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Abstract. The aim of this paper is to apply the techniques of activerobit flexible structures for a cantilever beam
considering parametric uncertainties in the model. Theantainties was considered in damping matrix and modulus of
elasticity of the material. Uncertainties are handled bingshe polytopic form and th# ., control technique, formulated
by linear matrix inequalities - LMI, was utilized.

Keywords. Parametric uncertaintiesk ., control, LMI.
1. INTRODUCTION

Active vibration control of structures has its main intériesseveral applications such as aerospace structures, an-
tennas, noise attenuation of panels and others. The stalictodel used for the active vibration control presentsesom
uncertainties and the active control system needs to betigfeconsidering them. Two kinds of uncertainties are usu-
ally considered: dynamic and parametric. The parametréetainties will be the issue of this work and it is related
to unknown values of parameters such as mass, stiffnessaanging of the structure. The dynamic uncertainties may
be originate from imperfections in the model structurenfrihe lack of representation of some physical effect or from
simplifying assumptions (Mazoni, 2008).

The uncertainties in parameters ought to be estimated ar twde considered in the active control design. The control
design employs a structural model, which can be experirfigidantified if the structure is available or determinedhgs
modeling techniques such as a finite element model. Wheimdeaith flexible structures, parameters such as damping
coefficient and elastic modulus of the material are usuallywn within a finite precision, so these parameters need to be
modeled as presenting parametric uncertainties.

The parametric uncertainties can be considered in the noddiet structure in polytopic form or bfx methodology
(Mazoni, 2008). For this study, the parametric uncertagwiill be considered in polytopic form.

Modern control techniques, such as #e, control, are applied to some mechanical problems. The tieaf the
Hoo technigue is to minimize the worst case of vibration (maximpeak) in terms of frequency response and can be
formulated using linear matrix inequalities that transfdhe design in a convex optimization problem. This optiriara
problem can be solved using software packages as the RobosbCToolbox of MATLAB (Gahinett al., 1995)

2. STRUCTURAL MODEL

For the present case, the beam finite element was considéire@ wodes and 3 degrees of freedom in each node,
as shown in Fig. 1. From the considered beam element and thgrtdermitian formulation, the stiffness and the mass
matrices of a 2-D frame element can be found as shown repéctivEg. (1) and Eq. (2) (Kwon and Bang, 1997). The
stiffness and mass matrices of the considered problem céoube through theassemblywhich is the sum, in correct
allocation, of each element matrix. The next step of thediaiement method is to apply the boundary conditions.
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Figure 1. Beam element.
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The studied model is performed from an aluminium cantiléeam (L x h x b =1.10 x 0.032 x 0.003 m) divided
into 24 nodes, 74 degrees of freedom. The fixed end constraimefirst two nodes (0.10 m from left edge). After

the application of the constrained conditions the studeskavill now have 44 degrees of freedom and with a properly
enumeration the problem will be as Fig. 2 shows.
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Figure 2. Considered beam.
The inputs and the outputs for the active control problem are

e The disturbance on the input, will be a momentum, degree of freedom 6,

e The control efforty, will be a momentum, degree of freedom 24,

e The performance, and the measurement,signal output will be a vertical displacement, degree eéffom 43.

Figure 3 shows the final configuration for vibration control.
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Figure 3. Considered beam for control.

The dynamic equation that describes the beam vibration is:

Mi+ Ci+ Kz = u(t) +d(t) ©))
whereM, C e K, are respectively the mass, damping and stiffness systenicesa The mass and the stiffness matrices
were found with a program performed by the authors usingsfielitment model of the beam element as shown in Eq. (1)

and (2). The damping matrix will be found through the modepadportional damping that is a function of mass and
stiffness matrices, Eq (4).

C = a(M) + B(K) (4)
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The uncertainties was considered for all the beam in the dapmpatrix and in the elastic modulus of the material. The
uncertainty in damping was considered because this is audtffiarameter to be known precisely for flexible structures
and the elastic modulus was considered uncertain, bedamsg iassume different values with the variation on the alloy
compounds.

2.1 PARAMETRIC UNCERTAINTIES MODELED IN POLYTOPIC FORM

In this kind of representation it is assumed that there ig afsgystems that can be found by knowing the variation of
uncertain parameters. These set of systems is written agvaxoombination of state matrices and form a polytope. In
this polytope, because the variation of parameters are inthe vertices are known. It can be written in standard state
space notation that the domain is formed by:

with j the number of uncertain systems and B;, C; e D, the state space matrices. Figure 4 shows a polytope with the
considered uncertainty parameters. The vertices of theque are the minimum and the maximum variation around the
nominal value of the elastic modulus (E) and the dampingimé®) (Santos, 2010). In this study it will be assumed that
the parameters of the system do not variate on the time.
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Figure 4. Polytope formed by the uncertainties in the system

The number of vertices of the polytope can be found u&ifgvith ¢, the number of uncertain parameters. In this
casec = 2, and 4 possible plants (vertices) are possible.

2.2 FINDING THE H., CONTROLLER

The H, controller problem consists of finding the controller thahimizes the H-infinity norm|| H(s)||«, of the
closed loop system. This problem can be written as a optioizaroblem with constrains and can be solved using LMI
formulation (Schereet al,, 1997).
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Figure 5. Representation for control.

The closed loop of Fig. 5 is shown in Eq. (6).
& = Ax+ Bw
z = Cz+ Dw (6)
andA, B, C, Dcan be found with the open loop of the system and the controlérices.
From Lyapunov stability concepts, a linear systems will fadke with P > 0 when Eq. (7) are satisfied.
A'P+PA<O ()

Consideringy = | H (s)||.o andu = ~?2, the optimization problem that need to be solved to find#he controller are
shown in Eq. (8).
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minimize 1
AP+PA PB ('
. B'P -I D | <0 (8)
with c D —ul
P>0

According to (Santos, 2010), a usual way of solving the mobWith polytopic uncertainties is to take the extreme
systems of the polytopic representation and determineetivb® compose their convex hull. This consideration in@sas
the area on which the stability are considered and cons#gumereases the conservatism of the controller to be aesig

For the case with parametric uncertainties, the Eq. (7) eanded as a constraint for each vertex of the polytopic
region considered. In this way, the Eqg. (9) satisfies the itiomdbf stability for systems with uncertainties.

PA;+ AP <0,i=1,..] 9)

Some terms on problem Eq. (8) are nonlinnear and to apply Miecbhncept, these restrictions need to be linearized.
Applying some changes of variables , the Eq. (8) can be wréteEg. (10) (Scheret al,, 1997).

minimize I
LMI;

with v, (10)
I X

In Eq. (10), theL M I; term is the Eq. (11) for each vertex of the considered polytdpe optimization variables are
u, X, Y, F, LeM. The solution of Eqg. (10) should find%., stable controller for all the polytopic region.
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2.3 WEIGHTING FUNCTIONS DESIGN

Spillover phenomenon, which is a result of uncontrolled mmodelled modes in the plant, represents a significant
factor of instability in control system. To avoid this effeeveighting functions are designed in order to truncate the
frequency range of vibration that it is not important for #ystem. For that, it is necessary to set a frequency limitfer
signal to be controlled. A low pass filtdfl/ z, will be used in the low frequency range in order to give a higtigth to
these region. In the other hand, the high frequency regitimwiattenuated with a high pass filté¥;«, in order to avoid
the control effort outside the region of interest (Balas;8)9

With Wu and Wz, the augmented plant can be found and a controller thatligesbihe plant could be designed.
Since the filters designed are able to guarantee the syatiiliitncontrolled modes, the spillover phenomenon could be
avoided and a robustness of the structure could be perforihnisdmportant to say that the closed loop does not include
the weighting filters.These filters are only weightings tamhthe desired design requirements during the design phase
Fig. 6 shows the control scheme with the filters inclusion.
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Figure 6. Control scheme with weighting functions.

With all those considerations, the choice of weighting tiores for best performance of the controller is shown in
Eqg. (12).

200 and Wu = (12)

S
s+ 2 s + 200
3. RESULTS

z =

For vibration control, it was considered as nominal valvegf Eq. (4), thatr and3 are, respectivele > andle!.
The nominal value of elastic modulus was considerethasPa. The variation was considered hypothetically@s for
the damping matrix an@i0% for the elastic modulus. With these considerations, théque formed by the variation in
the system parameters will have 4 vertices, as shown in Tab. 1

Table 1. Vertices of the politope.

Vertex | E (GPa) C
a B
1 77 l.4e™® | 7e 2
2 77 2.6e7° | 1.3¢7!
3 63 1.4e~° Te2
4 63 2.6e° | 1.3¢*

The model found by finite element method was truncatd@imodes and considered as the real plant. Figure 7 shows
the considered real plant without uncertainties (with noahvvalues) and the real plants with uncertainties (eactexer
of the politope). For simulation purposes, to find #ig, controller, the plant considered in project is the trundatiant,
with 2 modes. The considered weighting functions for designedediound in Eq. (12).

To solve the LMI problem and find thH ., controller, the functiomincxfrom Robust Control MATLAB Toolbox
(Gahinetet al., 1995) was used. The input options parameters sehfiocxwas respectivelyle—?, 200, 1e°, 12 and1.

The controlled system is the closed loop of each real platit thie found controller. Figure 8 shows the frequency

response of the controlled and uncontrolled real plants wiicertainties. The closed loop of the real plant withoweun
tainties are shown in Fig. 9. Table 2 shows the attenuatidharfrequency response for the first five peaks of vibration
comparing the uncontrolled and controlled real plant withencertainties. It could be seen that a good attenuatien wa
achieved, specially on the first mode of vibration, whictis peak of vibration.
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The closed loop response to a chirp signal, which is a lineaps frequency signal on time, in this case froro
% Hz until 100 s, for each controlled and uncontrolled plants are showngn1®.
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Figure 7. Frequency response of the real plants (with anttbwituncertainties).
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Figure 8. Frequency response of controlled and uncontrodlal plants with uncertainties.
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Table 2. Controlled and uncontrolled real plant withoutemainties - vibration attenuation and damping factor -cade

ing to Fig. 9
Peak numbe peak atw (rad/s) £ Attenuation (db)
Uncontrolled| Controlled | Uncontrolled| Controlled
1 14.1 16.8 0.0037 0.3310 -33.6
2 88.1 88.1 0.0014 0.0029 -1.8
3 247 247 0.0026 0.0053 -7.2
4 484 484 0.0049 0.0050 -0.2
5 800 800 0.0080 0.0079 +0.1
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Figure 9. First five peak of vibration in frequency resporfsmntrolled and uncontrolled real plant without uncertiis.
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Figure 10. Chirp response of controlled and uncontroll@dipants with uncertainties.
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Figure 11. Chirp response of controlled and uncontrollediptants without uncertainties.
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4. CONCLUSIONS

When dealing with flexible structures, there are some probliat may appear from the modeling of the system. One
of them is the uncertainty of the system’s parameters sudaaping matrix and elastic modulus of the material. The
possible variation of these parameters can be considetkd tontroller design. One way of considering these vaiati
within finite precision is to consider them as parametricartanties using the polytopic form.

The aim of this paper was to show how to deal with the parametrcertainties written in polytopic form in thé.,
controller design, which have the objective of minimiziihg thigher peak of vibration in frequency response. Figure 8
showed that all the vertices, or all the possible plants idened in the design, had a considerable attenuation in the
vertical vibration. Table 2 showed that a attenuatior38f6 db was achieved in the first mode of vibration - which is the
peak of vibration - when comparing the uncontrolled and idletd real plant without uncertainties.

Possible future investigation could consider the parametrcertainties in thé\ methodology (Gt al., 2005), which
is a different form of dealing with uncertainties, and itsuks could be compared.
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