relative displacement is less than 0.01ew

min. The value of ε can be seen as a percentile
factor of the smallest edge, which is related to the refinement level of the mesh. There is a relaxation of the stop criteria
in regions where the elements of the mesh are less refined.

An efficient way to perform the above mentioned process controlls the number of times in which the vertexes are
visited and also controlls the sequence that it occurs, influencing directly the processing time and in the convergence of
the employed numeric method. A more interesting process sequence in the case consists of iterate the vertexes in layers,
starting from the border to the center of the mesh. In this approach, the vertexes are labeled in the following way:

• Active: vertex ready for processing,

• Inactive : vertex not being processed,

• Fixed: still vertex.

Once each vertex can have only one label, we can separate all vertexes from the mesh into three disjoint sets: A, I
and F , representing the set of active, inactive and fixed vertexes in the same order. Initially, all vertexes of the mesh are
labeled as follows:
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1. Vertexes belonging to the border of the mesh are labeled s fixed;

2. Vertexes directly connected to the fixed vertexes are labeled as active, having displacement non zero;

3. All non-labeled vertexes in the two steps before are labeled inactive.

In this way, only the active labeled vertexes are iterated: A is initially composed of the inner vertexes, adjacent to
the border of the mesh, leading to a major displacement at the first iterated vertexes. In this new methodology, it is
not unusual the alternation between the active and inactive label to the same vertex during the iterative process: when
its relative displacement becomes insignificant, an active vertex become inactive. Nevertheless, if its displacement is
significant, its status will remain as active, as well as all vertexes inactive adjacent to it.

6. RESULTS

In this section we show some results from the simulations with moving meshes. Our focus is to analyze the behavior
of the discussed algorithm for displacement of the mesh. Then, we show at different stages of simulation, the resulting
mesh of each iteration of the solver. The chosen mesh represents a NACA 0012 airfoil section, object of test cases in
many related works. The experiment moves the mesh and analyzes its integrity by checking good triangles. The mesh for
tests is composed of 5908 vertexes, 11634 cells and 17542 edges.

The Figure 4 shows an example of mesh for the NACA 0012 airfoil section. The results here shown correspond to the
harmonic movement with forced pitching. For the tests the airfoil harmonic movement is defined by the incidence angle
equation as a time function:

α(t) = α0 + αmsen(ωt) (27)

where αm is the amplitude of the oscilatory movement, α0 is the initial incidence and ω is the angular frequency of the
movement.

The boundary conditions in the external border are of the type non-reflexive to guarantee that do not exist reflection in
the information that propagate outside of the field.

(a) (b)

Figure 4. a) General view of the computational mesh unstructured generated for the NACA 0012 airfoil; b) enlarged
airfoil region showing refinement details.

An example of displacement of the mesh that represents the airfoil NACA 0012 can be seen in Figure 5, under
simulation conditions. In 5(a), it is shown that the deformed mesh after 800 steps of solver execution, while in 5(b) is
shown the same mesh processed after 1200 steps. It is important to analyze that the displacement process must adapt the
elements in the deformed region, updating the new areas of triangles and the new mesh velocities (measured from the
mean of vertexes velocities from each cell). In the resulting meshes, all triangles have positive area and none cross edges.

7. CONCLUSION

In many applications, one of the most common aspects to the CFD problem is the complexity of domain geometry
where the analysis of the fluid flow is required. In such context, the geometrical model places an important role, once re-
lated problems in this field, like representation of complex domains, spatial decompositions, manipulation and movement
of meshes, are naturally managed by methods developed in geometric modeling research. Topological data structures
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(a) (b)

Figure 5. Deformations of the mesh representing the NACA 0012 airfoil, using αm = 10 and ω = 0.12165 a) Simulation
after 800 steps e b) Simulation after 1200 steps.

offer several advantages when performing a deformation on a mesh. These structures allow movement throughout the
mesh without modifying its topology and there is always the possibility of merging it simulation/deformation cycle on a
completely automatic and efficient form.

The dynamic meshes are commonly used in the simulation of problems on domains whose geometry varies in time.
Virtual springs are placed in the mesh to rearrange its vertexes whenever the domain is changed. The most commonly
used types of springs are: longitudinal, torsional and semi-torsional. Here, we used the semi-torsional type.

Results showed different mesh displacements over the discussed procedure for simulations in the NACA 0012 airfoil.
In the meshes shown it can be seen the arrangement performed around the internal moving border, keeping cells area
proportion on dense areas. Future work is to use the mesh velocities information in the CFD code and perform aeroelastic
analysis.
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