
Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

GENERALIZED BOUNDARY ELEMENT METHODS WITH 
FUNDAMENTAL SOLUTION VIA THE FOURIER TRANSFORM 

 
Luiz Carlos Facundo Sanches, luiz@mat.feis.unesp.br 
Department of Mathematics, Paulista State University, Ilha Solteira, Brazil 
 
Euclides de Mesquita Neto, euclides@fem.unicamp.br 
Department of Computational Mechanics, State University of Campinas, Campinas, Brazil 
 
Abstract. A recent method developed by means of the spatial Fourier transform generalizes the Boundary Element 
Methods (BEM) to the so-called Fourier-BEM. This approach is available for all cases as long as the differential 
operator is linear and has constant coefficients and is possible for all variants of the BEM. Via convolution and 
Parceval’s theorem, which states the equivalence of energy terms in the original space and in the Fourier space, the 
idea is to avoid the inverse Fourier transform of the fundamental solution and to work directly with the Fourier 
transformed fundamental solution. No inverse transform and no fundamental solution in the original space are 
required. Alternative Boundary Integral Equations (BIE) can be established in the Fourier transformed domain. A 
Galerkin approach lead to matrices identical to those obtained via the standard BIE and does not require a second 
integration. The elements and shape functions also can be transformed to the Fourier domain. In this work, the method 
is presented and then applied to heat problem to motivate the discussion and demonstrate the equivalence between 
traditional BEM and Fourier BEM. 
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1. INTRODUCTION 
 

The standard Boundary Element Method (BEM) is a powerful tool in computational mechanics. The range of 
applications of BEM is restricted to cases where the fundamental solution is known. Then the knowledge of a 
fundamental solution is crucial to solve engineering problems with BEM. It is available for a large number of cases 
relevant in engineering but in several problems is still not known analytically. As with the Finite Element Method 
(FEM), the integral equations of the BEM can be derived from weighted residuals. They consist of convolution integrals 
weighted with either Dirac distributions called collocation method or polynomials trial functions called Galerkin 
method. In traditional approach, as in Brebbia et al. (1984), Hall (1994), Bonnet (1999), and McLean (2000) the former 
demands for a single integration over boundary problem while the latter requires double integrations. Nevertheless, the 
Galerkin method is becoming more popular due to symmetry of the matrices and better convergence properties, as 
presented by Frangi and Bonnet (1998). Although in all cases the fundamental solution is required. 

Recent approaches have been developed where the fundamental was derived in the Fourier space with transform 
with respect to spatial and temporal coordinates. If the differential operator is linear and has constant coefficients, its 
transformed form can be easily inverted, which leads directly to the Fourier transform of the fundamental solution. A 
work developed by Duddeck (2002) via the Fourier transform generalizes the BEM to the so-called Fourier BEM. 
There, new Boundary Integral Equations (BIE) are formulated, which consist only of the Fourier transformed terms and 
lead to equivalent matrices as in the standard BIE. It is based on Parseval’s equality and the convolution theorem. The 
former states the invariance of energy or work with respect to the Fourier transform, and the latter relates convolution 
products to simple products. As show in the works presented by Duddeck (2002) and Sanches (2009), the principal idea 
is to avoid the inverse Fourier transform of the fundamental solution and to work directly with the Fourier transformed 
fundamental solution. Every term should be established in the Fourier domain. The applied Galerkin approach leads to 
symmetric matrices and does not require a second integration in the new method. The trial and the test functions can be 
easily transformed to the Fourier domain as long as they are defined on straight elements. 

An example of the heat conduction applying the Laplace-operator in the Poisson equation is discussed to visualize 
the broad field of applications of the Fourier BEM and to demonstrate the equivalence between traditional method and 
the new approach. 
 
2. THEORY OF STANDARD BEM AND FOURER-BEM 
 

The theory of BEM is based on an equivalent weak form or reciprocity relation who includes all boundary terms 
known and unknown. For a n-dimensional bounded domain Ω ⊂ Rn with a polyhedral boundary∂Ω, we get 
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Considering property of the Dirac ∫Ω u(y)δ(x-y)dy = u(x), where u is the unknown quantity and δ is the Dirac delta 
(the response of an infinite medium to a single force f = δ at x = y;  f denotes known volume sources), the Somigliana’s 
identity is derived by an inversion of the differential operator that is we replace φ  by the fundamental solution U(x-y) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ydyxUytyxTyudyyxUyfxu Γ
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The transition to boundary integral equations demands a limit process of x→ ∂Ω. The left-hand side of (2) is 

modified by a factor κ which is equal to ½ for smooth boundaries, then 
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In (3) u and t are approximated by a sum of piecewise polynomial trial functions ηm

u, ηm
t with coefficients um e tm 
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These quantities represent known and unknown boundary values. An additional weighting with these trial functions 

leads to the Galerkin version of the integral equation (3) 
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The use of boundary quantities (4) in (5) results in 
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For the case of standard BEM constructed from these BIEs (equations 3 and 6) is necessary the explicit knowledge 

of the fundamental solution U and its normal derivative T. The knowledge of fundamental solution is crucial to solve 
engineering problems with BEM. Numerical approaches have been developed but they introduce additional numerical 
errors to the overall approximation. The Fourier-BEM to work directly with the Fourier transformed fundamental 
solution. Alternative boundary integral equations can be established in the Fourier transformed domain. They lead to 
matrices identical to those obtained via the standard method. These approaches are presented in the following sections. 
 
2.1. Distributional Theory Fourier-BEM 
 

To obtain the Fourier transform of the BIE, all quantities have to be extended from a n-dimensional bounded domain 
Ω, with a polyhedral boundary ∂Ω,  to the space Rn. Formally, this can be done by defining a cutoff distribution χ which 
is simply one in the interior of Ω and zero outside. Then all quantities are multiplied by cutoff-distribution and finally 
transformed into Fourier space. Mathematically this extension and transformation is justified only in the frame of the 
theory of distributions (Schwartz, 1950). It simplifies the derivation of the reciprocity relations, the correct treatment of 
discontinuities and singularities, and the evaluation of the free terms. The Fourier transform without its distributional 
extension is not complete enough to treat the simplest problems (Duddeck, 2002). The main advantage of the theory is 
that it reestablishes differentiation as a simple and consistent procedure; all quantities are differentiable even if they 
exhibit severe singularities or jumps. 
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2.2. Mathematical Equations for Extension from Ω to Rn 
 

The Fourier transform is defined on Rn, hence we have to extend the equation (6) from Ω to Rn. Therefore, we define 
a cutoff-distribution (Gel’fand and Shilov, 1964) 
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For smooth boundaries, χ can be expressed by a generalized multi-dimensional Heaviside-distribution H (ψ) 

 
( ) ( )( ) nRxxHx ∈ψ=χ  (8) 

 
ψ describes the boundary ∂Ω as a hypersurface. Domains with non-smooth boundaries are expressed by products and 
sums of these Heaviside-distributions, as presented by Duddeck (1997). The field quantities, the unknown u and the 
volume force f, extended over Ω, that is they vanish outside Ω. This is described by 
 

( ) ( ) ( ) ( ) ( ) ( )xfx:fxf,xux:uxu χ=→χ=→ ΩΩ  (9) 
 
where u and f are C2 (Rn). In analogy to equation (9), we need cutoff-distributions for the trial and test functions. For 
example, they are for a reference element 
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Trial functions are obtained multiplying a C∞ (Rn)-function p0(x), for example polynomials, with cutoff-distributions 
 

( ) ( ) ( )xpx:x 000 χ=η  (11) 
 

The unknown a the known quantities on the boundaries are now approximated by 
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The Galerkin-BIE equation (6) can now be expressed by 
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The factor κ is implicitly defined by the distributional representation, we have for example                      

δ(x1)H(x1) = ½ δ(x1) = κδ (x1). With the abbreviations 
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For the unknown u, we get finally as Galerkin-BIE in Rn  
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with uΩ = u(x)χ(x); fΩ = f(x)χ(x) and χ defined by equation (7). 
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2.3. Fourier Transform of the Galerkin-BIE 
 

For several physical problems, we do not know the fundamental solution U required in (3) and (6). But, if the 
coefficients of a differential operator are constant, we can always derive the Fourier transform ( )x̂Û of U (x). Then, the 

n-dimensional Fourier transform, ℱ(φ) = φ̂  of φ is defined as 
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j
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j
j
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with i =√-1. The symbol ^ characterizes a transformed object, ℱ↔ denotes the link of an expression in the original 
space to the corresponding term in the transformed space. The principal idea of the Fourier-BEM is two well known 
theorems of the Fourier transform the theorem of Parceval which states the invariance of work or energy 
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and the convolution theorem, for example, 
 

u(x)∗ φ (x)             ℱ↔             ( ) ( )x̂ˆx̂û φ  (18) 
 

The application of these two theorems to equation (15) leads to the equivalences 
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The equivalent to equation (15) is the BIE for the Fourier-BEM 
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The inner integrals in equation (15) are convolutions and converted by Fourier transform to simple multiplications. 

The outer integrals in (15) are scalar products, which are converted to equivalent scalar products by Fourier transform 
(Parceval). Thus the double integration for Galerkin methods is replaced by a single integration over Rn in (23). 
 
2.4. Fourier Transform of the Fundamental Solution 
 

The Fourier transformation of a differential equation converts the differential operator to an algebraic expression. 
Here, this approach is presented for the Laplacian-operator. We regard the Poisson equation in an n – dimensional 
bounded domain Ω ⊂ Rn with a polyhedral boundary ∂Ω 
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( ) ( ) ,x,xuxu u Ω∂⊂Γ∈= Γ          and         ( ) ( ) ,x,xtxt t Ω∂⊂Γ∈= Γ  (25) 
 
As boundary conditions we assume that half of the boundary data, either u on Γu or its normal derivatives                  

t = ∂u/∂ν on Γt, is known, that is Γu  ∪ Γt = ∂Ω. The Fourier transform of the differential equation (24) converts the 
differential operator ∆ to an algebraic expression 
 

( ) ( )xfxu =− ∆             ℱ↔            ( ) ( ),x̂f̂x̂ûx̂ 2 =  (26) 
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j
2
j

2 x̂x̂ . The Fourier fundamental solution ( )x̂Û  as the response to a single unit force 

f(x)=δ(x) is obtained from 
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by simple inversion 
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For the complete BIE, we need the normal derivatives of U for the normal vector ν 

 
)x(U)x(T ∇⋅=ν               ℱ↔               ( ) ),x̂(Ûx̂ix̂T̂ ⋅=ν  (29) 

 
This procedure can be applied to all linear and homogeneous operators; we always have the Fourier fundamental 

solution (Duddeck, 2002). 
 
2.5. Fourier Transform of Particular Generalized Function 
 

A number of particular generalized functions can be studied, some for their intrinsic interest and wide-spread utility, 
and others solely for their application to the technique of asymptotic estimation of Fourier transforms. We begin by 
defining integral powers, and more precisely the function sgn xk/xk

m. In this work, Lighthill (1966) gives as transform of           
sgn xk/xk

m with an integer m > 0 the following result 
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The constant C occurs because the functions sgn xk/xk

m are determined only up to an arbitrary multiple of the Dirac-
distribution δ(m-1) at the singular point xk = 0. This constant C has to be defined for each fundamental solution. It is well 
known that the constant C in the original space can be added to the fundamental solution without changing the solution. 
In general it is chosen to be zero. The table 1 entries for m > 1 was originally obtained by Lighthill (1966) and 
developed by Duddeck (2002) 
 
 Table 1 - Fourier pairs for sgn xk/xk

m 

Original space ℱ↔ Fourier space 

sgn xk/xk ℱ↔ ( )kx̂ln2−  

sgn xk/xk
2 ℱ↔ ( )1x̂lnx̂i2 kk −−  

sgn xk/xk
3 ℱ↔ ( )2/3x̂ln!2/x̂2 k

2
k −−  

 
The Fourier transform is based on this distribution theory and therefore by far better suited for singular integrals. A 

number of the one and two dimensional integrations can be computed analytically by means of the equation (30). 
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2.6. Fourier Transform of the Trial and Test Functions 
 

The transformed cutoff-distributions ( )x̂ˆ 0χ  are defined for the two-dimensional reference element 
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1
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As described by Duddeck (2002), elements of arbitrary polynomial degree are constructed via a multiplication with 

p0(x) in the original domain or an analytical convolution in the transformed domain. General transformed straight 
elements are obtained by transformed dilation and translation operators. For straight elements and for arbitrary 
polynomials p0(x), the transformed trial functions are analytically know. 
 
2.7. Construction of Fourier-BEM Matrices 
 

The already discretized Fourier-BIE equation (23) leads to an algebraic system of j equations 
 

∑∑ +−=
tu N

m
mjm

N

m
mjmjj tHuGFuκ  (32) 

 
where we have defined 
 

( ) ( ) ( ) ,x̂dx̂Ûx̂f̂x̂ˆ:F
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These Fourier BIE lead to the same matrix entries as those of the standard approach. Double integrations over the 

boundary elements are replaced by single integrations over the infinite space (the factor (2π)-n was canceled). The 
differentiation of the fundamental solution in the Fourier space is straight forward, i.e. replaced by a multiplication with 
these polynomials. The approach requires also the Fourier transforms of the test and trial functions, which can be done 
analytically as long as the elements are straight. Due to equivalence of the work terms in the original domain and the 
transformed domain which is stated by Parceval’s theorem, all vectors and matrices of (32) have the same values as it 
would be obtained by a traditional BEM. Therefore, the further processes of the BEM algorithm can be taken without 
any modifications from the standard BEM. 
 
3. FOURIER-BEM APPLYED TO THE HEAT CONDUTION PROBLEM 
 

We consider a problem of heat conduction in a plane domain Ω  which is heated by stationary interior sources f. The 
temperature at the boundaries is kept to zero and the isotropic conductivity K is set to one. Mathematically, this leads to 
the Dirichlet problem of the Poisson equation (24). As described by Duddeck (2002) this problem is best suited to 
demonstrating the equivalence between traditional BEM and Fourier BEM. The problem is solved in a two-dimensional 
domain Ω = [0,1]×[0,1]. In this case, the boundary ∂Ω was divided into four and eight elements, one and two for each 
side. Additionally, a stationary and uniform heat source f is assumed over Ω, then 
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Taking into account that the temperature is vanishing at the boundaries the general system of Fourier BIE can be 

reduced to 
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To solve the first term of the equation (37) we need to consider a constant trial and test function for the flux t for the 
first linear boundary element 
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The fundamental solution U(x) and the Fourier fundamental solution ( )x̂Û  determined by equation (28) is 
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The integration of the first matrix (H11) entry in the original space is 
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The corresponding integration in Fourier space leads to the same value. Although we solve separately the two 

integrations 
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The integration over x2 leads to an equation (42). Reordering the equation (42), it can be written in the following 

form 
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Applying the equation (30), developed by the Lighthill (1966), and considering the Fourier transform (16) in the 

new expression (43) we obtain the final result 
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Note in expression (44), the Fourier transform of the function sgn xk/xk

m. The total matrix H is obtained analytically 
either in the original or in Fourier space as 
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 (45) 

 
The matrix G was obtained of the same way and the standard matrix approach of the BEM was used for compute the 

results of the Fourier-BEM. The results of heat flux on each side of the boundary to the mesh with four and eight linear 
elements are presented in Table 1. These values are compared with exact solution expressed by a Fourier series and 
with those obtained by Duddeck (2002). 
 

Table 1. Results Boundary Heat Flux. 
 

Method Boundary Heat Flux  
Fourier-BEM (4 elements) 0,2489 
Fourier-BEM (8 elements) 0,2611 

Duddeck (2002) 0,2564 

Fourier Series 0,2628 
 

The coarse mesh leads to an acceptable result, as in Duddeck (2002). The global error for the mesh with eight linear 
elements is approximately 0.7 %. These results were compared with the exact solution expressed by Fourier series 
obtained by separation de variables. 

 
4. CONCLUSIONS 
 

The formulation and implementation of the Fourier BEM approach generalizes boundary element methods such that 
all cases of linear partial differential operators with constant coefficients can be treated. The traditional Galerkin 
boundary integral equations are reformulated by means of convolution theorem and Parceval’s identity. In contrast to 
the standard method, all quantities, the trial and test functions as well as the fundamental solution and its derivatives are 
only required in Fourier space. This BIE leads to symmetric, but fully populated matrices. The matrices are evaluated 
directly, no inverse transform is necessary. A rigorous distributional representation of the boundary element method 
was showed (Schwartz, 1950). It enables the correct treatment of the jumps and singularities occurring in the BIE. The 
distributional concept is necessary for the differentiation of the BIE required for the symmetric Galerkin BEM. 
Additionally, for some physical problems, the fundamental solution is only known explicitly in Fourier space. Hence, 
approaches via traditional BEM encounter a lot of difficulties which are avoided in the new method. Therefore, the field 
of applications of the Fourier BEM is enlarged. 
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The scheme is valid for all linear problems where the material parameters do not depend on location or time. An 
example was presented and taken from simple stationary heat conduction. The matrices of the BEM were solved by 
traditional method and Fourier transforms (Lighthill, 1966) to show the equivalence between the BEM and the Fourier 
BEM. On the other hand, equivalents integral equations can be determined in this space. This leads to the identical 
matrices obtained in the traditional BEM. The shape functions and boundary element present can also be transformed to 
Fourier space. Thus, a numerical implementation similar to the standard technique can be developed. 

As numerical application, we took as basis the differential Laplace operator in a problem of heat conduction 
(Sanches, 2009). The results showed good convergence between traditional models and new methodology. In the near 
future, it is expected to apply the Fourier-BEM in elasticity and dynamic problems involving anisotropic plates. At the 
same time, we intend to analyze mathematically the unique strengths and hyper-singularities existing in the nucleus of 
integral equations to convert the cases cited in this work. 
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