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Abstract. We describe the behavior of the gas between the electrodes of a capacitive accelerometer with the compressible-gas-film 

Reynolds equation, which relates pressure, density, viscosity and the surface velocity for the specific geometry of bounded film. This 

equation assumes that inertial forces are small compared to viscous forces, and that the gap is large compared to the mean free 

path of the gas.  Assuming a small displacement of the moving electrode, small pressure variation around the ambient pressure and 

under the assumption of isothermal film, the analytical solution of the pressure is obtained. The pressure has two terms: one 

represents the damping and one represents the spring-like behavior of the gas. The integral of the pressure over the electrodes area 

lead directly to expressions for damping and air spring constant coefficients. The importance of compressible effects, represented by 

the spring constant coefficient, can be analized through of the squeeze number. For a very low squeeze number the incompressible–

gas-film Reynolds equation can be utilized. When the pressure drops below the ambient pressure the modified Reynolds equation 

has to be used. For large displacement condition some models derived in the literature are presented. The validity of the analytical 

model is discussed according to the assumptions and simplifications made. Finally, all analytical results are compared with 

numerical results obtained by Computational Fluid Dynamics method (CFD) in both time-domain and frequency-domain. The 

results show very good agreement between the two methods, validating the analytical model for this kind of analysis.  
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1. INTRODUCTION  
 

The increasing demand for new applications has driven research and continuous development of traditional MEMS 

devices. This is the case, for instance, of micro-accelerometers and micro-gyroscopes for aerospace applications, as part 

of inertial measurement units (IMU's). For aerospace applications these devices must present high sensitivity while 

being immune to vibrations. If the sensors can be fabricated at low cost, several other markets would also absorb it, 

such as automotive sector.   

In order to achieve these specifications, it is necessary to consider the interactions between the various physics 

domains involved in microsystems modeling. One of these interactions is between the moving mechanical components 

and the fluid surrounding them, what makes possible to find out the exact dynamic behavior of the structure. Once the 

main damping mechanism is known, it allows us to get the desired frequency response of the micro device by 

controlling the fluid pressure, viscosity coefficient or the gap layer, (Veijola et. al., 1995).     

In this work, we described the behavior of the gas in a differential capacitive accelerometer with the Reynolds 

equation. The validity of the analytical model is discussed according to the assumptions and simplifications made. 

Finally, all analytical results are compared with numerical results obtained by Computational Fluid Dynamics method 

(CFD) in both time-domain and frequency-domain.  

 

2. ACCELEROMETER MODEL 
 

The bulk-micromachined accelerometer simulated consists of a stack of three bonded silicon wafers, with the hinge 

springs and seismic mass incorporated in the middle one. The inertial mass forms a moveable inner electrode of a 

variable differential capacitor circuit, show in Fig 1. The two outer identical wafers are simply the fixed electrodes of 

the two capacitors. The differential capacitor senses the relative position of the inertial mass as it displaces under the 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

effect of an externally applied acceleration. Electronic circuit sense changes in capacitance, then convert them into an 

output voltage.  

The geometric parameters of such device and properties of the gas are presented in Table 1. The data correspond to 

the values defined previously in the accelerometer design.  

 

 
Figure 1. 3D views of the bulk-micromachined accelerometer. 

 

Table 1. Some geometric parameters of the accelerometer and properties of the gas. 

  

Description  Symbol Value 

Length of the seismic mass
 

Lm 2x10
-3

 [m] 

Width of the seismic mass
 

Wm 2x10
-3

 [m] 

Gap ho 10x10
-6

 [m] 

Natural frequency  ωn   16.022x10
3
 [rad/s] 

Effective mass Meff 4.2173x10
-6

 [kg] 

Density of air
(1)

 ρo 1.184 [kg/m
3
] 

Ambient pressure Pa 101.325x10
3
 [Pa] 

Mean free path of air λ 68.23x10
-9

 [m] 

Viscosity of air
(1)

 ηo 18.192 x 10
-6

 [Pa.s] 
(1) 

: measured at 25°C and ambient pressure .   

 

In summary, the microfabrication of a bulk accelerometer involves a sequence of processes, e.g. thin film 

deposition, double face litography, simultaneous top and bottom wet etching, bonding of the three wafers. 

The air trapped inside the set of wafers acts as a damping system when the seismic mass moves up and down due to 

an external acceleration acting in the normal direction to the seismic mass surface. In this work, we are mainly 

concerned with an analytical model to analyse the damping coefficient and its influence in the dynamic behavior of the 

silicon bulk-micromachined accelerometer, the electric forces are not taken into account. 

 

3. ANALYTICAL APPROACH    
 

Modeling of fluids can be divided into two big areas: molecular flow models and continuous flow models. The first 

one is subdivided in deterministic methods, e.g., Modern Molecular Dynamics Simulation (MD), and probabilistic 

methods as, e.g, Direct Simulation Monte Carlo (DSMC) and Boltzmann equations. In  the second one, velocity, 

density, pressure, etc., are defined at every point in space and time, and conservation of mass, energy and momentum 

leads to a set of nonlinear partial differential equation as, e.g., Euler, Navier-Stokes and Burnett, (Gad-el-Hak, 2006).      

Accelerometers total damping also can be divided into two main groups: the damping from the beams and the 

damping from the seismic mass. The main damping mechanisms associated to the beams vibrations are: internal 

material damping, thermoelastic damping, acoustic radiation effects in the interfaces and in the surrounding media, 

stick-slip at the clamped ends of the beams and the viscous damping, (Kaajakari, 2009).      

Seismic mass damping is caused by viscous effects of the fluid on its top and bottom surfaces and by a parasitic 

couette flow between its lateral surface (mass thickness) and the inner middle wafer edges. Since in microscale the 

surface effects become more important than volumetric effects and the seismic mass top and bottom area is much bigger 

than the top and bottom beams area, the viscous damping due to seismic mass is the most important damping 

mechanism on the accelerometer structure. Likewise, the parasitic couette flow damping is negligible. However, when 
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the device operates in very low pressure, i. e., ultra-high vaccum, other damping sources as, for example, the internal 

material damping become a significant mechanism.       

 

3.1. Squeeze Film Air Damping  
 

The analysis of a Newtonian fluid in the laminar flow condition is done by the Navier-Stokes equations of motion. 

Two parallel plates, one movable (moving electrode) and one fixed (lower stationary electrode), with a thin layer of 

fluid between them are presented in Fig. 2. This problem is known as squeeze-film and has been resolved in 

lubrification theory through a derived form of Navier-Stokes equation, the Reynolds equation, (Gad-el-Hak, 2006). 

The derivation of the Reynolds equation from the Navier-Stokes and Continuity equations is based on an analysis of 

an infinitesimal fluid element. The Reynolds equation also can be directly derived from Viscous Flow laws and 

principle of Mass Conservation. In both cases the high order terms of the inertia and viscous forces are neglected,  

(Bode, 2001).  

 

h

Wm

z

x

1

2

 
Figure 2. Two parallel plates separated by thin layer of a fluid.  

 

The most general form of the bi-dimensional Reynolds equation is, (Gad-el-Hak, 2006): 
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  (1) 

where p is the pressure, ρ(p) is the density and η(p) is the viscosity coefficient of the fluid, h(x,z,p) is the thickness of 

the fluid layer(gap of the capacitor), u1 and u2 are the velocities in the x-direction of top plate and the bottom plate, 

respectively, v1 and v2 are the velocities in the z-direction of the two plates, and w1 and w2 are the velocities of the fluid 

on the surfaces of the two plates.    

The relation between the inertia forces and the viscous forces in squeeze-film problems is given by the modified 

Reynolds numbers Rs and RL:   

 

�� = ��ℎ�
2�
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$%
 

 

                                                      

(2) 

where Vx is the relative velocity in the x-direction, Wm is the plate width and � is the plate movement frequency. The 

inertia effects can be ignored when both Reynolds numbers are smaller than unity. The device’s supporting structure is 

several times more stiffer in the lateral direction than in the vertical one, thus, only vertical displacement of the plate is 

considered, i. e., Vx = 0 and therefore RL = 0. The Rs number is dependent of the gap size and movement frequency , 

therefore the condition of Rs < 1 is only achieved when the gap is small or the movement frequency is not so high, 

(Veijola, 2004).     

Neglecting the fluid inertial effects, Eq. (1) can be reduced to: 

  �
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(3) 

Although the Reynolds equation can be used with both liquids and gases, when liquid is used other surface effects 

become significant and their analysis are more complicated, (Gad-el-Hak, 2006); For instance, the added mass effect, 

which appears because the movement of the seismic mass necessarily implies the movement of the liquid surrounding 

the structure. This added mass is in-phase with the plate acceleration, reducing the natural frequency and the sensitivity. 

In this work, it is considered that air is the fluid between the plates, and the added mass effect is of much less importace 
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(Marco et. al., 1993). Under isothermal condition the gas density ρ is directly proportional to its pressure p and for 

perpendicular motion of the plates, the thickness h and density are not function of position, therefore Eq. (4) becomes, 

(Bech, 1983) and (Bao and Yang, 2007): 
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(4) 

The Eq. (5) is the Reynolds equation for isothermal squeeze-film damping of a compressible gas with negligible inertial 

effects, (Bao and Yang, 2007).  

 

3.1.1. Linearized Reynolds Equation for Compressible Gas 
 

Considering small displacement (h of the movable plate around its balance position ho and small pressure variation (p around  the ambient pressure pa: 
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Eq. (4) can be linearized as: 
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(5) 

where ηo is the viscosity coefficient of the fluid at ambient pressure. Assuming that the plate displacement has a form: 

  ℎ = ℎ* + ∆ℎ	 cos �� 
 

                                                                      

(6) 

and that the pressure distribuition has a parabolic profile, as shown in the Fig. 3, it is possible to obtain the solution of 

the Eq. (5) through  Fourier series expasion, (Kampen and Wolffenbuttel, 1998).     

 

 

Wm

p(x)

x

 
Figure 3. The pressure distribution profile between the two plates.  

 

The solution for rectangular plates is composed of two out-of-phase components: one is related to air viscous flow, 

when it is squeezed out, or pulled in, the gap region. The gap pathway restricts the flow, which causes gas pressure to 

increase. This component is called damping force Fd and it is in-phase with the plate velocity. The other component is 

related to air compression and it is called elastic damping force, or only spring force, Fe. The spring force is in-phase 

with the plate displacement.  

The damping force and spring force normalized by the displacement (h are given by;  

  34(5)
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(8) 
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where Г is the plate aspect ratio (ratio between the plate width  Wm and the plate length Lm) and σ is the squeeze number 

and it is determined by: 

  

5 = 12
*$%��
�,ℎ*�  

 

                                                         

(9) 

The squeeze number is directly proportional to frequency what enables one to do the following analysis: in low 

frequency, i. e., low squeeze number, the air has enough time to escape by the borders and the viscous force dominates. 

On the other hand, in high frequency the air has no time to escape and it is squeezed between the two plates creating 

compression effects. In this case, the air behaves mainly like a “spring”, and the spring force becomes dominant. 

        It is possible to find the transition region where the compression effects becomes equal to the viscous effects 

equaling Eqs. (7) and (8), so one has 
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(10) 

where σc is the cut-off squeeze number, which is equal to 21.623 for a square plate ( Γ = 1). 

The normalized damping and spring forces in function of the squeeze number for a square plate is shown in Fig. 4. 

 

 
Figure 4. The normalized damping and spring forces as a function of the squeeze number for a square plate.  

 
The solutions of Eqs. (7), (8) and (10) are obtained using a comercial mathematical software. Fig. 4 shows that for a 

low squeezed number ( σ < 0.2 ), which gives ( Fd / ∆h =100 Fe / ∆h ), the compression effects can be neglected. On the 

other hand, when the knudsen number increases the spring force also increases and it becomes dominant after the cut-

off  knudsen number. With the cut-off squeeze number value is possible to establish the cut-off frequency �c. 

The damping bd  coefficient and the spring ke coefficient can be obtained from the Eqs. (7) and (8), respectively. For 

a square plate they are given by,  
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(11) 

 

(12) 

The coefficients above can be incorporated in the accelerometer dynamic model to take into account the compressibility 

of the air and its dependency of the movement frequency.  
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3.1.2. Linearized Reynolds Equation for Incompressible Gas 
 

As discused previously,  when the squeeze number is very small the compressible effects can be ignored and Eq. (4) 

becomes,    
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(13) 

Eq. (13) can be solved through the series expansion with the same boundary conditions used in the compressible 

equation. In these conditions, the damping coefficient is given by 

  

J4 = 
*M%$%�N(Г)
ℎ*�  

 

                                                                                      

(14) 

where β(Γ) is the geometrical correction factor. The geometrical correction factor for a square plate is β(Wm = Lm) = 

0.4217, (Yeh and Najafi, 1997). 

 

3.1.3 Modified Reynolds Equation  
 

When the pressure drops below the ambient pressure the “Standard” Reynolds equation, Eq. (4) is no more 

applicable and the modified Reynolds Equation has to be used, (Veijola, 1995); 
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(15) 

where Qpr is the relative flow rate coefficient. This coefficient is determined using Boltzmann’s transport equation and 

it can not be expressed in a closed form. Veijola et. al. (1995) derived the following approximation that differs by less 

than 5% from the original equation. More recently, the approximation was modified replacing Kn by σpKn to include 

slip-flow effects, (Veijola et. al., 1998):   

  OPQ = 1 + 9.638(5PVD)�.�WX 

 

                                                                                      

(16) 

where Kn is the knudsen number and σp is given by   

  

5P = 2 − YZYZ ?1.016 − 0.1211(1 − YZ)@ 
 

                                                                                      

(17) 

where αv is the tangential momentum accommodation coefficient (TMAC) and it is defined as the fraction of molecules 

which are diffusively reflected. Experimental results show that silicon has TMAC of about 0.7 with several gases, (Bao 

and Yang, 2007) and (Gad-el-Hak, 2006).     

The knudsen number is given by, 

 

VD = [
ℎ* 

 

                                                                                      

(18) 

where λ is the mean free path of gas. With this modification the Reynolds equation can be solved with the same 

boundary conditions used in the sections 3.1.1 and 3.1.2, therefore the damping coefficient as a funcition of the pressure 

for a incompressible gas is given by,  

  

J4 = 
*M%$%�N(Г)
O�\ℎ*�  

 

                                                                                      

(19) 

The same approach used in Eq. (20) can also be used in Eqs. (6) and (7) to include rarefied and slip-flow effects in a 

compressible gas. In some works, including Veijiola et. al. (1995), the ratio ηo /Qpr is called effective viscosity, 

however, this concept is valid only up to molecular flow regime, (Gad-el-Hak, 2006).  
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3.1.4 Large Displament Models   
 

The accelerometer described has a differencial configuration, thus there is another thin film of gas between the 

movebale plate and the upper fixed plate (upper stationary electrode). The equivalent damping coefficient can be 

obtained by association of dampers what is similar to spring association. In this configuration the total damping is 

obtained mutiplying the Eq.(14) or Eq.(19) by two, i. e, serie association.  

The models described are derived under the assumption of very small displacement of the plate. Sadd and Stiffler 

(1975) analyzed the large displacement effects on the squeeze film damping for incompressible gas, for different 

geometric forms. The solution for rectangular plates is, 

  

J4 = 
*M%$%�N(Г)
ℎ*� ]1 − & �

ℎ*'�^
_��

 

 

                                                                                      

(20) 

where z is the displacement in z-direction.   

       Peeters et. al. (1991) used a simpler model derived replacing the gap by the gap minus the displacement z, for 

modeling the damping coefficient of a differential accelerometer.           

  

J4 = 
*M%$%�N(Г)
ℎ*� � 1

(1 − � ℎ*⁄ )� + 1
(1 + � ℎ*⁄ )�� 

 

                                                                                      

(21) 

 Figure 5 shows a comparison between the linear and non-linaer models using the data from Table 1. The graph in 

Fig. 5 shows that for a displacement of about 20% of the gap size, the models’ results are practically the same. 

However, for larger displacement the model used by Peeters starts to disagree with the others models. The model 

proposed by Sadd is more conservative and starts to disagree from linear model only for a displacement equal to 60% of 

gap size. The Peeter’s model has been more used for damping modeling in large displacement conditions, Peeters et. al. 

(1991), Marco et. al. (1993), Veijola et. al. (1995) and the linear model was used in small displacement conditions, 

Andrews et. al. (1993), Yeh and Najafi (1997) and Kampem and Wolffenbuttel (1998). The large displacement models 

also can be extend by using the relative flow rate coefficient (Kaajakari, 2009). An equivalent-circuit model was used in 

Veijola et. al. (1999) to study the large displacement behavior of an capacitive accelerometer by introducing the 

displacement dependence in the relative flow rate coefficient.  

 

 

 
Figure 5. Comparison between the liner and non-linear models of damping coefficients. 

 

4. RESULTS AND DISCUSSION 
 

The Reynolds' equation in its most general form was presented. The first assumptiom done was that the inertia 

effects are negligible when compared with the viscous effects. This assumption can be verified through the modified 

Reynolds number RS and RL. Analizing only vertical motion of the moving plate, i. e., RL is equal to zero. RS can be 
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obtained with the data in Table 1 and the Eq. 2, what leads to RS = 0.0166. Therefore, the inertia effects can be ignored. 

When the gap is very large or  at high frequencies the model described breaks down and another model has to be used. 

A model including the inertia effects is presented in Veijola (2004).         

      Another important assumption is the isothermal condition. This can be justified due to small volumes and the big 

surface areas in the structure, the thermal contact between the gas and the surrounding accelerometer solid structure is 

very good. In addition, the silicon is a very good thermal conductor. For these reasons, it is safe to assume that the gas is 

isothermal, (Gad-el-Hak, 2006).    

     The Linearized Reynolds equation is obtained under assumptions of small displacement around the gap thickness 

and small pressure deviation around the ambient pressure. When the displacement becomes larger the non-linear model 

has to be used. The gas rarefied effects and slip-flow effects can be used to model damping in pressure smaller than the 

ambient pressure. When both conditions are not satisfied a special approach including a large displacement model with 

relative flow rate coefficient can be used.     

      The Linearized Reynolds equation solution takes into account the gas compression effects. The importance of these 

effects can be analyzed by the squeeze number. The squeeze number for this accelerometer model is 0.219, which 

means that the damping force is approximately two orders of magnitude bigger than the spring force. Therefore, the gas 

compression effects can be ignored; hence, incompressible solution can be utilized. Both values calculated for the 

Reynolds number and the squeeze number were over-estimated due to the fact that the accelerometer has to work far 

bellow of its resonance frequency.   

The analytical results were obtained using a transfer function of a classical second order mechanical system with the 

natural frequency and the effective mass, both in Table 1. Eq. (19) was used to calculate the viscous damping 

coefficient with different pressure values. Considering silicon as the plates material and air as the gas between them,  

when the pressure p is equal to the ambient pressure pa, the relative flow rate coefficient is equal to 1.060 and Eq. (19) 

tends to Eq. (14). A previous mechanical analysis has shown that for an acceleration of 1g the linear model described in 

this equation is enough, (Rodrigues et. al., 2011).  

The simulated results were obtained using the 3D model and the commercial software COMSOL Multiphysics®. 

This software has the modified Reynolds equation as part of its CFD package, COMSOL (2010). The simulations were 

done using PC with an Intel® Core
TM

 i7 processor, 4GB Dual Channel DDR3 SDRAM memory and 500GB 

(5400RPM) Hard-Drive. The solution time was about 7 hours for each value of pressure, using a tetrahedral mesh with 

38,701 elements.  

The Fig. 6 shows a comparison between the analytical and the CFD results for step input of 1g.   

 

 
Figure 6. Analytical and CFD time response for step input of 1g. 

 

The simulations were done for tree different pressure values. The pressure values are 10
3
Pa, 10

4
Pa and the ambient 

pressure which leads a knudsen numbers of 0.006823, 0.06913,  0.69 and the relative flow rate coefficients of 1.060, 

1.872 and 13.570, respectively. Fig. 6 shows the system changing from an under-damper system into an over-damped 

system.  

Figure 6 also shows that the analytical results in the time-domain are in aggrement with the CFD results and it 

represents perfectly the three characteristics of the system: under-damping, critically-damped and over-damped. There 

is a little difference of 4% in the amplitude between the analytical and the CFD results, however the settling times are 

approximately the same.   
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The following figures show the comparison between the results in the frequency-domain for different pressure 

values. The amplitude response as a function of the frequency is shown in Fig. 7 and the phase response is shown in 

Fig. 8. These figures show that the analytical results in the frequency -domain are in very good agreement with the CFD 

ones. The small difference observed at amplitude in the time domain response is not observed anymore in the frequency 

domain, due to the fact that it takes into account the normalized amplitude.       

It is well known that for a classical oscillator with linear damping, a maximum bandwidth is attained when a 

damping ratio of 0.7 is set. Therefore, with the damping coefficient is possible to calculate the exactly pressure that 

leads this damping ratio. Comparison between the analytical model and the experimental results are given in Andrews 

et. al. (1993), Veijola et. al. (1995) and Bourgeois et. al. (1997). However, it is important to highlight that when one 

works with pressure bellow the ambient pressure in micro-scale, some of the vacuum issues, as for example gas leaks, 

become a big problem.     

As can be seen in Eq. (20) the damping coefficient is highly dependent on the gap size, i.e., the bandwidth 

optimization also can be done by controlling  the gap size. However, in capacitive accelerometers the gap size has a 

fundamental importance from the electrical point of view, so it has not a free range. Another way to control damping is 

through perforations in the plate; however it increases the micromachining process complexity. 

 

 
Figure 7. Analytical and CFD results to magnitude versus frequency. 

 

 

 
Figure 8. Analytical and CFD results of phase versus frequency. 
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5. CONCLUSION 
 

The accurate detemination of the main damping mechanism is of great technological importance to characterization 

and optimization of the inertial microdevices. 

The results obtained in this work by applying the analytical model presented for damping analysis of a differential 

capacitive accelerometer are quite accurate when compared with the CFD results. Moreover, as expected, solving the 

problem by applying the analytical model is much faster than obtaining the CFD solutions.  

The next step is to run the 3D accelerometer model with the transient solution of the full Navier Stokes Equation, 

which costs much more in terms of computational resources. However, it will give a much better idea of the analytical 

solution accuracy. 
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