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Abstract. The simulation of Fluid structure interaction is becoming of great importance for industry, in particular in naval
engineering for vortex-induced vibrations (VIV) and analysis of the sloshing impact load on the tank of ships. There are
several approaches for solving a fluid structure interaction problem. The classical one is the Lagrangian formulation
for the structure and arbitrary Lagrangian Eulerian (ALE) formulation for fluid, a fluid structure interface is defined
between the fluid and the structure may be treated with volumeof fluid (VOF) formulation. This work is concerned
with the modeling of the interaction of fluid flow with moving structures, are presented algorithms under ALE and VOF
approach to compute the complete set of actions between the fluid and the structure. Numerical applications are presented
in particular VIV problem.
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1. Introduction

The variety of FSI problems scenarios is abundant and rangesfrom parachutes and airbags flows to blood flow in ar-
teries and riser interference for a deep water riser array presents a complex ocean engineering problem. The optimization
of engineered systems involved on those problems through the intensive use of computer simulation as physical modeling
and, according to the desired accuracy, the solution can be quite expensive. Computer modeling of such situations faces
important difficulties and is supposed to reunite three mainaspects: accuracy (reproducing the main physical mecha-
nisms present), robustness (stability of the involved algorithms leading to convergence) and computational performance
(matching the needs of the applications). The main computational challenges related to such highly nonlinear problem
are determining the evolution of the interfaces location and solving the coupled multi-fluid-structure interaction problem.
There are a large number of numerical methods devoted to the computation of a single fluid interacting with structures
or free-surface problems. In the problem of a single fluid interacting with structures, moving mesh methods, within
the framework of the Arbitrary Lagrangian-Eulerian (ALE) formulation or space-time deforming domain methods, are
usually preferred, specially when the structures might undergo large motions. The amount of work describing ALE meth-
ods is enormous, and we do not intend here to present a literature review, we rather refer the interested reader to books
and recent paper collections [Donea e Huerta, 2003] and papers addressing particular aspects of the overall methodology
[Farhat et al., 2010, Dettmer e Peric, 2006]. These references are all related to finite elements, addressing a variety of
topics, such as discretization methodologies for fluids andstructures, moving meshes and adaptivity, coupling strategies
etc.

In the present work we extend the simulation capabilities ofthe solver introduced in [Elias et al., 2009], including
robust general mesh movement strategies and rigid body dynamics. Staggered, or also known as partitioned, algorithms
provide an interesting approach to handle such coupled problems as they allow to explore methods designed to treat
the physics of each sub-system in an optimal way. Moreover, they also permit to put together tested high performance
numerical codes already developed, even if they consist of black-boxes, the data structures used in different modulus of
the code can be easily made compatible. Such convenient features come at a price, those algorithms are usually only
conditional stable in contrast with monolithic approaches. Monolithic algorithms, in which all equations are solved at the
same time for each time step, become less attractive for the type of problems we have in mind as the computational cost
for solving the coupled system grows nonlinearly with the number of variables. As no general theory has been proposed
for those staggered algorithms, their robustness and stability characteristics might be investigated through numerical
tests. The focus here is to report the integration of the several solution components and present the resulting staggered
algorithm, which has been implemented in its simplest form,as no sub-iteration, often used to improve stability. The
numerical examples presented here that deal with importantprototypes of the situations of interest has shown no stability
issues.

The remainder of this paper is organized as follows. Next section discusses the governing equations for the free-surface
flow, mesh movement and rigid body dynamics. The resulting staggered time marching algorithm and the finite element
components for the fluid flow solver and mesh movement are alsobriefly reviewed. Section 3 presents some development
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and verification examples. First we investigate the robustness of the mesh movement scheme when the resulting system
of linear equations is solved by an iterative driver. A riserinterference problem is solved to demonstrate the present FSI
flow capabilities. The paper ends with a summary of our main conclusions.

2. Governing equations

2.1 Incompressible Fluid Flow

Let Ω ⊂ ℜnsd be the spatial domain, wherensd is the number of space dimensions, letΓ denote the boundary ofΩ
and the interval[0, tf ] denote the time domain of the problem. We consider the following convective form of the Navier-
Stokes equations governing the incompressible flows of two immiscible fluids that uses a reference frame provided by the
ALE formulation which are defined over the space-time domainΩ × [0, tf ]:

ρ

(

∂u

∂t
+ (u− umesh) · ∇u− b

)

−∇ · σ = 0, (1)

∇ · u = 0, (2)

whereρ andu are the density and velocity,umesh is the reference frame velocity, The latter, in the context of a Finite
Element approximation, is taken as the velocity of the vertices of the discrete mesh, which gives room for accommodating
the coupling of fluid and solid motions and adapt the mesh for describing the flow considering the new relative position
of the solid body. Moreover,b represents the body force vector carrying the gravity acceleration effect and the Cauchy
stress tensorσ for a incompressible Newtonian fluid is given as:

σ (p,u) = −p1+ 2µD(u), (3)

wherep is the pressure,1 is the identity tensor,µ is the dynamic viscosity andD is the rate-of-deformation tensor defined
as

D(u) =
1

2

(

∇u+ (∇u)
T
)

. (4)

In the present work a large eddy simulation (LES) approach toturbulence is considered by the use of a classic
Smagorinsky turbulence model [Smagorinsky, 1963]. In thismodel, the viscosityµ is augmented by a subgrid-scale
viscosityµSGS proportional to the norm of the local rate-of-deformation tensor and to a filter widthh defined here as the
cubic root of the element volume,

µSGS = ρ(CSh)
2 |2D(u) : D(u)| , (5)

whereCS is the Smagorinsky constant, taken as 0.1.
The essential and natural boundary conditions associated with Eqs. (1) and (2) can be imposed at different portions of

the boundaryΓ and represented by,

u = uE on ΓE (6)

u = ḋL on ΓL (7)

n · σ = h on Γh (8)

whereΓE is the Eulerian boundary of the fluid with essential boundarycondition,ΓL is the Lagrangian boundary, i.e., the
moving (rigid) body surface,Γh is the boundary with applied traction forces andn is the unit outward normal vector to
Γh. The fieldsuE dL are respectively the fluid velocity applied in the Eulerian boundary and the fluid-structure interface
displacements. Eq. (7) establishes which interface is considered as non-slip conditions.

The boundariesΓL, ΓE , Γh andΓ are related by:

Γg = ΓE ∪ ΓL (9)

Γ = Γg ∪ Γh (10)

Accordingly with the type of flows to be analyzed, here involving free surfaces, the model can be stated within a two
fluids (A and B) point of view. Therefore the spatial domainΩ = ΩA ∪ ΩB is split into two regions; one corresponding
to the space occupied by the original fluid and the second an arbitrary region containing part of the air surrounding this
fluid. Both fluids are separated by means of a moving internal interfaceΓint(t), not known a priori. The position of the
interface is computed taking into the consideration that velocities and the traction vectors for both fluids assume the same
value on this interface (uA = uB; σA · nint = σB · nint), wherenint is the unit normal vector to interfaceΓint. Note
that this last condition only holds if surface tension between fluids is negligible.
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3. Mesh movement

There are many options available for addressing node repositioning in ALE frameworks. For instance, an elasticity
operator in an ancillary boundary value problem BVP for repositioning nodes, is employed in [Johnson e Tezduyar, 1994].
In this work, our choice is the scheme proposed for 3D applications in [Masud et al., 2007], where nodes are repositioned
as result of the solution of a scalar BVP, Eqs (11)-(13), written onΩ × [0, tf ]:

∇ · ([1 + τ ]∇) di = 0 i = 1, ... nsd, (11)

d = dL on ΓL, (12)

d = 0 on Γ− ΓL (13)

where,τ = τ(x, t) is a artificial diffusivity,d are the nodal displacements in the ALE step for each spatial coordinate,dL

is the vector of nodal displacements already defined in the previous section.
A Galerkin variational formulation is used to solve the meshBVP. The self-adjoint operator in Eq. (11) and its discrete

form render a symmetric set of algebraic equations of the global form:

K(τ)d = r (14)

whereK andr are the global matrix and the forcing term which contains therestrictiondL, respectively.
Once having solved the BVP Eqs. (11)-(13), mesh velocity appearing in Eq. (1) can be computed by:

umesh =
d(x, t)

∆t
(15)

where∆t is the time-step size.
The heterogeneous artificial diffusivity is computed for each element of the mesh, i.e.τ(x, t) = τe(t) according to:

τe =
1− Vmin/Vmax

V e/Vmax
(16)

whereVmin, Vmax are, respectively, the least and the largest volume for the elements in the mesh, andV e is the the
current element volume. The artificial diffusivity (16) have the crucial role of stiffening the elements in the immediate
neighborhood of the body, allowing mesh distortion in the far field where large elements are usually located. The quality
of the tetrahedral meshes updated by this method can be evaluated using the following metrics:

Qe =
72

√
3

(

6
∑

i=1

l2
i

)3/2
V e (17)

whereli are the edges of the element. We also used a relative metric given by:

Qtn
rel =

Qtn
e

Qt0
e

(18)

4. Fluid structure interaction

Nodal forces equivalent (in equilibrium) with the full stress, measured in the surrounding elements, can be computed
by:

feint =

∫

Ωe

BTσdΩ (19)

where the tensorσ was defined in Eq. (3),Ωe is the element domain, andB is given by:

B = BjI =
∂NI

∂xj

, I= 1, ..., nen (20)

whereNI are the shape functions of an element andnen is the number of element nodes. Evaluation of integral (19) is
only required for those elements meeting the condition:

Ωe ⊂ Adj(ΓL) (21)
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Figure 1. Portion of the elements attached to a Lagrangian boundary in a ship hull model

whereAdj(ΓL) is the region spanning elements with at least one node lying inΓL, as illustrated in Fig. (1) for a ship hull
mesh, that is, elements adjacent toΓL.

Thus, the resulting forces on the immersed body can be computed by the sum of each element internal force contribu-
tion (computed as equivalent nodal forces). Note that elements adjacent toΓL may be on the wet or non-wet portion of
the immersed body. The fluid properties assigned to each element by the VOF method defines the proper contributions to
the element internal forces, that is,

fn = Aef
e
int|Γe

L
(22)

where

Γe
L = ΓL ∩ Γe (23)

in which Γe is the boundary ofΩe and the assembly operatorAe is used here instead of the ordinary sum symbol to
denote the finite element assembly process.

The resultant of the hydrodynamic forces on the body, required in Eq.(26), is then given by:

f = −
nb
∑

n=1

fn (24)

where the summation is taken as the assembling operator for the elements contribution,fn, computed from Eq. (22) for
all nb nodes inΓL. Finally, the resulting moment acting in the rigid body masscenter is computed as:

m =

nb
∑

n=1

rn × fn (25)

wherern is the position vector of each node inΓL with respect to the mass center of the rigid body.

5. Rigid body dynamics

In this work the immersed or partially immersed structures are considered to undergo rigid body motions, that are
conveniently described by the usual 6 (six) degrees of freedom (3 displacements and 3 rotations) referred to its center
of mass. Body weight and the hydrodynamic forces acting on the body’s surface are summed-up as resulting forces and
moments referred to the center of mass. These hydrodynamic forces are evaluated based on the fields(u, p), using the
full stress tensor given by Eq. (3). The motion of the rigid body’s mass center governs the motion of every mesh node in
ΓL, as "master-slave" kinematic constraints throughout the analysis.

The rigid body motion is governed by the Newton-Euler equations:

ma = f +mg (26)

Ibω̇ + ω × Ibω = m (27)
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wherem is the mass of the body,Ib is the tensor of inertia of the body referred to its mass center, computed with respect
to an reference system attached to the body, henceIb is constant for all time, as shown in [?, ?]. The vectorsa andω̇ are
the translation and angular acceleration of the body, respectively, with respect to an stationary reference system. Finally f
andm are the resulting forces and torques acting on the body, due to the fluid interaction with the body’s surface, already
shown in (24) and (25), respectively.

For time integration of the system formed by Eqs. (26) and (27) we use an approach proposed in [?] and reported in
[Formaggia et al., 2008], where the velocity is available byan explicit two-step Adam-Bashforth scheme,

vn+1 = vn +
∆t

2m
·
(

3fn − fn−1
)

(28)

and the translation components are obtained using a Crank-Nicholson implicit operator, as follows:

xn+1 = xn +
∆t

2

(

vn+1 + vn
)

. (29)

Analogously, a scheme similar to Eqs. (28) and (29) is applied to the Euler Eq. (27), except for two additional
intermediary steps. First, an inversion of the inertia matrix, recalling the solution of (27) foṙω according to:

ω̇ = Ib
−1 (m− ω × Ibω) (30)

and in a second step, we define the vector:

mn = (mn − ωn × Ibω
n) . (31)

Finally, the angular velocity and rotation of the body are updated according to:

ωn+1 = ωn +
∆t

2
Ib

−1
(

3mn −mn−1
)

(32)

θn+1 = θn +
∆t

2

(

ωn+1 + ωn
)

(33)

6. Coupling Solver

To advance in time the solution we solve sequentially for therigid body position, update the mesh, solve for flow and
free surface position, computing wet and non wet portions ofthe rigid body, as shown inAlgorithm 1. This algorithm
accommodates easily subiterations between the different fields and predictor-corrector procedure, which may extend the
stability range of simple staggered schemes [X, Y, Z] in single fluid FSI computations. Here, with the need to solve for
the VOF marker, we introduce an additional field and in this case it is not clear the effects of subiterations or predictor-
corrector procedures.
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Algorithm1:
Given(u, p, φ) in t = t0 setumesh(x, t0) = 0

Loop in time (tn)

1. compute equivalent nodal forces for elements
with at least one node lying inΓL, Eq. (22)

2. compute resulting forces and moments referred
to the body’s mass center MC, Eq. (24)-(25)

3. compute body motion, Newton-Euler equations
for new position, Eqs. (28)-(29) and (32)-(33)

4. use an updated Lagrangian description for the
rigid body defining displacements of MC

5. apply the rigid, master-slave kinematic con-
straints used to describe rigid body motion of
nodes inΓL

6. solve for mesh repositioning, a Dirichlet BVP in
each coordinate, Eqs. (11)-(13)

7. compute instantaneous mesh velocity, Eq. (15)

8. solve the flow equations incompressible Navier-
Stokes in ALE framework (u,p,umesh)

9. solve the VOF equations and update the free sur-
face position

End loop in time

According to some authors (see, for example [Felippa et al.,1999, Lohner et al., 2006]), our strategy is similar to a
two-way coupling of thefully explicit partitionedtype, also known by Conventional Sequential Staggered CSS scheme,
where the FSI problem is dealt with a change of kinematic and dynamic boundary conditions between the fluid and the
rigid body. Our method coupled the effects of fluid flow on the body and their subsequent interactions are taken by
a consistent procedure for evaluating the hydrodynamic forces acting on the body and it also ensures continuity in the
boundary conditions at the interface. In what follows, our basic assumption is that the matrix of Eq. (14) is available in
the previous time steptn−1 the mesh does not move significantly between subsequent timesteps, and the distance from
the bodies to an individual nodal point in its neighborhood does not change considerably.

It should be noted that, to the extent of the problems addressed, the physics involved and their space and time reso-
lutions, no instability issues were observed in all simulations below. Extensions of more involved variants of the present
FSI algorithm remain to be explored.

7. Test cases

In our continuing verification and validation effort of the present implementation, this section addresses three prob-
lems. The first problem adresses an usual problem that can be faced in offshore oil production facilities: a two-riser
configuration exposed to cross-flow so to observe wake induced oscilations and vortex induced vibrations in the system.
For validation, is presented the second problem models a falling sphere on a calm free surface at rest, for which many
experimental results are available in literature for assessment of the solution.

7.1 Riser Interference

This model problem addresses the behavior of an array of two vertical cylinders, i.e. risers, immersed and exposed to
a cross-flow stream, in tandem configuration with respect to the stream. It simulates the interaction between the cylinders
and was taylored to show many of the phenomena observed in practice such as vortex induced vibrations (VIV), vortex
shedding, wake induced oscillations (WIO), etc. Problem geometry can be described as a box with dimensions l=15.0m,
h = 10.0m, w=5.0m for length, height and width, respectively. From the bottom up to the top, two identical rigid cylinders
(0.50 m in diameter, thickness 0.025m and spaced center-to-center 1.00 m) are fully immersed and positioned at 3.0 m
from the inlet boundary surface. The discrete model comprises 177,623 tetrahedral elements and 32,154 nodal points.
Figure 2 displays a longitudinal cutaway view of the mesh. Velocity profile was set at inlet boundary so to provide
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Reynolds number, Re=100, according to model dimensions andfluid viscosity. The maximum inexact-Newton tolerance
was set to 0.1 while the fixed GMRES tolerance for the advection equation was 0.001.

Boundary conditions for the risers were set as follows: the riser located upstream is fixed and the downstream riser is
free to displace sideways. This simulation was run fortf = 1000.0s with constant time-step∆t = 0.005s.

Figures 4 and 5 display sequence of snapshots of the simulation showing the motion of the downstream riser, swaying
sideways with respect to the upstream riser; color fringes stand for velocity magnitudes.

For a convenient analysis of these results, we should recallEqs. (3), (22) and (24) and recast (19) as:

f = fp + fvis (34)

i.e., the forces acting over the body can be decomposed according to a pressure contribution,fp and a viscous contribution
fvis.

Figure 2. Mesh cutaway view
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Figure 3. riser-domain

Figure 4. Snapshot for t=278.45 s Figure 5. Snapshot for t=811.03 s
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Figures 6 and 7 present, respectively, longitudinal (drag)and transverse (lift) forces computed for the downstream
riser along with their pressure and viscous components. Theresults indicate that the viscous component is around 5%
of the pressure component, in good agreeement with the observations reported in [Fox e McDonald, 1998], in the range
around Re=100.

7.2 Validation Test: Falling Sphere

This model problem is relevant to the study of 3D slamming forces on ship falling in pitch motion, for instance,
onto the free surface. This problem models a solid sphere free falling vertically onto the surface of a body of fluid
initially at rest. Sphere diameter is 0.0572 m, material density is ρ=7850.0 kg/m3 and gravity is9.81 m/s2. The fluids
properties are:ρwater=1000.0 kg/m3, µwater=0.01 kg/(m.s),ρair=1.0 kg/m3 andµair=0.001 kg/(m.s). Tolerances for
the incompressible flow and for the VOF marker solvers are setas in the previous example. This simulation run fortf=
0.6 s with constant time-step∆t= 0.001 s.

The simulation reproduces and compares results with the experiments conducted in [Laverty, 2003], that uses high
speed photography to capture the inception of splash, cavity formation and track sphere position in time. The analysis
run in parallel, using 8 processors. Figure 8 shows the overall model dimensions. The used mesh comprises 232,282
elements and 40,228 nodes. Figure 9 displays a detail of the free-surface configuration clearly showing the ripples formed
at the inception of splash. Figure 10 displays the cavity developed in the free-surface behind the sphere, a few seconds
after the splash. Regarding this feature, the angles measured in the numerical simulation and in the reported experiment
agree very well. Figure 11 displays a comparison between computed and experimental results regarding vertical position
of the sphere after splashing the surface. As can be observedthere is good agreement between the results up to 0.55 s.
Afterwards, the sphere gets too close to the bottom of the model, rendering an overly distorted mesh, most likely causing
the difference between the results.

Figure 12 shows time-histories for several quantities of interest recorded in the simulation. Some of these quantities
are also reported in the experimental measurements [Laverty, 2003]. At timet = 0 the vertical position isz = 0.60m,
force and velocity are zero and vertical acceleration is 1.0, which has been normalised with respect to the acceleration
of gravity g = 9.81 m/s. It takes only0.35 s for the sphere to reach the free surface, where the verticalvelocity is at
its maximum (vz = −3.43 m/s). At the inception of splash, vertical force and acceleration reach peak values for a short
interval of0.05 s.

Z=0.68

Z=0.00

Z=-0.68

0
.5

7

0.57

air

water

Figure 8. Falling sphere on free surface at rest: overall dimensions and general view of the model (elements for fluid and
air are supressed)

Figure 9. Detail of the free surface at the inception of splash Figure 10. cavity formed at the free surface behind the sphere
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8. Conclusions

In this work we have described FSI solver for offshore hydrodynamics and reported our verification and validation
efforts. This solver is designed to profit from a highly efficient parallel edge-based stabilized finite element flow solver
that handles free-surface flow problems. The new features incorporated to handle FSI problems inherits these capabilities.
The solution of a riser interference is a prototype simulations of situations of interest in offshore hydrodynamics. Inthis
problem results agree well with available results. Although the FSI algorithm is simple, no stability issues have been
observed in these examples. Extensions of more involved variants of the present FSI algorithm remain to be explored.
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