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Abstract. In this work a model for damage identification in plates fréva vibration characteristics based on the structural
flexibility matrix is presented. The method has been deeeltp identify and quantify damage in rectangular plates. It
is assessed by considering changes in the reduced flexitiditrix of the structure, which is only related to the measur
degrees of freedom and may be accurately estimated from affélae lower frequency modes in a modal test. The
main idea is that modal parameters are a function of the giajgiroperties of the structure. The finite elements method
(FEM) is used to model a rectangular plate and the damage.fi€le Luus-Jaakola optimization method is applied to
minimize the difference between the flexibility matrix ol#e from modal testing and the analytical flexibility matri
The Luus-Jaakola optimization method presented goodtseduwdwever with a high computational cost. The flexibility
matrix itself was used to provide an estimation of the damagalization. The objective is to minimize the number of
parameters updated for the Luus-Jaakola method and the gtatipnal cost for the correct identification of the damage.
Some numeric examples for different damages scenarieseserged.
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1. INTRODUCTION

Several phenomena can cause damage to a structure and tinpiotse its proper operation and endanger people’s
lives, like impacts, actions of wind, people and vehiclesving etc.

For the security of people and structures, many authors hsee dynamic tests to determine characteristics of the
structure vibration, such as frequencies, modes and maaapihg, in order to evaluate possible structural failure (A
vandi & Cremona, 2006, Jauregui & Farrar, 1996, Changl, 2003, Carrilo & Laier, 2006). The basic thought for
this methodology is that the modal parameters are functiérise physical properties of the structure (mass, stifnes
and damping) and therefore changes in physical properiiebevreflected in the modal properties, which in turn can
be obtained in an experimental trial and used to deduce aheutamage. The structural damage identification in its
initial stage and the continuous monitoring of the struettontribute to the reduction of maintenance or repair casis
increase its reliability and lifetime.

In this paper, the finite element method is used to model amngctar plate, where the damage in the structure is
described through a cohesion parameter (Stutz, 2005). nMeesie problem of identifying structural damage is defined
as a minimization problem, where a set of cohesion parasi&etetermined to minimize a functional based on the
difference between the experimental flexibility matrix @nel one provided by the finite element model. The Luus-Jaakol
optimization method was used to solve the inverse probledaofage identification.

2. MATHEMATICAL MODEL

From an appropriate spatial discretization, using thedfieiement method, the equation of motion of the structure is
given by

Mi+ Ca+ Ku=f, 1)

whereM, K andC are, respectively, the matrices of mass, stiffness and ohnwith dimension ofv x n, uis an x 1
vector of generalized displacements dnslan x 1 vector of generalized forces.

The undamped natural frequencies and mode shapes of thustrgan be obtained from the eigenvalue-eigenvector
problem,

(K —w;M)¢; =0, 2)
wherew; e ¢, refers, respectively, to thieh natural frequency and to thieh mode shape of the structure.

Considering the mode shapes of the structure normalizédredpect to the mass matrix, one has

dTM® =1, )
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STK® = A, (4)

where® is the modal matrix and’ means the transpodeis the identity matrix and\ is a diagonal matrix consisted of
the squared values of the natural frequencies. Accordifmtet, the stiffness matrix can be written as

K= (®A'®T)" L. )

The flexibility matrix G of a structure is defined as the inverse of its stiffness matrd, therefore, it can be written
in terms of the modal parameters as

G = (A '@T). (6)

Considering Eq. (6), the flexibility matrix can be rewrittes

i=1

wiQ

where® stands for the tensor product.

The Eqg. (7) shows that the modal contribution to the flexipitnatrix decreases with the increasing of the frequency,
which characterizes a great advantage to the use of theiftigxibatrix for damage identification purposes, since n®de
of higher frequencies are more difficult to obtain in a mo@stt Due to pratical limitations, the following flexibility
matrix can be obtained from an experimental test.

Nexp
1

Gexp = Z 2—¢)i,exp ® ¢)i,exp’ (8)

i=1 i,exp

wheren.y,, is the number of modes obtained from the modal testéand,, andw; ., are, respectively, theth mode
shape and@th natural frequency, determined only in a subsetoflegrees of freedom of the structure. From Eq. (8), it
should be noted that the size of the matix,,, depends only on the number of degrees of freedom (DOF) which were
measured in the experiment.

To obtain an inverse relation between the analytical fléijhinatrix G, related only to then DOF measured in the
vibration test, and a matrix of the same size, containingrmftion about the stiffness properties of the structure, t
original stiffness matrix must be partitioned

Kmm Kmo
K= |: KT Koo :| ) (9)

whereT" means transposed, and the subscriptando refer, respectively, to the DOF measured and omitted. Ithgan
seen (Alvinet al, 1995) that a reduced flexibility matrié, Eq. (10), may be obtained as the inverse of the reduced
stiffness matrix, obtained by Static Guyan Reduction (GI\&65),

G =K'= [Kum - KoK 'K ]. (10)

In this paper, the measure of cohesibis used to describe the behavior of the damage in the steiCtiis parameter
is related to the connection between the material pointcande interpreted as a measure of the state of local cohesion
of the material, wheré < g < 1. If 5 = 1, itis assumed that all connections between the materiatpare preserved,
there is no damage in the structure.Sli= 0, a local rupture is considered, since all connections betvtke material
points were removed.

In the present model, it is considered that the damage aftedy the elastic properties of the structure, so that the
stiffness matrix obtained by the finite element method iggily Eq. (11)

K(fn) = / Bu(x,y) B” () Eo B(x,y) d dy, (11)
where,
P )
0 0 p
u=1_y (13)
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and
82
0xZ
B=| Z: |N (14)
82
28:E6y

In these equationd,, and!, corresponds to the lengths of the plate in the axes x and gecésely, 5, is the
approximation of the fielgh obtained from its spatial discretizatioB, is the differential discrete operatQk, a matrix
containing the interpolation functiong; andv are, respectively, the elastic modulus and Poisson’s.ratio

In this paper, the discretization of the fiefdused the same mesh of the displacement field. It should bd ttzaethe
discretization of the fiel@(x, y) does not depend on the discretization of the displacemdait §ie that different meshes
can be adopted.

It was considered that the fieé{x, y) for each finite element of the plate is interpolated by foudalovalues, see
Fig. 1.

3 il 3 I

Figure 1. Distribution of the nodal cohesion paramters erictangular element.

The problem of damage identification can be defined as an mgatiimn problem where the following functional must
be minimized

mﬂin F, satisfying 0 < g <1 (15)
with,
[Gexp — G
FB) = o= = (16)
2||GeX1o - GOH

whereG, is the reduced flexibility matrix computed with the iniciatienate of the fields.
In order to present a more direct interpretation of the dardescribed by the cohesion parametethe damage
parametetD is defined, which represents the intensity of the damage as

D=1-8. (17)

3. OPTIMIZATION METHOD

In the damage identification problem proposed, the aim isrtimémization over the cohesion parameseof an error
based on the difference between the experimental flexibiliatrix and the original flexibility matrix of the FEM. For
this, it will be used the optimization method described iis Bection.

3.1 Luus-Jaakola Method

The basic idea of the stochastic algorithm of Luus & Jaakd®/8), is to select random solutions in a region that
decreases in size over the course of iterations, as the psedel below.

Choose the size of initial searcf;

Choose the number of internal,; and external l00pPSext;
Choose the contraction coefficiant

Choose the initial solutiof™ = 3,
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Fori =1 : Next
Forj =1: nin
(7 = p* + RirU—1 whereR is a diagonal matrix consisted by random numbers betwesras 0,5
It 7(87) < F(B*)
pr=p
end (If)
end (For)
ri=(1- c)r(i’l)
end (For)

4. RESULTS

In this paper, it was considered a clamped aluminum gla%en long, 0, 005 m thick, 0, 5 m wide, nominal elastic
modulusE, = 7.2582 x 10'° Pa and Poisson'’s ratio = 0.33.

The plate was discretized by the finite element method in érhents, where each element has four nodes and each
nodal point has three degrees of freedom: one transverser(e)rotation in x(6,) and one rotation in y6,). The
structure has a total of 81 nodes and 216 DOF, because nims nbthe structure stay in the clamped side.

The imposition of the damage to the beam is accomplished¢jirthes parameter that describes the damage. In the
damaged nodes we hage# 1 (ou D # 0), and the in the nodes where there are no damggesl (ou D = 0). The
FEM with the required values of the cohesion parameter id tsgenerate the frequencies and vibration modes of the
damaged structure, thus representing the experimental dat

Three different damage scenarios were considered: onlgamaged region, two adjacent damaged regions and two
distant damaged regions. Table 1 shows the cases considered

Table 1. Damage Scenarios

CASE POSITION DAMAGE (D)

1 12 0.4
2 19 0.2

3 33 0.2

4 35 0.3

5 41 1

6 76 0.2

7 30;39 0.2;0.3
8 21;47 0.2:0.2
9 12;66 0.2;0.4

Since the Luus-Jaakola method consists of a random seastigwed a considerable sluggish to update at once all
the 81 parameters of the model. For this reason, it was usachaitjue to locate the damaged region before the use the
optimization method and thus diminished the quantity obpaeters to be updated and therefore the runtime of the model.

Because the flexibility matrix is the inverse of the stiffe@satrix, the product of the experimental flexibility matrix
by the reduced stiffness matrix for a structure without dgenavill result in an identity matrix. Therefore, for the &on
of the damage structure, we have

L=GupK—1, (18)

so when all of the DOF of the structure are measured in the htestaif the structure has any damaged component, only
the DOF of these elements will have values different fronozer

A vector of localizationP; can be defined, so that ifgh component corresponds to the sum of the modules of the
components that form theth column of matrixL, then

P => [Lijl, (19)
=1

wherem is the total number of measured DOF.
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Since not all DOF and vibration modes were considered asuneéén the modal test, what we get by Eq. (19) is
the profile of the DOF to the structure without damage, thusetsubtracted from the result of Eq. (19) to the structure
with damage, there is an abrupt change from the DOF relatdtbtdamage. Thus it was possible to reliably identify the
damaged region.

In this paper, only the transverse DOF were considered asureand the first 10 vibration modes were taken. In
Fig. 2 itis presented, in black and red, respectively, te&ithution of the cohesion parameters and the transverge@O
the structure.

65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81
57 58 50 60 6l 62 63 64
64 65 66 67 68 iy 70 71 72
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Figure 2. Distribution of transversal DOF and cohesion peaters.

In Fig. 3 the first simulation result is shown. The damage wgsoised at node 12, case 1, with D = 0.4. In Fig. 2aitis
depicted the vector of localizatiol®;, showing an abrupt change around the tenth DOF. LookinggoJiit can be see
that the nine nodes around node 12 (nodes 2, 3, 4, 11, 12, 1312(hd 22) should be upgraded. In Fig. 3b it is shown
the result of the Luus-Jaakola optimization method updatimy the region indicated earlier. As can be seen, theilmtat
and severity of the damage are indicated precisely.
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a) localization vector; b) damage severity with Luus-Jaakola method.

Figure 3. Damage identification for Case 1.

In Fig. 4, the result of the simulation of damage at the cladrjpee is shown. The damage was imposed at the node 19,
through the damage value (D) 0.2. A sudden change is obseexedo the DOF 17 and that corresponds to the region of
the cohesion parameter 20 (see Fig. 2). The parametersoktiion were updated and identified precisely the damage.
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20
a) localization vector;

b) damage severity with Luus-Jaakola method.

Figure 4. Damage identification for Case 2.

In Fig. 5a, the result of simulation where the damage was sag@t the node 33 through the damage value (D) 0.2
is shown. In this case the DOF 29 was the first to introduce desudhange and is associated to the node 33 where the
damage is located. The parameters 23, 24, 25, 32, 33, 3424h#43 were updated as they were in the indicated region
and identified the damage properly, as shown in Fig. 5b.
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a) localization vector b) damage severity with Luus-Jaakola mrthod.

Figure 5. Damage identification for Case 3.

In Fig. 6, the result of the simulation of a damage in a freearttle plate and parallel to the clamp is presented. The
damage was imposed at node 35 through the damage value (D)i8.8bserved an abrupt change in the DOF 31, which
corresponds to location of damage and, when using the Laaisala method to update the parameters of this region, the
damage was correctly identified. In this case, the updatethpeters were at nodes 25, 26, 27, 34, 35, 36, 43, 44 and 45.
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Figure 6. Damage identification for Case 4.

In Fig. 7, it was simulated the appearance of a hole in theecaitthe plate, where the damage was imposed at the
node 41, through the damage value D = 1. An abrupt chanBg is observed next to the DOF 36, the parameters 31, 32,
33,40, 41, 42, 49, 50 and 51 were updated. In Fig. 7b it is slloaishe damage has been identified with precision.
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Figure 7. Damage identification for Case 5.

Another area where it was simulated the presence of a damafgewn in Fig. 8. In this case the damage was imposed
at the node 76, through the damage value (D) 0.2. Again therégdicated is really the damaged area. We updated the
parameters 66, 67, 68, 75, 76 and 77 and the damage was eltatfiurately.
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b) damage severity with Luus-Jaakola method.

Figure 8. Damage identification for Case 6.

In Fig. 9, the result of a simulation where the damage was gag@n nodes 30 and 39 through the values of damage
(D) 0.4 and 0.1, respectively, is depicted. We have thensea wédnere two adjacent regions are damaged. Notice that on
Fig. 9a, two regions suddenly change their values next tdE 26 and 34. The parameters 29, 30, 31, 38, 39, 40, 47,
48 and 49 were updated. Once more, the damage was correailyfied, as it can be seen in Fig. 9b.
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Figure 9. Damage identification for Case 7.

In the cases presented in Figs. 10 and 11, one has the case datmaged regions again but now the nodes where
the damages were imposed are far apart. You can check thhedeft of both figures, there are two regions that show
considerable variation. For the case shown in Fig. 10, tmeag® was imposed on the nodes 21 and 47, through the
values of damage (D) 0.2 in both. The parameters 20, 21, 22,7448 were updated. For the case shown in Fig. 11, the
damage was imposed on the nodes 12 and 66, through the véallesage (D) 0.2 and 0.4 respectively. In this case, the
parameters: 11, 12, 13, 65, 66 and 67 were updated. In eiiser we found results that accurately identify the location
and severity of the damage.
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Figure 10. Damage identification for Case 8.
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Figure 11. Damage identification for Case 9.

5. CONCLUSIONS

The method of identifying damage via flexibility matrix pemed satisfactorily in the case of rectangular plates,
being able to accurately identify the location and sevaritthe damage. The Luus-Jaakola method, as it is a method that
randomly chooses the solution of the proposed problem, dstraied considerable slowness in finding the solution when
a large number of parameters are updated. For this reasofiexiibility matrix itself was used to provide an estimation
of the damage localization, and thus allowing a smaller remuf parameters to be updated by the model, allowing
to locate and quantify the damage properly. It is importartiighlight that all the transverse DOF were considerated
as "measured" in this work and, for this reason, it was a sngdk to associate the DOF that changed abruptly with
the damaged parameter. However, in practice, we seek to withka small number of sensors, not allowing to obtain
information from all the DOF. This problem will be addres$ea future work.
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