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Abstract. The simulation of Fluid structure interaction is becomirigieeat importance for industry, in particular in naval
engineering for vortex-induced vibrations (VIV) and arsadyof the sloshing impact load on the tank of ships. There are
several approaches for solving a fluid structure interactfmoblem. The classical one is the Lagrangian formulation
for the structure and arbitrary Lagrangian Eulerian (ALE)rimulation for fluid, a fluid structure interface is defined
between the fluid and the structure may be treated with volofrfliid (VOF) formulation. This work is concerned
with the modeling of the interaction of fluid flow with movitiqustures, are presented algorithms under ALE and VOF
approach to compute the complete set of actions betweemiti@fid the structure. Numerical applications are presente
in particular VIV problem.
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1. Introduction

The variety of FSI problems scenarios is abundant and rangesparachutes and airbags flows to blood flow in ar-
teries and riser interference for a deep water riser arraggmts a complex ocean engineering problem. The optimizati
of engineered systems involved on those problems throwgimténsive use of computer simulation as physical modeling
and, according to the desired accuracy, the solution camite expensive. Computer modeling of such situations faces
important difficulties and is supposed to reunite three na@ipects: accuracy (reproducing the main physical mecha-
nisms present), robustness (stability of the involved @tlgms leading to convergence) and computational perfamaa
(matching the needs of the applications). The main comjoutaltchallenges related to such highly nonlinear problem
are determining the evolution of the interfaces locatiot swiving the coupled multi-fluid-structure interactiomplem.
There are a large number of numerical methods devoted tootfm@uatation of a single fluid interacting with structures
or free-surface problems. In the problem of a single fluigratting with structures, moving mesh methods, within
the framework of the Arbitrary Lagrangian-Eulerian (ALEyiulation or space-time deforming domain methods, are
usually preferred, specially when the structures mightengd large motions. The amount of work describing ALE meth-
ods is enormous, and we do not intend here to present a literegview, we rather refer the interested reader to books
and recent paper collections [Donea e Huerta, 2003] andpaperessing particular aspects of the overall methogolog
[Farhat et al., 2010, Dettmer e Peric, 2006]. These refeeace all related to finite elements, addressing a variety of
topics, such as discretization methodologies for fluids stnectures, moving meshes and adaptivity, coupling giiese
etc.

In the present work we extend the simulation capabilitiethefsolver introduced in [Elias et al., 2009], including
robust general mesh movement strategies and rigid bodynaigsa Staggered, or also known as partitioned, algorithms
provide an interesting approach to handle such coupledgrabas they allow to explore methods designed to treat
the physics of each sub-system in an optimal way. Moreokiey, &lso permit to put together tested high performance
numerical codes already developed, even if they consistackkboxes, the data structures used in different moduius o
the code can be easily made compatible. Such convenientésatome at a price, those algorithms are usually only
conditional stable in contrast with monolithic approachdsnolithic algorithms, in which all equations are solvedree
same time for each time step, become less attractive foypeedf problems we have in mind as the computational cost
for solving the coupled system grows nonlinearly with thenber of variables. As no general theory has been proposed
for those staggered algorithms, their robustness andlistathiaracteristics might be investigated through nuceri
tests. The focus here is to report the integration of theraégelution components and present the resulting staggere
algorithm, which has been implemented in its simplest foamno sub-iteration, often used to improve stability. The
numerical examples presented here that deal with impagptatbtypes of the situations of interest has shown no stabil
issues.

The remainder of this paper is organized as follows. Next@ediscusses the governing equations for the free-seirfac
flow, mesh movement and rigid body dynamics. The resultiaggered time marching algorithm and the finite element
components for the fluid flow solver and mesh movement arebaistly reviewed. Section 3 presents some development
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and verification examples. First we investigate the rolesstof the mesh movement scheme when the resulting system
of linear equations is solved by an iterative driver. A risgerference problem is solved to demonstrate the pres®int F
flow capabilities. The paper ends with a summary of our maircksions.

2. Governing equations
2.1 Incompressible Fluid Flow

Let Q2 C R"« be the spatial domain, wherg, is the number of space dimensions, letienote the boundary &t
and the interval0, ¢ ¢] denote the time domain of the problem. We consider the fatigwonvective form of the Navier-
Stokes equations governing the incompressible flows of taviscible fluids that uses a reference frame provided by the
ALE formulation which are defined over the space-time doniain [0, ¢ /]:

p(%%—(u—umesh)-Vu—b)—V-cr_O, (1)

V.u=0, )

wherep andu are the density and velocity,,,.;, is the reference frame velocity, The latter, in the contdx &inite
Element approximation, is taken as the velocity of the gegiof the discrete mesh, which gives room for accommodating
the coupling of fluid and solid motions and adapt the mesh éscdbing the flow considering the new relative position
of the solid body. Moreoveb represents the body force vector carrying the gravity @&aé&bn effect and the Cauchy
stress tensar for a incompressible Newtonian fluid is given as:

o (p7 u) =-pl+ 2/LD(11), 3

wherep is the pressurd, is the identity tensouy is the dynamic viscosity anD is the rate-of-deformation tensor defined
as

D(u) = % (vu + (vu)T) . 4)

In the present work a large eddy simulation (LES) approactutbulence is considered by the use of a classic
Smagorinsky turbulence model [Smagorinsky, 1963]. In thilel, the viscosity: is augmented by a subgrid-scale
viscosityusas proportional to the norm of the local rate-of-deformatiendor and to a filter width defined here as the
cubic root of the element volume,

H8Gs = P(Csh)2 2D(u) : D(u)|, )

whereCys is the Smagorinsky constant, taken as 0.1.
The essential and natural boundary conditions associatbdegs. (1) and (2) can be imposed at different portions of
the boundary" and represented by,

u=ug onI'g (6)
u:dL on FL (7)
n-c=h on 'y, (8)

wherel ' is the Eulerian boundary of the fluid with essential boundarydition,I", is the Lagrangian boundary, i.e., the
moving (rigid) body surface,’;, is the boundary with applied traction forces amds the unit outward normal vector to
T';,. Thefieldsug dj, are respectively the fluid velocity applied in the Euleriamubdary and the fluid-structure interface
displacements. Eq. (7) establishes which interface isidered as non-slip conditions.

The boundarie§ 1, I'g, I, andT" are related by:

FQZFEUFL (9)
I =T,UT, (10)

Accordingly with the type of flows to be analyzed, here indyfree surfaces, the model can be stated within a two
fluids (A and B) point of view. Therefore the spatial dom&in= 24 U 2y is split into two regions; one corresponding
to the space occupied by the original fluid and the secondlatray region containing part of the air surrounding this
fluid. Both fluids are separated by means of a moving intematfacel’;,;(t), not known a priori. The position of the
interface is computed taking into the consideration thidciBes and the traction vectors for both fluids assume dmees
value on this interfaceuy = ug; o4 - n;,; = op - n;,;), Wheren;,,; is the unit normal vector to interfade,,;. Note
that this last condition only holds if surface tension betwéuids is negligible.
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3. Mesh movement

There are many options available for addressing node rémaisig in ALE frameworks. For instance, an elasticity
operator in an ancillary boundary value problem BVP for gfioning nodes, is employed in [Johnson e Tezduyar, 1994].
In this work, our choice is the scheme proposed for 3D apiidina in [Masud et al., 2007], where nodes are repositioned
as result of the solution of a scalar BVP, Egs (11)-(13),temion x [0, ¢]:

V-(1+7]V)di=0 i=1,..n., (11)
d:dL on FL, (12)
d=0 onl-Tp (3)

where,r = 7(x, t) is a artificial diffusivity,d are the nodal displacements in the ALE step for each spattabinated,
is the vector of nodal displacements already defined in theigus section.

A Galerkin variational formulation is used to solve the mB&HP. The self-adjoint operator in Eq. (11) and its discrete
form render a symmetric set of algebraic equations of theajlform:

K(r)d=r (14)

whereK andr are the global matrix and the forcing term which containg##trictiond 1, respectively.
Once having solved the BVP Egs. (11)-(13), mesh velocityeappg in Eq. (1) can be computed by:

d(x,t
Wimesh = (At ) (15)

whereAt is the time-step size.

The heterogeneous artificial diffusivity is computed fockealement of the mesh, i.e(x, t) = 7¢(t) according to:

1- Vmin/Vmax
e _ 16

T TV Vs (16)
whereV,,in, Vimaz are, respectively, the least and the largest volume for lgm@ents in the mesh, arlid® is the the
current element volume. The artificial diffusivity (16) leathe crucial role of stiffening the elements in the immesliat
neighborhood of the body, allowing mesh distortion in thefiield where large elements are usually located. The quality
of the tetrahedral meshes updated by this method can bead®dlusing the following metrics:

V3 .
Qe = WV (17)
(%)
i=1
wherel; are the edges of the element. We also used a relative matein by:
QL
Qi = (19)

to
€
4. Fluid structure interaction

Nodal forces equivalent (in equilibrium) with the full sése measured in the surrounding elements, can be computed
by:

fe, = [ BTgdQ 19
nt

K2

Qe

where the tensar was defined in Eq. (3)). is the element domain, a8l is given by:

B = B_]I = %7 1= 17 vy Nen (20)
J

where N are the shape functions of an element apgl is the number of element nodes. Evaluation of integral (49) i
only required for those elements meeting the condition:

Qe C Adj(I') (21)
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Figure 1. Portion of the elements attached to a Lagrangiandbary in a ship hull model

whereAd;j(T';,) is the region spanning elements with at least one node Iyiihg,j as illustrated in Fig. (1) for a ship hull
mesh, that is, elements adjacenito.

Thus, the resulting forces on the immersed body can be cadytthe sum of each element internal force contribu-
tion (computed as equivalent nodal forces). Note that elsnedjacent td';, may be on the wet or non-wet portion of
the immersed body. The fluid properties assigned to eacheslely the VOF method defines the proper contributions to
the element internal forces, that is,

£, = Aefz‘enth‘i (22)
where
s =rpnre (23)

in which I'¢ is the boundary of). and the assembly operatdr, is used here instead of the ordinary sum symbol to
denote the finite element assembly process.
The resultant of the hydrodynamic forces on the body, regliim Eq.(26), is then given by:

f=->f, (24)

where the summation is taken as the assembling operatdrdai¢éments contributioti,, computed from Eq. (22) for
all nb nodes inl",. Finally, the resulting moment acting in the rigid body messter is computed as:

nb
m = Z r, X f, (25)
n=1

wherer,, is the position vector of each nodelii, with respect to the mass center of the rigid body.
5. Rigid body dynamics

In this work the immersed or partially immersed structuress @nsidered to undergo rigid body motions, that are
conveniently described by the usual 6 (six) degrees of &ree(B displacements and 3 rotations) referred to its center
of mass. Body weight and the hydrodynamic forces acting erbtidy’s surface are summed-up as resulting forces and
moments referred to the center of mass. These hydrodynanties are evaluated based on the fi€lds), using the
full stress tensor given by Eq. (3). The motion of the rigidlyye mass center governs the motion of every mesh node in
I'L, as "master-slave" kinematic constraints throughout tiadyais.

The rigid body motion is governed by the Newton-Euler ecpredi

ma ={f +mg (26)

Lw+wxIw=m (27)
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wherem is the mass of the body is the tensor of inertia of the body referred to its mass eentenputed with respect
to an reference system attached to the body, h&niseconstant for all time, as shown i3,[?]. The vectorsa andw are
the translation and angular acceleration of the body, iimedy, with respect to an stationary reference systemalfy f
andm are the resulting forces and torques acting on the body,altetfluid interaction with the body’s surface, already
shown in (24) and (25), respectively.

For time integration of the system formed by Eqgs. (26) and {& use an approach proposed #h4nd reported in
[Formaggia et al., 2008], where the velocity is availableabyexplicit two-step Adam-Bashforth scheme,

At
n+l _ .n . n _ en—1
v =v"+ om (3f f ) (28)

and the translation components are obtained using a Crastieldon implicit operator, as follows:
At
X" =x" 5 (V""'1 +v"). (29)

Analogously, a scheme similar to Egs. (28) and (29) is agdiiethe Euler Eq. (27), except for two additional
intermediary steps. First, an inversion of the inertia iRatecalling the solution of (27) fai» according to:

w=T,""(m—-wx Lw) (30)
and in a second step, we define the vector:
m"’ = (m" —w" x Liw"). (31)

Finally, the angular velocity and rotation of the body arelajed according to:

W't =" 4 %Ib‘l (3m" —m" ') (32)
At
O = 6"+ - (W ") (33)

6. Coupling Solver

To advance in time the solution we solve sequentially forrigiel body position, update the mesh, solve for flow and
free surface position, computing wet and non wet portionthefrigid body, as shown iAlgorithm 1 This algorithm
accommodates easily subiterations between the differddsfand predictor-corrector procedure, which may extead t
stability range of simple staggered schemes [X, Y, Z] in Erityid FSI computations. Here, with the need to solve for
the VOF marker, we introduce an additional field and in thisecidis not clear the effects of subiterations or predictor-
corrector procedures.
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Algorithm1:
Given(u,p, ¢) int =ty Setu,,esn(x,to) = 0
Loop intime ¢,)

1. compute equivalent nodal forces for elements
with at least one node lying ifi;, Eq. (22)

2. compute resulting forces and moments referred
to the body’s mass center MC, Eq. (24)-(25)

3. compute body motion, Newton-Euler equations
for new position, Egs. (28)-(29) and (32)-(33

4. use an updated Lagrangian description for|the
rigid body defining displacements of MC

5. apply the rigid, master-slave kinematic con-
straints used to describe rigid body motion| of
nodes inl'y,

6. solve for mesh repositioning, a Dirichlet BVP|in

each coordinate, Egs. (11)-(13)
7. compute instantaneous mesh velocity, Eq. (15)

8. solve the flow equations incompressible Navjer-
Stokes in ALE frameworky,p,u,,.csn)

9. solve the VOF equations and update the free|sur-
face position

End loop in time

According to some authors (see, for example [Felippa e1889, Lohner et al., 2006]), our strategy is similar to a
two-way coupling of thdully explicit partitionedtype, also known by Conventional Sequential Staggered CB&se,
where the FSI problem is dealt with a change of kinematic anwadhic boundary conditions between the fluid and the
rigid body. Our method coupled the effects of fluid flow on thaly and their subsequent interactions are taken by
a consistent procedure for evaluating the hydrodynamefrcting on the body and it also ensures continuity in the
boundary conditions at the interface. In what follows, oasib assumption is that the matrix of Eq. (14) is available in
the previous time stef,_; the mesh does not move significantly between subsequergtépse and the distance from
the bodies to an individual nodal point in its neighborhoodsinot change considerably.

It should be noted that, to the extent of the problems adddedke physics involved and their space and time reso-
lutions, no instability issues were observed in all siniolad below. Extensions of more involved variants of the pnés
FSI algorithm remain to be explored.

7. Test cases

In our continuing verification and validation effort of theggent implementation, this section addresses three prob-
lems. The first problem adresses an usual problem that caacled fn offshore oil production facilities: a two-riser
configuration exposed to cross-flow so to observe wake irdlaseilations and vortex induced vibrations in the system.
For validation, is presented the second problem modeldingadphere on a calm free surface at rest, for which many
experimental results are available in literature for assest of the solution.

7.1 Riser Interference

This model problem addresses the behavior of an array of éstical cylinders, i.e. risers, immersed and exposed to
a cross-flow stream, in tandem configuration with respedtecstream. It simulates the interaction between the cyisxde
and was taylored to show many of the phenomena observeddtiggauch as vortex induced vibrations (VIV), vortex
shedding, wake induced oscillations (WIO), etc. Problewngetry can be described as a box with dimensions 1=15.0m,
h =10.0m, w=5.0m for length, height and width, respectivElpm the bottom up to the top, two identical rigid cylinders
(0.50 m in diameter, thickness 0.025m and spaced centagrtter 1.00 m) are fully immersed and positioned at 3.0 m
from the inlet boundary surface. The discrete model comepris’7,623 tetrahedral elements and 32,154 nodal points.
Figure 2 displays a longitudinal cutaway view of the meshlotiy profile was set at inlet boundary so to provide
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Reynolds number, Re=100, according to model dimension$laiddviscosity. The maximum inexact-Newton tolerance
was set to 0.1 while the fixed GMRES tolerance for the adve&iuation was 0.001.

Boundary conditions for the risers were set as follows: tberiocated upstream is fixed and the downstream riser is
free to displace sideways. This simulation was rur¢foe= 1000.0s with constant time-stepzt = 0.005s.

Figures 4 and 5 display sequence of snapshots of the simuktiowing the motion of the downstream riser, swaying
sideways with respect to the upstream riser; color fringgsdsfor velocity magnitudes.

For a convenient analysis of these results, we should regall (3), (22) and (24) and recast (19) as:

f=1, +fis (34)

i.e., the forces acting over the body can be decomposeddingdp a pressure contributiofy, and a viscous contribution

fvis .

Figure 2. Mesh cutaway view Figure 3. riser-domain
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Figures 6 and 7 present, respectively, longitudinal (deaw) transverse (lift) forces computed for the downstream
riser along with their pressure and viscous components. rédts indicate that the viscous component is around 5%
of the pressure component, in good agreeement with the @igars reported in [Fox e McDonald, 1998], in the range
around Re=100.

7.2 Validation Test: Falling Sphere

This model problem is relevant to the study of 3D slammingésron ship falling in pitch motion, for instance,
onto the free surface. This problem models a solid spheeefaling vertically onto the surface of a body of fluid
initially at rest. Sphere diameter is 0.0572 m, materialsitgris p=7850.0 kg3 and gravity is9.81 m/s2. The fluids
properties arep,q¢e»=1000.0 kgm?, ftwater=0.01 kg/(M.S) pq:-=1.0 Kgin? and z1,;-=0.001 kg/(m.s). Tolerances for
the incompressible flow and for the VOF marker solvers arasét the previous example. This simulation run#gr
0.6 s with constant time-stefst= 0.001 s.

The simulation reproduces and compares results with thererpnts conducted in [Laverty, 2003], that uses high
speed photography to capture the inception of splash,yctitnation and track sphere position in time. The analysis
run in parallel, using 8 processors. Figure 8 shows the tivaael dimensions. The used mesh comprises 232,282
elements and 40,228 nodes. Figure 9 displays a detail ofeékesturface configuration clearly showing the ripples fedm
at the inception of splash. Figure 10 displays the cavityettmed in the free-surface behind the sphere, a few seconds
after the splash. Regarding this feature, the angles medsuthe numerical simulation and in the reported expertmen
agree very well. Figure 11 displays a comparison betweerpated and experimental results regarding vertical pasitio
of the sphere after splashing the surface. As can be obstreeslis good agreement between the results up to 0.55 s.
Afterwards, the sphere gets too close to the bottom of theatoehdering an overly distorted mesh, most likely causing
the difference between the results.

Figure 12 shows time-histories for several quantities tdriest recorded in the simulation. Some of these quantities
are also reported in the experimental measurements [a28®3]. At timet = 0 the vertical position i = 0.60m,
force and velocity are zero and vertical acceleration is Wiiich has been normalised with respect to the acceleration
of gravity g = 9.81 m/s. It takes only.35 s for the sphere to reach the free surface, where the vevidatity is at
its maximum ¢, = —3.43 m/s). At the inception of splash, vertical force and ac@glen reach peak values for a short
interval 0of0.05 s.

Z=0.68

Z=0.00

Figure 8. Falling sphere on free surface at rest: overaledsions and general view of the model (elements for fluid and
air are supressed)

Figure 9. Detail of the free surface at the inception of dplas Figure 10. cavity formed at the free surface behind the spher
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8. Conclusions

In this work we have described FSI solver for offshore hygramics and reported our verification and validation
efforts. This solver is designed to profit from a highly efici parallel edge-based stabilized finite element flow solve
that handles free-surface flow problems. The new featuoesporated to handle FSI problems inherits these capabilit
The solution of a riser interference is a prototype simataiof situations of interest in offshore hydrodynamicsthis
problem results agree well with available results. Althiotige FSI algorithm is simple, no stability issues have been
observed in these examples. Extensions of more involvedntarof the present FSI algorithm remain to be explored.
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