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Abstract. In this work a model for damage identification in plates from the vibration characteristics based on the structural
flexibility matrix is presented. The method has been developed to identify and quantify damage in rectangular plates. It
is assessed by considering changes in the reduced flexibility matrix of the structure, which is only related to the measured
degrees of freedom and may be accurately estimated from a fewof the lower frequency modes in a modal test. The
main idea is that modal parameters are a function of the physical properties of the structure. The finite elements method
(FEM) is used to model a rectangular plate and the damage field. The Luus-Jaakola optimization method is applied to
minimize the difference between the flexibility matrix obtained from modal testing and the analytical flexibility matrix.
The Luus-Jaakola optimization method presented good results, however with a high computational cost. The flexibility
matrix itself was used to provide an estimation of the damagelocalization. The objective is to minimize the number of
parameters updated for the Luus-Jaakola method and the computacional cost for the correct identification of the damage.
Some numeric examples for different damages scenaries are presented.
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1. INTRODUCTION

Several phenomena can cause damage to a structure and thus compromise its proper operation and endanger people’s
lives, like impacts, actions of wind, people and vehicle’s moving etc.

For the security of people and structures, many authors haveused dynamic tests to determine characteristics of the
structure vibration, such as frequencies, modes and modal damping, in order to evaluate possible structural failure (Al-
vandi & Cremona, 2006, Jauregui & Farrar, 1996, Changet al., 2003, Carrilo & Laier, 2006). The basic thought for
this methodology is that the modal parameters are functionsof the physical properties of the structure (mass, stiffness
and damping) and therefore changes in physical properties will be reflected in the modal properties, which in turn can
be obtained in an experimental trial and used to deduce aboutthe damage. The structural damage identification in its
initial stage and the continuous monitoring of the structure contribute to the reduction of maintenance or repair costs, and
increase its reliability and lifetime.

In this paper, the finite element method is used to model a rectangular plate, where the damage in the structure is
described through a cohesion parameter (Stutz, 2005). The inverse problem of identifying structural damage is defined
as a minimization problem, where a set of cohesion parameters is determined to minimize a functional based on the
difference between the experimental flexibility matrix andthe one provided by the finite element model. The Luus-Jaakola
optimization method was used to solve the inverse problem ofdamage identification.

2. MATHEMATICAL MODEL

From an appropriate spatial discretization, using the finite element method, the equation of motion of the structure is
given by

Mü+Cu̇+Ku = f , (1)

whereM , K andC are, respectively, the matrices of mass, stiffness and damping, with dimension ofn×n, u is an× 1
vector of generalized displacements andf is an× 1 vector of generalized forces.

The undamped natural frequencies and mode shapes of the structure can be obtained from the eigenvalue-eigenvector
problem,

(K− ω
2
iM)φi = 0, (2)

whereωi eφi refers, respectively, to thei-th natural frequency and to thei-th mode shape of the structure.
Considering the mode shapes of the structure normalized with respect to the mass matrix, one has

Φ
T
MΦ = I; (3)
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Φ
T
KΦ = Λ, (4)

whereΦ is the modal matrix andT means the transpose,I is the identity matrix andΛ is a diagonal matrix consisted of
the squared values of the natural frequencies. According toEq. 4, the stiffness matrix can be written as

K = (ΦΛ
−1

Φ
T)−1. (5)

The flexibility matrixG of a structure is defined as the inverse of its stiffness matrix and, therefore, it can be written
in terms of the modal parameters as

G = (ΦΛ
−1

Φ
T). (6)

Considering Eq. (6), the flexibility matrix can be rewrittenas

G =

n
∑

i=1

1

ωi
2
φi ⊗ φi, (7)

where⊗ stands for the tensor product.
The Eq. (7) shows that the modal contribution to the flexibility matrix decreases with the increasing of the frequency,

which characterizes a great advantage to the use of the flexibility matrix for damage identification purposes, since modes
of higher frequencies are more difficult to obtain in a modal test. Due to pratical limitations, the following flexibility
matrix can be obtained from an experimental test.

Ḡexp =

nexp
∑

i=1

1

ω2
i,exp

φi,exp ⊗ φi,exp, (8)

wherenexp is the number of modes obtained from the modal test andφi,exp andωi,exp are, respectively, thei-th mode
shape andi-th natural frequency, determined only in a subset ofm degrees of freedom of the structure. From Eq. (8), it
should be noted that the size of the matrixḠexp depends only on the numberm of degrees of freedom (DOF) which were
measured in the experiment.

To obtain an inverse relation between the analytical flexibility matrix Ḡ, related only to them DOF measured in the
vibration test, and a matrix of the same size, containing information about the stiffness properties of the structure, the
original stiffness matrix must be partitioned

K =

[

Kmm Kmo

K
T
mo Koo

]

, (9)

whereT means transposed, and the subscriptsm ando refer, respectively, to the DOF measured and omitted. It canbe
seen (Alvinet al., 1995) that a reduced flexibility matrix̄G, Eq. (10), may be obtained as the inverse of the reduced
stiffness matrix, obtained by Static Guyan Reduction (Guyan, 1965),

Ḡ = K̄
−1 = [Kmm −KmoK

−1
oo K

T
mo]. (10)

In this paper, the measure of cohesionβ is used to describe the behavior of the damage in the structure. This parameter
is related to the connection between the material points andcan be interpreted as a measure of the state of local cohesion
of the material, where0 ≤ β ≤ 1. If β = 1, it is assumed that all connections between the material points are preserved,
there is no damage in the structure. Ifβ = 0, a local rupture is considered, since all connections between the material
points were removed.

In the present model, it is considered that the damage affects only the elastic properties of the structure, so that the
stiffness matrix obtained by the finite element method is given by Eq. (11)

K(βh) =

∫ lx

0

∫ ly

0

βh(x, y)B
T (x, y)E0 B(x, y) dx dy, (11)

where,

E0 =
E

1− ν2





1 ν 0
ν 1 0
0 0 µ



 , (12)

µ =
1− ν

2
(13)
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and

B =











∂2

∂x2

∂2

∂y2

2 ∂2

∂x∂y











N. (14)

In these equations,lx and ly corresponds to the lengths of the plate in the axes x and y, respectively,βh is the
approximation of the fieldβ obtained from its spatial discretization,B is the differential discrete operator,N a matrix
containing the interpolation functions,E andν are, respectively, the elastic modulus and Poisson’s ratio.

In this paper, the discretization of the fieldβ used the same mesh of the displacement field. It should be noted that the
discretization of the fieldβ(x, y) does not depend on the discretization of the displacement field, so that different meshes
can be adopted.

It was considered that the fieldβ(x, y) for each finite element of the plate is interpolated by four nodal values, see
Fig. 1.

Figure 1. Distribution of the nodal cohesion paramters in the rectangular element.

The problem of damage identification can be defined as an optimization problem where the following functional must
be minimized

min
β

F , satisfying 0 ≤ β ≤ 1 (15)

with,

F(β) =
‖Ḡexp − Ḡ‖2

2‖Ḡexp − Ḡ0‖
, (16)

whereḠ0 is the reduced flexibility matrix computed with the inicial estimate of the fieldβ.
In order to present a more direct interpretation of the damage described by the cohesion parameterβ, the damage

parameterD is defined, which represents the intensity of the damage as

D = 1− β. (17)

3. OPTIMIZATION METHOD

In the damage identification problem proposed, the aim is theminimization over the cohesion parameterβ of an error
based on the difference between the experimental flexibility matrix and the original flexibility matrix of the FEM. For
this, it will be used the optimization method described in this Section.

3.1 Luus-Jaakola Method

The basic idea of the stochastic algorithm of Luus & Jaakola (1973), is to select random solutions in a region that
decreases in size over the course of iterations, as the pseudocode below.

Choose the size of initial searchr0;
Choose the number of internalnint and external loops,next;
Choose the contraction coefficientc;
Choose the initial solutionβ∗ = β0
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For i = 1 : next

For j = 1 : nint

βj = β∗ +Rjr(j−1), whereR is a diagonal matrix consisted by random numbers between -0,5 and 0,5

If F(βj) < F(β∗)

β∗ = βj

end (If)

end (For)

ri = (1 − c)r(i−1)

end (For)

4. RESULTS

In this paper, it was considered a clamped aluminum plate0, 5m long,0, 005m thick, 0, 5m wide, nominal elastic
modulusE0 = 7.2582× 1010 Pa and Poisson’s ratioν = 0.33.

The plate was discretized by the finite element method in 64 elements, where each element has four nodes and each
nodal point has three degrees of freedom: one transverse (v), one rotation in x(θx) and one rotation in y(θy). The
structure has a total of 81 nodes and 216 DOF, because nine nodes of the structure stay in the clamped side.

The imposition of the damage to the beam is accomplished through theβ parameter that describes the damage. In the
damaged nodes we haveβ 6= 1 (ouD 6= 0), and the in the nodes where there are no damagesβ = 1 (ou D = 0). The
FEM with the required values of the cohesion parameter is used to generate the frequencies and vibration modes of the
damaged structure, thus representing the experimental data.

Three different damage scenarios were considered: only onedamaged region, two adjacent damaged regions and two
distant damaged regions. Table 1 shows the cases considered.

Table 1. Damage Scenarios

CASE POSITION DAMAGE (D)
1 12 0.4
2 19 0.2
3 33 0.2
4 35 0.3
5 41 1
6 76 0.2
7 30; 39 0.2; 0.3
8 21; 47 0.2; 0.2
9 12; 66 0.2; 0.4

Since the Luus-Jaakola method consists of a random search, it showed a considerable sluggish to update at once all
the 81 parameters of the model. For this reason, it was used a technique to locate the damaged region before the use the
optimization method and thus diminished the quantity of parameters to be updated and therefore the runtime of the model.

Because the flexibility matrix is the inverse of the stiffness matrix, the product of the experimental flexibility matrix
by the reduced stiffness matrix for a structure without damage, will result in an identity matrix. Therefore, for the location
of the damage structure, we have

L = ḠexpK̄− I, (18)

so when all of the DOF of the structure are measured in the modal test, if the structure has any damaged component, only
the DOF of these elements will have values different from zero.

A vector of localizationPj can be defined, so that itsj-th component corresponds to the sum of the modules of the
components that form thej-th column of matrixL, then

Pj =

m
∑

i=1

|Li,j|, (19)

wherem is the total number of measured DOF.
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Since not all DOF and vibration modes were considered as measured in the modal test, what we get by Eq. (19) is
the profile of the DOF to the structure without damage, thus tobe subtracted from the result of Eq. (19) to the structure
with damage, there is an abrupt change from the DOF related tothe damage. Thus it was possible to reliably identify the
damaged region.

In this paper, only the transverse DOF were considered as measured and the first 10 vibration modes were taken. In
Fig. 2 it is presented, in black and red, respectively, the distribution of the cohesion parameters and the transverse DOF of
the structure.

Figure 2. Distribution of transversal DOF and cohesion parameters.

In Fig. 3 the first simulation result is shown. The damage was imposed at node 12, case 1, with D = 0.4. In Fig. 2a it is
depicted the vector of localization,Pj, showing an abrupt change around the tenth DOF. Looking to Fig. 3, it can be see
that the nine nodes around node 12 (nodes 2, 3, 4, 11, 12, 13, 20, 21 and 22) should be upgraded. In Fig. 3b it is shown
the result of the Luus-Jaakola optimization method updating only the region indicated earlier. As can be seen, the location
and severity of the damage are indicated precisely.

Figure 3. Damage identification for Case 1.

In Fig. 4, the result of the simulation of damage at the clamped line is shown. The damage was imposed at the node 19,
through the damage value (D) 0.2. A sudden change is observednext to the DOF 17 and that corresponds to the region of
the cohesion parameter 20 (see Fig. 2). The parameters of this region were updated and identified precisely the damage.
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Figure 4. Damage identification for Case 2.

In Fig. 5a, the result of simulation where the damage was imposed at the node 33 through the damage value (D) 0.2
is shown. In this case the DOF 29 was the first to introduce a sudden change and is associated to the node 33 where the
damage is located. The parameters 23, 24, 25, 32, 33, 34, 41, 42 and 43 were updated as they were in the indicated region
and identified the damage properly, as shown in Fig. 5b.

Figure 5. Damage identification for Case 3.

In Fig. 6, the result of the simulation of a damage in a free endof the plate and parallel to the clamp is presented. The
damage was imposed at node 35 through the damage value (D) 0.3. It is observed an abrupt change in the DOF 31, which
corresponds to location of damage and, when using the Luus-Jaakola method to update the parameters of this region, the
damage was correctly identified. In this case, the updated parameters were at nodes 25, 26, 27, 34, 35, 36, 43, 44 and 45.

Figure 6. Damage identification for Case 4.

In Fig. 7, it was simulated the appearance of a hole in the center of the plate, where the damage was imposed at the
node 41, through the damage value D = 1. An abrupt change inPj is observed next to the DOF 36, the parameters 31, 32,
33, 40, 41, 42, 49, 50 and 51 were updated. In Fig. 7b it is showsthat the damage has been identified with precision.
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Figure 7. Damage identification for Case 5.

Another area where it was simulated the presence of a damage is shown in Fig. 8. In this case the damage was imposed
at the node 76, through the damage value (D) 0.2. Again the region indicated is really the damaged area. We updated the
parameters 66, 67, 68, 75, 76 and 77 and the damage was identified accurately.

Figure 8. Damage identification for Case 6.

In Fig. 9, the result of a simulation where the damage was imposed on nodes 30 and 39 through the values of damage
(D) 0.4 and 0.1, respectively, is depicted. We have then, a case where two adjacent regions are damaged. Notice that on
Fig. 9a, two regions suddenly change their values next to theDOF 26 and 34. The parameters 29, 30, 31, 38, 39, 40, 47,
48 and 49 were updated. Once more, the damage was correctly identified, as it can be seen in Fig. 9b.

Figure 9. Damage identification for Case 7.

In the cases presented in Figs. 10 and 11, one has the case of two damaged regions again but now the nodes where
the damages were imposed are far apart. You can check that on the left of both figures, there are two regions that show
considerable variation. For the case shown in Fig. 10, the damage was imposed on the nodes 21 and 47, through the
values of damage (D) 0.2 in both. The parameters 20, 21, 22, 46, 47 48 were updated. For the case shown in Fig. 11, the
damage was imposed on the nodes 12 and 66, through the values of damage (D) 0.2 and 0.4 respectively. In this case, the
parameters: 11, 12, 13, 65, 66 and 67 were updated. In either case, we found results that accurately identify the location
and severity of the damage.
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Figure 10. Damage identification for Case 8.

Figure 11. Damage identification for Case 9.

5. CONCLUSIONS

The method of identifying damage via flexibility matrix performed satisfactorily in the case of rectangular plates,
being able to accurately identify the location and severityof the damage. The Luus-Jaakola method, as it is a method that
randomly chooses the solution of the proposed problem, demonstrated considerable slowness in finding the solution when
a large number of parameters are updated. For this reason, the flexibility matrix itself was used to provide an estimation
of the damage localization, and thus allowing a smaller number of parameters to be updated by the model, allowing
to locate and quantify the damage properly. It is important to highlight that all the transverse DOF were considerated
as "measured" in this work and, for this reason, it was a simple task to associate the DOF that changed abruptly with
the damaged parameter. However, in practice, we seek to workwith a small number of sensors, not allowing to obtain
information from all the DOF. This problem will be addressedin a future work.
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